Mathematics. - On the theory of linear integral equations. V. By A. C. Zaanen. (Communicated by Prof. W. van der Woude.)
(Communicated at the meeting of April 27, 1946.)

§ 1. Introduction.

We suppose the reader to be acquainted with the contents of the papers I, II and IV, bearing the same title ${ }^{1}$). In this paper we shall consider linear integral equations

$$
\begin{equation*}
\int_{\Delta} K(x, y) f(y) d y-\lambda f(x)=g(x) \tag{1}
\end{equation*}
$$

in the space $L_{2}^{(m)}(\triangle)$ with kernel $K(x, y)=A(x) H(x, y)$, where $A(x)$ is a measurable, bounded and real function on the m-dimensional interval \triangle, and $H(x, y) \in L_{2}^{(2 m)}$ is a positive (positive means here: of positive type) Hermitean kernel. Equations with a kernel $K(x, y)$ of this category are sometimes called of the third kind, and, if $A(x)$ takes on only the values +1 and -1 , they are called of polar type (D. Hilbert). E. Garbe ${ }^{2}$) has discussed the equation of the third kind under the assumptions that \triangle is a linear interval, $A(x)$ is continuous except for a finite number of jumps, $[A(x)]^{-1}$ is bounded ${ }^{3}$), and that the kernel $H(x, y)$ is continuous and general (that is, the functions $\int_{\Delta} H(x, y) f(y) d y$ are lying dense in the space $\left.L_{2}^{(m)}(\Delta)\right)$. Denoting the characteristic values $\neq 0$ of (1) by $\lambda_{i}(i=1,2, \ldots)$, and a corresponding H-orthonormal system of characteristic functions by $\psi_{i}(x)(i=1,2, \ldots)$, he obtained the following results:
1°. If

$$
a_{i}=\int_{\Delta \dot{x} \Delta} H(x, y) \overline{\psi_{i}(x)} f(y) d x d y
$$

for an arbitrary $f(x) \in L_{2}$, then

$$
\begin{equation*}
\int_{\triangle} K(x, y) f(y) d y=\Sigma \lambda_{i} a_{i} \psi_{i}(x), \tag{2}
\end{equation*}
$$

uniformly in x,
2°.

$$
H(x, y)=\Sigma \frac{\lambda_{i}^{2} \psi_{i}(x) \overline{\psi_{i}(y)}}{A(x) A(y)}
$$

[^0]uniformly in x and y, or, writing
\[

$$
\begin{gather*}
\int_{\Delta} H(x, y) \psi_{i}(y) d y=\chi_{i}(x), \text { so that } \lambda_{i} \psi_{i}(x)=\int_{\Delta} K(x, y) \psi_{i}(y) d y=A(x) \chi_{i}(x) \\
H(x, y)=\Sigma \chi_{i} \overline{(x) \chi_{i}}(y), \quad . \quad . \quad . \tag{3}
\end{gather*}
$$
\]

uniformly in x and y.
We shall show now, as a consequence of other more general results, that Garbe's Theorems are valid under less stringent conditions upon the function $A(x)$. The formula (2) holds if $A(x) \neq 0$ almost everywhere on \triangle, and also, in the case that \triangle is a linear interval, if $A(x)$ is, for every $x \in \triangle$, continuous to the left or to the right (in thise case it is therefore permitted that $A(x)=0$ on a set of positive measure), and for the validity of (3) it is sufficient that $A(x) \neq 0$ almost everywhere in Δ. We shall prove, moreover, that although the series $\Sigma \chi_{i}(x) \overline{\chi_{i}(y)}$ converges uniformly whenever $H(x, y)$ is continuous, its sum is not necessarily equal to $H(x, y)$ when $A(x)=0$ in a subinterval of \triangle, even in the case that $H(x, y)$ is general.
§ 2. The equation of the third kind.
Let $K(x, y)=A(x) H(x, y)$, where $H(x, y) \in L_{2}^{(2 m)}(\triangle)$ is a positive Hermitean kernel, and $A(x)$ is on \triangle measurable, bounded and real. Then the linear transformation H in the space $L_{2}^{(m)}(\Delta)$, defined by .

$$
H f=\int H(x, y) f(y) d y
$$

is completely continuous, self-adjoint and positive, while the linear transformation A, defined by

$$
A f=A(x) f(x)
$$

is bounded and self-adjoint. The completely continuous linear transformation $K=A H$ is then determined by

$$
K f=A H f=A(x) \int_{\triangle} H(x, y) f(y) d y=\int_{\Delta} K(x, y) f(y) d y
$$

As we know, the transformation K is symmetrisable relative to H, and we observe that every $f(x) \in L_{2}$, satisfying $H f=0$, satisfies also $K f=0$. The kernel $K(x, y)$ is therefore what we have called in IV a Marty-kernel. Supposing that

$$
\|H(x, y)\|_{2 m}^{2}=\int_{\Delta x \Delta}|H(x, y)|^{2} d x d y \neq 0
$$

so that H is not identical with the nulltransformation O, the theorems proved in IV may therefore be applied to the equation (1). We shall not
repeat them all here, and only pay attention to IV, Theorems 4,6 and 11 , since these may be replaced by stronger theorems. Instead of IV, Theorem 4 we have

Theorem 1. (Expansion Theorem.) Writing

$$
a_{i}=\left(f, \chi_{i}\right)=\int_{\Delta} f(x) \overline{\chi_{i}(x)} d x
$$

for an arbitrary $f(x) \in L_{2}$, we have

$$
\begin{gathered}
\int_{\Delta} K(x, y) f(y) d y \sim \Sigma \lambda_{i} a_{i} \psi_{i}(x)+p(x) \\
\int_{\Delta} K_{n}(x, y) f(y) d y \sim \sum_{i} \lambda_{i}^{n} a_{i} \psi_{i}(x) \quad(n \geqslant 2),
\end{gathered}
$$

where the function $p(x)$ satisfies the relation

$$
H p=\int_{\triangle} H(x, y) p(y) d y=0
$$

for almost every $x \in \triangle$.
Proof. Follows from I, Theorem 15.
Instead of IV, Theorem 6 we have
Theorem 2. Let $\lambda \neq 0$, and let $g(x) \in L_{2}$ be H-orthogonal to all characteristic functions of (1) belonging to the characteristic value λ (If λ is no characteristic value, $g(x)$ is therefore arbitrary). Then every solution of (1) satisfies a relation of the form

$$
f(x) \sim-\frac{g(x)}{\lambda}-\Sigma^{\prime} \frac{\lambda_{i}}{\lambda\left(\lambda-\lambda_{i}\right)} a_{i} \psi_{i}(x)+q(x) .
$$

where

$$
\mathbf{a}_{i}=\int_{\Delta} g(x) \overline{\chi_{i}(x)} d x \text { for } \lambda_{i} \neq \lambda, \int_{\Delta} H(x, y) q(y) d y=0
$$

for almost every $x \in \triangle$, and where Σ^{\prime} denotes that for those values of i for which $\lambda_{i}=\lambda$ the coefficient of $\psi_{i}(x)$ has the value $\int_{\Delta} f(x) \overline{\chi_{i}(x)} d x$. For every set of arbitrarily prescribed values of the latter coefficients there exists a solution of (1).

Proof. Follows from I, Theorem 17.
Instead of IV, Theorem 11, we have

Theorem 3. (Expansion Theorem). We have
where

$$
\begin{equation*}
K_{2}(x, y)-p_{2}(x, y) \backsim \Sigma \lambda_{i}^{2} \psi_{i}(x) \overline{\chi_{i}(y)}, . \tag{4}
\end{equation*}
$$

$$
\int_{\triangle} H(x, z) p_{2}(z, y) d z=0
$$

almost everywhere in $\Delta \times \Delta$;

$$
\begin{align*}
K_{n}(x, y) \propto \sum_{i} \lambda_{i}^{n} \psi_{i}(x) \overline{\chi_{i}(y)} & (n \geqslant 3) ; \tag{5}\\
\int_{\Delta} K_{n}(x, x) d x=\sum_{i} \lambda_{i}^{n} & (n \geqslant 3) \tag{6}
\end{align*}
$$

Proof. The formulae (4) and (5), and also the formula (6) for $n \geq 4$ have already been proved in IV, Theorem 11. The only thing that remains to be proved is

$$
\int_{\Delta} K_{3}(x, x) d x=\Sigma \lambda_{i}^{3}
$$

Now, in the proof of IV, Theorem 7 we have obtained the formula (4), stating that

$$
\int_{\Delta} P(z, y) K(y, z) d y=\Sigma \lambda_{i}^{2}\left|\chi_{i}(z)\right|^{2}
$$

for almost every $z \in \Delta$, where

$$
P(z, y)=\int_{\Delta} H(z, x) K(x, y) d x
$$

Hence

$$
\begin{aligned}
\int_{\Delta} H(z, x) K_{2}(x, z) d x=\int_{\Delta x \Delta} H(z, x) K(x, y) K(y, z) d x d y & = \\
& \int_{\Delta} P(z, y) K(y, z) d y=\Sigma \lambda_{i}^{2}\left|\chi_{i}(z)\right|^{2}
\end{aligned}
$$

or, observing that $A(z) \chi_{i}(z)=\lambda_{i} \psi_{i}(z)$,

$$
\begin{aligned}
K_{3}(z, z)= & \int_{\Delta} K(z, x) K_{2}(x, z) d x= \\
& A(z) \int_{\Delta} H(z, x) K(x, z) d x= \\
& \Sigma \lambda_{i}^{2} A(z) \chi_{i}(z) \overline{\chi_{i}(z)}=\Sigma \lambda_{i}^{3} \psi_{i}(z) \overline{\chi_{i}(z)}
\end{aligned}
$$

for almost every $z \in \Delta$. This shows that

$$
\int_{\Delta} K_{3}(z, z) d z=\Sigma \lambda_{i}^{3}
$$

Theorem 4. (Expansion Theorem). If $\Sigma \mu_{i}$ converges, where

$$
\mu_{i}(i=1,2, \ldots)
$$

is the sequence of characteristic values of the kernel $H(x, y)$, we have

$$
\begin{equation*}
K(x, y)-p(x, y) \sim \Sigma \lambda_{i} \psi_{i}(x) \overline{\chi_{i}(y)} \tag{7}
\end{equation*}
$$

where

$$
\int_{\Delta} H(x, z) p(z, y) d z=0
$$

almost everywhere in $\Delta \times \Delta$;

$$
\begin{gather*}
K_{n}(x, y) \sim \sum_{i} \lambda_{i}^{n} \psi_{i}(x) \overline{\chi_{i}}(y) \quad(n \geqslant 2) \tag{8}\\
\int_{\Delta} K_{n}(x, x) d x=\sum_{i} \lambda_{i}^{n} \quad(n \geqslant 2) \tag{9}
\end{gather*}
$$

Proof. If $\Sigma \mu_{i}$ converges, the uniquely determined, positive self-adjoint transformation $H^{1 / 3}$ is of the form

$$
H^{1 / 2} f=\int_{\Delta} H_{1 / 2}(x, y) f(y) d y
$$

where $H_{1_{2}}(x, y) \in L_{2}^{(2 m)}$, so that the transformation $\mathrm{Q}=A H^{1_{2}}$ is expressible as

$$
Q f=\int_{\Delta} \mathrm{Q}(x, y) f(y) d y
$$

where $Q(x, y)=A(x) H_{1_{2}}(x, y) \in L_{2}^{(2 m)}$. The theorem to be proved is therefore a consequence of IV, Theorem 12.
§ 3. The case that $H(x, y)$ is continuous.
Theorem 5. (Expansion Theorem for the kernel). If $H(x, y)$ is continuous, then

$$
\begin{equation*}
K(x, y)-p(x, y)=\Sigma \lambda_{i} \psi_{i}(x) \overline{\chi_{i}(y)} \tag{10}
\end{equation*}
$$

uniformly in $\Delta \times \Delta$, where the function $p(x, y)$ satisfies the relation

$$
q(x, y)=\int_{\Delta} H(x, z) p(z, y) d z=0
$$

for every point $(x, y) \in \triangle X \triangle$.
Proof. Since $H(x, y)$ is continuous, the transformation $H^{1 / s}$ is, on account of II, Theorem 10, given by

$$
H^{1_{3}} f=\int_{\Delta} H_{1_{9}}(x, y) f(y) d y
$$

where $\int_{\triangle}\left|H_{1_{1}}(x, y)\right|^{2} d y$ is bounded. For almost every $x_{1} \in \Delta$ and almost every $x_{2} \in \triangle$ we have now

$$
\begin{aligned}
& \int_{\Delta}\left|H_{1 / 2}\left(x_{2}, y\right)-H_{1 / 2}\left(x_{1}, y\right)\right|^{2} d y= \\
& \int_{\Delta}\left\{H_{1_{2}}\left(x_{2}, y\right)-H_{1 / 2}\left(x_{1}, y\right)\right\} \overline{\left\{H_{1 / 2}\left(x_{2}, y\right)-H_{1 / 2}\left(x_{1}, y\right)\right\} d y}= \\
& \int_{\Delta}\left\{H_{1 / 2}\left(x_{2}, y\right)-H_{1 / 2}\left(x_{1}, y\right)\right\}\left\{H_{1 / 2}\left(y, x_{2}\right)-H_{1 / 2}\left(y, x_{1}\right)\right\} d y= \\
& H\left(x_{2}, x_{2}\right)-H\left(x_{2}, x_{1}\right)-H\left(x_{1}, x_{2}\right)+H\left(x_{1}, x_{1}\right) ;
\end{aligned}
$$

consequently, since $H(x, y)$ is continuous in $\Delta \times \Delta$, there exists for any $\varepsilon>0$ a number $\delta(\varepsilon)>0$ such that

$$
\begin{equation*}
\int_{\Delta}\left|H_{1 / 2}\left(x_{2}, y\right)-H_{1 / 2}\left(x_{1}, y\right)\right|^{2} d y<\varepsilon_{1} \tag{11}
\end{equation*}
$$

if only the distance

$$
\varrho\left(x_{1}, x_{2}\right)=\left(\sum_{i=1}^{m}\left|x_{1}^{(i)}-x_{2}^{(i)}\right|^{2}\right)^{1 / 2}
$$

of the points x_{1} and x_{2} satisfies the relation $\varrho\left(x_{1}, x_{2}\right)<\delta$, and $x_{k}(k=1,2)$ does not belong to a set $E_{k} \in \triangle(k=1,2)$ of measure 0 . Further, on account of

$$
\chi_{i}(x)=H \psi_{i}=H^{1 / 2} H^{1_{2}} \psi_{i}=H^{1_{2}} \Psi_{i}=\int_{\Delta} H_{1_{2}}(x, y) \Psi_{i}(y) d y
$$

holding for almost every $x \in \Delta$, we have

$$
\chi_{i}\left(x_{2}\right)-\chi_{i}\left(x_{1}\right)=\int_{\Delta}\left\{H_{1 / 2}\left(x_{2}, y\right)-H_{1 / 2}\left(x_{1}, y\right)\right\} \Psi_{i}(y) d y
$$

for almost every $x_{1} \in \triangle$ and almost every $x_{2} \in \triangle$; hence, in virtue of Bessel's inequality (the system $\Psi_{i}(x)$ is orthonormal),

$$
\begin{equation*}
\sum_{i=1}^{p}\left|\chi_{i}\left(x_{2}\right)-\chi_{i}\left(x_{1}\right)\right|^{2} \leqslant \int_{\Delta}\left|H_{1_{2}}\left(x_{2}, y\right)-H_{1_{1 / 2}}\left(x_{1}, y\right)\right|^{2} d y \tag{12}
\end{equation*}
$$

for these values of x_{1}, x_{2} and for arbitrary p.
From (11) and (12) we deduce that

$$
\sum_{i=1}^{p}\left|\chi_{i}\left(x_{2}\right)-\chi_{i}\left(x_{1}\right)\right|^{2}<\varepsilon
$$

for almost every $x_{1} \in \Delta$ and almost every $x_{2} \in \Delta$, if only $\varrho\left(x_{1}, x_{2}\right)<\delta$. Since however the functions $\chi_{i}(x)=\int_{\Delta} H(x, y) \psi_{i}(y) d y$ are continuous in \triangle, the function $\sum_{i=1}^{p}\left|\chi_{i}\left(x_{2}\right)-\chi_{i}\left(x_{1}\right)\right|^{2}$ is continuous in x_{1} and in x_{2}, so that the relation

$$
\sum_{i=1}^{p}\left|\chi_{i}\left(x_{2}\right)-\chi_{i}\left(x_{1}\right)\right|^{2} \leqslant \varepsilon
$$

holds evidently for every pair of points $x_{1}, x_{2} \in \triangle$, if only $\varrho\left(x_{1}, x_{2}\right)<\delta$. Observing that p is arbitrary, we obtain finally

$$
\sum_{i}\left|\chi_{i}\left(x_{2}\right)-\chi_{i}\left(x_{1}\right)\right|^{2} \leqslant \varepsilon \text { for } \varrho\left(x_{1}, x_{2}\right)<\delta(\varepsilon) ;
$$

in other words

$$
\lim _{x_{2} \rightarrow x_{1}} \sum_{i}\left|\chi_{i}\left(x_{2}\right)-\chi_{i}\left(x_{1}\right)\right|^{2}=0
$$

By Minkowski's inequality we see now that

$$
\left|\left(\sum_{i}\left|\chi_{i}\left(x_{2}\right)\right|^{2}\right)^{1 / 2}-\left(\sum_{i}\left|\chi_{i}\left(x_{1}\right)\right|^{2}\right)^{1 / 2}\right| \leqslant\left(\sum_{i}\left|\chi_{i}\left(x_{2}\right)-\chi_{i}\left(x_{1}\right)\right|^{2}\right)^{1 / 2} ;
$$

the sumfunction of the series $\Sigma\left|\chi_{i}(x)\right|^{2}$ is therefore a continuous function. Hence, on account of Dini's well-known Theorem, since the functions $\left|\chi_{i}(x)\right|^{2}$ are non-negative and continuous, the uniform convergence of $\Sigma\left|\chi_{i}(x)\right|^{2}$. The inequality

$$
\Sigma\left|\chi_{i}(x) \overline{\chi_{i}(y)}\right| \leqslant\left(\Sigma\left|\chi_{i}(x)\right|^{2}\right)^{1 / 2} \cdot\left(\Sigma\left|\chi_{i}(y)\right|^{2}\right)^{1 / 2}
$$

shows then that $\Sigma_{\chi_{i}}(x) \overline{\chi_{i}(y)}$ converges uniformly in $\Delta \times \Delta$. Writing

$$
\begin{equation*}
H(x, y)-p_{1}(x, y)=\Sigma \chi_{i}(x) \overline{\chi_{i}(y)} \tag{13}
\end{equation*}
$$

we see, since both $H(x, y)$ and $\Sigma \chi_{i}(x) \overline{\chi_{i}(y)}$ are continuous in $\triangle \times \Delta$, that $p_{1}(x, y)$ is continuous in $\triangle \times \triangle$. Multiplying the relation (13) with $A(x)$ and writing $A(x) p_{1}(x, y)=p(x, y)$, we find

$$
K(x, y)-p(x, y)=\Sigma \lambda_{i} \psi_{i}(x) \overline{\chi_{i}(y)}
$$

uniformly in $\Delta \times \Delta$, and we know already (cf. Theorem 4) that

$$
q(x, y)=\int_{\Delta} H(x, z) p(z, y) d z=0
$$

for almost every point $(x, y) \in \Delta \times \Delta$. We have still to prove that $q(x, y)=0$ everywhere in $\Delta \times \Delta$. For this purpose we observe that, since $H(x, z)$ is continuous, $q(x, y)$ is continuous in x for a fixed value of y, and, since

$$
q(x, y)=\int_{\Delta} H(x, z) A(z) p_{1}(z, y) d z
$$

where $p_{1}(z, y)$ is continuous, $q(x, y)$ is continuous in y for a fixed value of x. Starting now with the fact that, for almost every $y \in \Delta, q(x, y)=0$ for almost every $x \in \Delta$, we find on account of the continuity in x that, for almost every $y \in \Delta, q(x, y)=0$ for every $x \in \Delta$; in other words, for every $x \in \Delta$ we have $q(x, y)=0$ for almost every $y \in \triangle$. On account of the continuity in y we have therefore $q(x, y)=0$ for every point $(x, y) \in \Delta X \Delta$. This completes the proof.

Theorem 6. (Expansion Theorem for the iterated kernels). If $H(x, y)$ is continuous, then

$$
\begin{equation*}
K_{n}(x, y)=\sum_{i} \lambda_{i}^{n} \psi_{i}(x) \overline{\chi_{i}(y)} \quad(n \geqslant 2) \tag{14}
\end{equation*}
$$

uniformly in $\Delta \times \Delta$.
Proof. The result for $n=2$ follows immediately from the preceding theorem, since

$$
\int_{\Delta} K(x, z) p(z, y) d z=A(x) \int_{\Delta} H(x, z) p(z, y) d z=0
$$

in $\Delta \times \Delta$. The relation

$$
K_{n}(x, y)=\sum_{i} \lambda_{i}^{n} \psi_{i}(x) \overline{\chi_{i}(y)} \quad(n>2)
$$

follows easily by induction.
Theorem 7. (Expansion Theorem). If $H(x, y)$ is continuous, and

$$
a_{i}=\left(f, \chi_{i}\right)=\int_{\Delta} f(x) \overline{\chi_{i}(x)} d x \text { for an arbitrary } f(x) \in L_{2}
$$

we have

$$
\begin{gathered}
\int_{\Delta} K(x, y) f(y) d y-p(x)=\Sigma \lambda_{i} a_{i} \psi_{i}(x) \\
\int_{\Delta}^{\infty} K_{n}(x, y) f(y) d y=\sum_{i} \lambda_{i}^{n} a_{i} \psi_{i}(x) \quad(n \geqslant 2)
\end{gathered}
$$

uniformly in \triangle, where $p(x)$ satisfies the relation

$$
\int_{\triangle} H(x, y) p(y) d y=0
$$

for every $x \in \triangle$.
Proof. The formula (10) implies

$$
\int_{\triangle} K(x, y) f(y) d y-p(x)=\Sigma \lambda_{i} a_{i} \psi_{i}(x)
$$

uniformly in Δ, where

$$
p(x)=\int_{\Delta} p(x, y) f(y) d y
$$

Hence

$$
\int_{\triangle} H(x, y) p(y) d y=\int_{\Delta x \Delta} H(x, y) p(y, z) f(z) d y d z=0
$$

for every $x \in \triangle$.
The formula (14) implies

$$
\int_{\Delta} K_{n}(x, y) f(y) d y=\sum_{i} \lambda_{i}^{n} a_{i} \psi_{i}(x) \quad(n \geqslant 2)
$$

uniformly in \triangle.
A Hermitean kernel $A(x, y) \in L_{2}^{(2 m)}$ is called a general kernel (D. HilBERT), when the set of all functions $A g=\int_{\Delta} A(x, y) g(y) d y$ is lying dense in the space L_{2}; in other words, when, given $f(x) \in L_{2}$ and the number $\varepsilon>0$, there exists a function $g(x) \in L_{2}$ such that

$$
\int_{\Delta}\left|f(x)-\int_{\triangle} A(x, y) g(y) d y\right|^{2} d x<\varepsilon
$$

Theorem 8. In order that the Hermitean kernel $A(x, y) \in L_{2}^{(2 m)}$ be general, it is necessary and sufficient that $A f=0$ should imply $f=0$.

Proof. Denoting by $\mu_{i}(i=1,2, \ldots)$ the sequence of all characteristic values $\neq 0$ of $A(x, y)$, and by $\varphi_{i}(x)$ a corresponding orthonormal system of characteristic functions, it is not difficult to prove that the condition that $A f=0$ should imply $f=0$ is equivalent with the condition that the system $\varphi_{i}(x)$ is complete (that is, the finite linear combinations $\Sigma a_{i} \varphi_{i}(x)$ are lying dense in L_{2}).

Let now $A f=0$ imply $f=0$, and let $f(x) \in L_{2}$ and $\varepsilon>0$ be given. Since the system $\varphi_{i}(x)$ is orthonormal and complete, we have $f=\Sigma \mathrm{a}_{i} \varphi_{i}$ with $a_{i}=\left(f, \varphi_{i}\right)$. Taking the index N such that $\left\|f-\sum_{i=1}^{N} a_{i} \varphi_{i}\right\|^{2}<\varepsilon$, and writing $a_{i}=\mu_{i} b_{i}$, we have for $g=\sum_{i=1}^{N} b_{i} \varphi_{i}$ the relation

$$
A g=\sum_{i=1}^{N} b_{i} A \varphi_{i}=\sum_{i=1}^{N} \mu_{i} b_{i} \varphi_{i}=\sum_{i=1}^{N} a_{i} \varphi_{i}
$$

hence

$$
\int_{\triangle}\left|f(x)-\int_{\triangle} A(x, y) g(y) d y\right|^{2} d x=\|f-A g\|^{2}=\left\|f-\sum_{i=1}^{N} a_{i} \varphi_{i}\right\|^{2}<\varepsilon
$$

The kernel $A(x, y)$ is therefore general.

Conversely, if $A(x, y)$ is general, the elements $A g=\Sigma \mu_{i}\left(g, \varphi_{i}\right) \varphi_{i}$ are lying dense in L_{2}, so that the system $\varphi_{i}(x)$ is complete. Then however, as we have seen, $A f=0$ implies $f=0$.

Let $f(x)$ be a measurable function on the interval \triangle, E_{1} the set where $f(x)=0, E_{2}=\Delta-E_{1}$ the set where $f(x) \neq 0$.

Definition. We shall say that $f(x)$ possesses the property (G) when every measurable set $E_{3} \subset E_{2}$, for which meas. $\left(E_{2}-E_{3}\right)=0$, is lying dense in E_{2}, in other words, when E_{2} is contained in the closure \bar{E}_{3} of E_{3}.

Theorem 9. If $f(x) \neq 0$ almost everywhere in $\triangle, f(x)$ possesses the property (G).

Proof. Since now meas. $E_{2}=$ meas. \triangle, we have for every E_{3} for which meas. $\left(E_{2}-E_{3}\right)=0$, also meas. $E_{3}=$ meas. Δ. This implies $E_{2} \subset \bar{E}_{3}=\triangle$, so that $f(x)$ possesses the property (G).

Theorem 10. If $f(x)$ is continuous in $\triangle, f(x)$ possesses the property (G). In the case that Δ is a linear interval, it is even sufficient to suppose that $f(x)$ is, for every $x \in \triangle$, continuous to the left or to the right.

Proof. Let $f(x)$ be continuous in Δ. Then the set E_{1} is closed, so that E_{2} is open (relative to \triangle); in other words, E_{2} contains only internal points. Given now the set $E_{3} \subset E_{2}$ such that meas. $\left(E_{2}-E_{3}\right)=0$, every neighbourhood of a point $x \in E_{2}$ must contain points of E_{3}; hence $E_{2} \subset \bar{E}_{3}$. Every continuous function possesses therefore the property (G). In the case that Δ is a linear interval, the same proof holds if only $f(x)$ is, for every $x \in \Delta$, continuous to the left or to the right.

Theorem 11. (Expansion Theorem). If $H(x, y)$ is continuous and general, and if $A(x)$ possesses the property (G), then

$$
\begin{equation*}
K(x, y)=\Sigma \lambda_{i} \psi_{i}(x) \overline{\chi_{i}(y)}, \tag{15}
\end{equation*}
$$

uniformly in $\Delta \times \Delta$, and, writing $a_{i}=\left(f, \chi_{i}\right)=\int_{\Delta} f(x) \overline{\chi_{i}(x)} d x$ for an arbitrary $f(x) \in L_{2}$,

$$
\begin{equation*}
\int_{\Delta} K(x, y) f(y) d y=\Sigma \lambda_{i} a_{i} \psi_{i}(x), \quad . \quad . \tag{16}
\end{equation*}
$$

uniformly in \triangle. Furthermore

$$
\begin{equation*}
\int_{\Delta} K(x, x) d x=\Sigma \lambda_{i} . \quad . \quad . \quad . \quad . \tag{17}
\end{equation*}
$$

Proof. By Theorem 5 we have

$$
K(x, y)-p(x, y)=\Sigma \lambda_{i} \psi_{i}(x) \overline{\chi_{i}(y)}
$$

uniformly in $\Delta \times \Delta$, where $p(x, y)=A(x) p_{1}(x, y)$, the function $p_{1}(x, y)$ is continuous in $\Delta \times \Delta$, and $\int H(x, z) p(z, y) d z=0$ in $\Delta \times \Delta$. Since $H(x, y)$ is a general kernel, $\stackrel{\Delta}{H} p=0$ implies $p=0$, so that, for every $y \in \Delta, p(x, y)=0$ for almost every $x \in \Delta$. Denoting by $E_{1} \subset \triangle$ the set where $A(x)=0$, and by E_{2} the complementary set where $A(x) \neq 0$, we see that $p(x, y)=A(x) p_{1}(x, y)=0$ for $x \in E_{1}$. Furthermore

$$
p_{1}(x, y)=p(x, y) / A(x)=0
$$

almost everywhere in E_{2}; hence, in a set $E_{3} \subset E_{2}$ for which meas. $\left(E_{2}-E_{3}\right)=0$. In virtue of the continuity of $p_{1}(x, y)$ the relation $p_{1}(x, y)=0$ holds also for $x \in \bar{E}_{3}$. But, $A(x)$ possessing the property (G), we have $E_{2} \subset \bar{E}_{3}$, so that $p_{1}(x, y)=0$, and therefore also $p(x, y)=0$, for $x \in E_{2}$ Having established thus that, for every $y \in \Delta, p(x, y)=0$ for $x \in E_{1}$ and $x \in E_{2}$, we see that $p(x, y)=0$ in $\Delta \times \triangle$, hence

$$
\begin{equation*}
K(x, y)=\sum \lambda_{i} \psi_{i}(x) \overline{\chi_{i}(y)} \tag{15}
\end{equation*}
$$

uniformly in $\triangle \times \triangle$.
The formulae (16) and (17) follow immediately from (15).
Theorem 12. Let $H(x, y)$ be continuous and general, and $A(x)$ possess the property (G). Let furthermore $\lambda \neq 0$, and $g(x) \in L_{2}$ be H-orthogonal to all characteristic functions of $K(x, y)$, belonging to the characteristic value. (If λ is no characteristic value, $g(x)$ may be any function belonging to L_{2}). Then the solution of the equation (1) is given by

$$
f(x)=-\frac{g(x)}{\lambda}-\Sigma^{\prime} \frac{\lambda_{i}}{\lambda\left(\lambda-\lambda_{i}\right)} a_{i} \psi_{i}(x)
$$

where $a_{i}=\int_{\Delta} g(x) \overline{\chi_{i}(x)} d x$ for $\lambda_{i} \neq \lambda, \Sigma^{\prime}$ denotes that for those values of i for which $\lambda_{i}=\lambda$ the coefficient of $\psi_{i}(x)$ is arbitrary, and the series

$$
\Sigma^{\prime} \frac{\lambda_{i}}{\lambda\left(\lambda-\lambda_{i}\right)} a_{i} \psi_{i}(x)
$$

converges uniformly in \triangle.
Proof. By the preceding theorem we have

$$
g(x)+\lambda f(x)=\int_{\Delta} K(x, y) f(y) d y=\Sigma \lambda_{i} b_{i} \psi_{i}(x)
$$

uniformly in \triangle, where $b_{i}=\left(f, \chi_{i}\right)$. Since

$$
\begin{aligned}
& \lambda_{i} b_{i}=\lambda_{i}\left(f, \chi_{i}\right)=\lambda_{i}\left(f, H \psi_{i}\right)=\left(f, H K \psi_{i}\right)=\left(H K f, \psi_{i}\right)= \\
& \left(K f, H \psi_{i}\right)=\left(g+\lambda f, \chi_{i}\right)=a_{i}+\lambda b_{i}
\end{aligned}
$$

we find $b_{i}=-a_{i} /\left(\lambda-\lambda_{i}\right)$ for $\lambda_{i} \neq \lambda$. Furthermore, the solution $f(x)$ being determined except for a characteristic function of $K(x, y)$, belonging to the characteristic value λ, the coefficients b_{i} may be taken arbitrary for those values of i for whih $\lambda_{i}=\lambda$. Hence

$$
f(x)=-\frac{g(x)}{\lambda}-\Sigma^{\prime} \frac{\lambda_{i}}{\lambda\left(\lambda-\lambda_{i}\right)} a_{i} \psi_{i}(x),
$$

uniformly in \triangle.
Theorem 13. (Garbe's Theorem). If $H(x, y)$ is continuous and general, and if moreover $A(x) \neq 0$ for almost every $x \in \Delta$, then

$$
\begin{equation*}
H(x, y)=\Sigma \chi_{i}(x) \overline{\chi_{i}(y)} \tag{18}
\end{equation*}
$$

uniformly in $\triangle \times \triangle$.
Proof. In the proof of Theorem 5 we have seen that $\Sigma_{\chi_{i}}(x) \overline{\chi_{i}(y)}$ converges uniformly. Furthermore, since $A(x)$ possesses the property (G), we have by Theorem 11

$$
K(x, y)=A(x) H(x, y)=\Sigma \lambda_{i} \psi_{i}(x) \overline{\chi_{i}(y)}=A(x) \Sigma \chi_{i}(x) \overline{\chi_{i}(y)}
$$

for every point $(x, y) \in \triangle \times \triangle$. Hence, for every $y \in \triangle$,

$$
\begin{equation*}
H(x, y)=\Sigma \chi_{i}(x) \overline{\chi_{i}(y)} \tag{18}
\end{equation*}
$$

for those values of x for which $A(x) \neq 0$, that is, for almost every $x \in \Delta$. Since however both $H(x, y)$ and $\Sigma \chi_{i}(x) \overline{\chi_{i}(y)}$ are continuous in $\triangle \times \triangle$, the relation (18) holds for every point $(x, y) \in \Delta \times \triangle$.

Remark. It is not difficult to show that $A(x) \neq 0$ almost everywhere in Δ is the necessary and sufficient condition that $A f=A(x) f(x)=0$ should imply $f=0$ in the space L_{2}. This condition therefore is, for a measurable, bounded and real function $A(x)$, the analogue of the condition to be general for a Hermitean kernel $A(x, y) \in L_{2}^{(2 m)}$.

It may be asked whether, in the case that $A(x)=0$ in a set of positive measure, the relation

$$
H(x, y)=\Sigma \chi_{i}(x) \overline{\chi_{i}(y)}
$$

remains valid. We shall show that this is not necessarily true. Let, for this purpose, \triangle be the linear interval $0 \leq x \leq 2 \pi$, and $t_{i}(x)$ the orthonormal trigonometrical system, hence
$t_{1}(x)=(2 \pi)^{-1 / 2}, t_{2 n}(x)=\pi^{-1 / 2} \cos n x(n \geqslant 1), t_{2 n+1}(x)=\pi^{-1 / 2} \sin n x(n \geqslant 1)$.
It is well-known that the system $t_{i}(x)$ is complete in the space $L_{2}(0,2 \pi)$ of all functions $f(x)$ for which $|f(x)|^{2}$ is summable over \triangle.

Let now the continuous, general, positive Hermitean kernel $H(x, y)$ be defined by

$$
H(x, y)=\sum_{i} i^{-4} t_{i}(x) t_{i}(y)
$$

it has the characteristic values $i^{-4}(i=1,2, \ldots)$ with the corresponding characteristic functions $t_{i}(x)$. The transformation $H^{1 / 2}$ corresponds then with the continuous, general, positive Hermitean kernel

$$
H_{1_{2}}(x, y)=\sum_{i} i^{-2} t_{i}(x) t_{i}(y),
$$

having the characteristic values i^{-2} with the characteristic functions $t_{i}(x)$. Furthermore we define the bounded self-adjoint transformation A by $A f=A(x) f(x)$, where

$$
A(x)=\left\{\begin{array}{l}
0 \text { for } 0 \leqslant x \leqslant \pi \\
1 \text { for } \pi<x \leqslant 2 \pi .
\end{array}\right.
$$

Let us consider now the periodic function $f(x)$, defined by

$$
f(x)=\left\{\begin{array}{cl}
x^{5}(\pi-x)^{5} & \text { for } 0 \leqslant x \leqslant \pi \\
0 & \text { for } \pi \leqslant x \leqslant 2 \pi
\end{array}\right.
$$

The fourth derivative of $f(x)$ is periodic and continuous; if therefore the Fourier series of $f(x)$ is $\Sigma\left(f, t_{i}\right) t_{i}(x)=\Sigma b_{i} t_{i}(x)$, we find without any difficulty by partial integration that there exists a constant M such that $\left|b_{i}\right| \leq M i^{-4}(i=1,2, \ldots)$, so that $f(x)=\Sigma b_{i} t_{i}(x)$, uniformly in \triangle. Defining now $a_{i}=i^{2} b_{i}(i=1,2, \ldots)$, we have $\left|a_{i}\right| \leq M i^{-2}$, which shows that $\sum a_{i} t_{i}(x)$ also converges uniformly in \triangle. Writing $\Psi(x)=\Sigma a_{i} t_{i}(x)$, we find

$$
H^{1 / 2} \Psi=\Sigma a_{i} H^{1 / 2} t_{i}=\sum a_{i} i^{-2} t_{i}=\Sigma b_{i} t_{i}=f
$$

while from the definitions of $A(x)$ and $f(x)$ follows immediately $A(x) f(x)=0$; hence

$$
\begin{equation*}
H^{1 / 2} A H^{1 / 2} \Psi=H^{1 / 2} A f=0 \tag{19}
\end{equation*}
$$

Denoting the H-orthonormal characteristic functions with characteristic values $\neq 0$ of the kernel $K(x, y)=A(x) H(x, y)$ by $\psi_{i}(x)$, we know by I, Theorem 18 that the functions $\Psi_{i}=H^{1 / 2} \psi_{i}$ are the orthonormal characteristic functions with characteristic values $\neq 0$ of the self-adjoint transformation $H^{11_{2}} A H^{1_{2}}$. From (19) follows therefore that $\Psi(x)$ is orthogonal to all functions $\Psi_{i}(x)$. Writing $\widetilde{\Psi}(x)=\Psi(x) /\|\Psi\|$, the system $\left\{\widetilde{\Psi}(x), \Psi_{i}(x)\right\}$ is orthonormal, and, since for every $x \in \triangle$

$$
\begin{gathered}
\chi_{i}(x)=H \psi_{i}=H^{1 / 2} \Psi_{i}=\int_{\Delta} H_{1_{2}}(x, y) \psi_{i}(y) d y \\
f(x) /\|\Psi\|=H^{1 / 2} \widetilde{\Psi}=\int_{\Delta} H_{1_{2}}(x, y) \widetilde{\Psi}(y) d y
\end{gathered}
$$

we find in virtue of Bessel's inequality

$$
\Sigma\left|\chi_{i}(x)\right|^{2}+|f(x)|^{2} /\|\Psi\|^{2} \leqslant \int_{\Delta}\left|H_{y_{2}}(x, y)\right|^{2} d y=H(x, x)
$$

so that, on account of $f(x) \neq 0$ for $0<x<\pi$,

$$
\Sigma \chi_{i}(x) \overline{\chi_{i}(x)}<H(x, x)
$$

for these values of x. The functions $H(x, y)$ and $\Sigma \chi_{i}(x) \overline{\chi_{i}(y)}$ being continuous in $\Delta \times \Delta$, there exists consequently for every point $\left(x_{0}, x_{0}\right) \in \Delta X \Delta$, subject to $0<x_{0}<\pi$, a two-dimensional neighbourhood $E\left(x_{0}\right) \subset \Delta \times \Delta$ such that

$$
H(x, y) \neq \Sigma \chi_{i}(x) \overline{\chi_{i}(y)}
$$

for $(x, y) \in E\left(x_{0}\right)$.

§ 4. An example.

We shall illustrate the theorems, proved in the preceding paragraph, by an example showing that the functions $p(x)$ and $p(x, y)$, occurring in the Theorems 7 and 5, need not vanish identically.

Let Δ be the linear interval $[0,2 \pi]$, and $\Delta_{1}, \Delta_{2}, \Delta_{3}$ the subintervals $[0, \pi / 2],(\pi / 2, \pi),[\pi, 2 \pi]$. The orthonormal system of functions $\varphi_{1}(x)$, $\phi_{2}(x), \varphi_{3}(x)$ is defined by

$$
\begin{aligned}
& \varphi_{1}(x)=\left\{\begin{array}{cl}
(2 / \pi)^{1 / 2}|\sin 2 x| & \text { for } x \in \triangle_{1}+\triangle_{2}, \\
0 & \text { for } x \in \triangle_{3}
\end{array},\right. \\
& \varphi_{2}(x)=\left\{\begin{array}{cl}
-(2 / \pi)^{1 / 2} \sin 2 x & \text { for } x \in \triangle_{1}+\triangle_{2}, \\
0 & \text { for } x \in \triangle_{3} \\
0 & \text { for } x \in \triangle_{1}+\triangle_{2},
\end{array}\right. \\
& \varphi_{3}(x)=\left\{\begin{array}{cl}
0 & \text { for } x \in \triangle_{3} \\
-(2 / \pi)^{1 / 2} \sin x
\end{array}\right.
\end{aligned}
$$

The positive, self-adjoint transformation H is then defined by

$$
H f=\int_{\Delta} H(x, y) f(y) d y
$$

where

$$
H(x, y)=\varphi_{1}(x) \varphi_{1}(y)+\varphi_{3}(x) \varphi_{3}(y) .
$$

The kernel $H(x, y)$ is evidently continuous, and

$$
H \varphi_{1}=\varphi_{1}, H \varphi_{2}=0, H \varphi_{3}=\varphi_{3}
$$

Let now the bounded, self-adjoint transformation A be given by $A f=A(x) f(x)$, where

$$
A(x)=\left\{\begin{aligned}
-1 & \text { for } x \in \triangle_{1} \\
1 & \text { for } x \in \triangle_{2}+\triangle_{3} .
\end{aligned}\right.
$$

Then

$$
A \varphi_{1}=\varphi_{2}, A \varphi_{2}=\varphi_{1}, A \varphi_{3}=\varphi_{3}
$$

hence

$$
K(x, y)=A(x) H(x, y)=\varphi_{2}(x) \varphi_{1}(y)+\varphi_{3}(x) \varphi_{3}(y) .
$$

Since evidently $H^{1_{2}}=H$, the self-adjoint transformation $\widetilde{K}=H^{1_{2}} A H^{1_{3}}$ is corresponding with the kernel

$$
\widetilde{K}(x, y)=\int_{\Delta} H(x, z) K(z, y) d z=\varphi_{3}(x) \varphi_{3}(y)
$$

As we know, $K(x, y)$ and $\widetilde{K}(x, y)$ have the same characteristic values $\neq 0$; hence, since $\widetilde{K}(x, y)$ has evidently only the characteristic value $\lambda=1$, different from 0 , with the characteristic function $\varphi_{3}(x)$, the kernel $K(x, y)$ has also $\lambda_{1}=1$ as the only characteristic value $\neq 0$ with the H-normal characteristic function $\psi_{1}(x)=\varphi_{3}(x)$. Observing that $\chi_{1}(x)=H \psi_{1}=$ $=H \varphi_{3}=\varphi_{3}(x)$, so that $\lambda_{1} \psi_{1}(x) \overline{\chi_{1}(y)}=\varphi_{3}(x) \varphi_{3}(y)$, we have therefore

$$
K(x, y)-p(x, y)=\lambda_{1} \psi_{1}(x) \overline{\chi_{1}(y)},
$$

where $p(x, y)=\varphi_{2}(x) \varphi_{1}(y) \neq 0$ for x and y in the interior of Δ_{1} or Δ_{2}; and $\int H(x, z) p(z, y) d z=0$, as required by Theorem 5 .

Furthermore, by Theorem 7,

$$
\int_{\triangle} K(x, y) f(y) d y=\lambda_{1} a_{1} \psi_{1}(x)+p(x)
$$

where

$$
a_{1}=\int_{\Delta} f(x) \overline{\chi_{1}(x)} d x \text { and } H p=\int_{\Delta} H(x, y) p(y) d y=0 .
$$

Taking $f(x)=p_{1}(x)$, we have

$$
\int_{\Delta} K(x, y) f(y) d y=K \varphi_{1}=A H \varphi_{1}=\varphi_{2}(x) \text { and } a_{1}=\left(\varphi_{1}, \varphi_{3}\right)=0 ;
$$

hence

$$
\varphi_{2}(x)=p(x)
$$

which shows that $p(x) \neq 0$ for x in the interior of \triangle_{1} and \triangle_{2}. Evidently $H p=H \varphi_{2}=0$, as required.

[^0]: ${ }^{1)}$ Proc. Kon. Ned. Akad. v. Wetensch., Amsterdam, 49, 194-204, 205-212 and 409-416 (1946).
 ${ }^{2}$) E. Garbe, Zur Theorie der Integralgleichung dritter Art, Math. Annalen, 76, 527-547 (1915).
 ${ }^{3}$) Without stating it very clearly, Garbe uses the boundedness of $[A(x)]^{-1}$ in his formulae (10) and (34).

