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ZAANEN. (Communicated by Prof. W . VAN DER WOUDE.) 

(CommlHlicated at the meeting of April 27, 1946.) 

§ 1. Introduction . 

We suppose the reader to be acquainted with the contents of the papers 
I. II and IV, bearing the same title 1). In th is paper we shall consider 
linear integral equations 

. f K (x, y) f (y) dy - ). t (x) = g (x) . . (1) 

L\ 

in the space L~m)(6) with kernel K(x, y) = A(x)H(x, y). where A(x) is 
a measurable, bouncled and real function on the m-dimensional interval 6, 
and H (x, y) E. L~ m) is a positive (positive means here: of positive type) 
Hermitean kernel. Equations with a kern el K(x, y) of this éategory are 
sometimes called of the third kind, ancl, if A (x) takes on only the values 
+ 1 and - 1, they are called of polar type (D. HILBERT). E. GARBE 2) 
has discussed the equation of the third ·kind under the assumptions that 6 
isa linear interval, A (x) is continuous except for a finite number of jumps, 
lA (x) ] -1 is bounded 3), and that the kern el H (x, y) is continuous and 

general (that is, the functions J H(x, y){(y)dy are lying dense in the 

f::, 

space L~m) (6) ) . Denoting the characteristic values -=;é 0 of ( 1) by 
),i(i = 1,2, ... ), and a corresponding H-orthonormal systemof characteristic 
functions by '!J';(x) (i = 1,2, .. . ). he obtained the Jollowing results: 

1°. If 

ai =.f H (x, y) '!J'i (x) f(y) dx dy 

f::,Xf::, 

for an arbitrary {(x) E.L2' then 

uniformly in x, 

2°. 

J K (x, y) f(y) dy = 2).i ai tpi (x),. 

f::, 

H( ) = ~).; tp;{x)~ 
x, y ~ A (x) A (y) , 

(2) 

1) Proc. Kon. Ned. Akad. v. Wetenseh. , Amsterdam, 49, 194-204, 205-212 and 
409-416 (1946). 

2) E. GARBE, Zur Theorie der lntegralgleichung dritter Art, Math. Annalen, 76, 
527-547 (1915). 

3) Without stating it very cIearLy, GARBE uses the boundedness of [A(x) )-1 in 
his formulae (10) and (34). 
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uniformly in x and y. or. writing 

f H(x.y)tp;(y)dy=X;(x). 50 that À.itpi(X) .f K(x.y)tp;(y}dy=A(x)x;(x). 

h 6. 

H (x. y) = }; Xi (x) Xi (y) • . (3) 

uniformly in x· and y. 
We shall show now. as a consequence of other more general results. that 

GARBE'S Theorems are valid under less stringent conditions upon the 
function A(x) . The formula (2) holds if A(x) =j:. 0 almost everywherè 
on 6.. and also. in the case that 6. is a linear interval,. if A (x) is. for every 
XE 6.. continuous to the left or to the right (in thise case it is therefore 
permitted that A (x) = 0 on a set of positive measure}. and for the validity 
of (3) it is sufficient that A (x) =j:. 0 almost everywhere in 6.. We shall 

prove, moreover. th at although the series IX;(x)x;(y} converges uniformly 
whenever H (x. y) is continuous. its sum is not necessarily equal to H (x. y) 
when A (x) = 0 in a subinterval of 6.. even in the case th at H (x. y) is 
genera!. . 

§ 2. The equation of the third kind. 

Let K(x. y) = A(x)H(x. y). where H(x. y) € L~m) (6.) is a positive 
Hermitean kernel, and A(x) is on 6. measurable. bounded and rea!. Then 
the linear transformation H in the space L~m)(6.) . defined by 

H f=.JH(x. y) f(y} dy. 

is completely continuous. self-adjoint and positive. while the linear trans
formation A. defined by 

A f= A (x) f(x}. 

i,> bounded and self-adjoint. The completely continuous Hnear transforma
tion K = AH is then determined by 

K f=A H f= A (x)f H(x. y)f(y) dy = f K(x.y) f(y)dy. 

[', 6. 

As we know. the transformation K is symmetrisable relative to H. and we 
observe that every f(x) E L 2 • satisfying Hf . O. satisfies also Kf = O. The 
kemel K(x. y) is therefore what we have called in IV a Marty-kernel. 
Supposing that 

11 H (x. y) I I ~m = .f I H (x. y) 12 dx dy -=f O. 

6.X6. 

so that H is not identical with the nulltransformation O. the theorems 
proved in IV may therefore be applied to the equation (1). We shall not 
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repeat them all here, and only pay attention to IV, Theorems 4, 6 and 11, 
sin ce these may be replaced by stronger theorems. Instead oE IV, Theorem 
4 we have 

Theorem 1. (Expansion Theorem.) Writing 

al = ([, Xt) = Jf(x)xt{X)dX 

l; 

for an arbitrary f (x) € L2' we have 

J K (x. y) {(y) dy (/) Z.tl ai 'Pi (x) + p (x). 

l; 

J Kn (x. y) {(y) dy (/) f À7 ai 'PI (x) 
l; 

where the function p (x) satisfies the relation 

Hp J H(x.y)p(y)dy=O 

l; 

tor almost every x € 6 . 

Proof. Follows Erom I. Theorem 15. 
Instead of IV, Thearem 6 we have 

(n ;:::: 2). 

Theorem 2. Let À =j:- 0, and let g (x) € L2 be H ~()rthoganal ta all char. 
acteristic functians of (1) belonging to the characteristic value À (lf À is 
no characteristic value. g(x) is therefore arbitrary). Then every salutian 
of (1) satisfies a relation of the form 

g (x) ,ÀI 
((x) (/) - -À- - Z À(À-Ài)ai 'Pi (x) + q (x). 

where 

ai = J g (x) XI(X) dx {or ÀI * À.J H (x. y) q (y) dy = 0 
l; l; 

for almost every x € 6. and where ~' denotes that for those values of i for 

which ÀI = À the coefficie,nt of 'Pi(X) has the value J f(x)xt{x)dx. Por 

l; 

every set of arbitrarily prescribed values of thè latter caefficients there 
cxists a solution of (1). 

Proof. Follows from I. Theorem 17. 
Instead of IV. Theorem 11, we have 
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Theorem 3. (Expansion T heorem ) . We have 

where 
K 2 (x. y) - P2 (x. y) Vl ~).~ !Pi (x) Xi (y).. . . . . (i) 

J H (x. z) P2 (z. y) dz = 0 

b. 

a/most everywhere in 6. X 6.; 

Kn (x. y) Vl }; ).~ !Pi (x) Xi (y) 
i 

J Kn(x.x)dx=f).~ 
b. 

(n )d); . . . . . (5) 

(n ::;;:: 3). . . . . . (6) 

Proof. The formulae (4) and (5). and also the formula (6) for n :> 4 
have already been proved in IV. Theorem 11 . The only thing that remains 
to he proved is 

J K3 (x. x) dx=}; ).~. 
b. 

Now. in the proof of IV. Theorem 7 we have ohtained the formula (4). 
stating that 

J P(z. y) K(y. z) dy = ~).~ I Xi (z) 1
2 

b. 

for almost every z E: 6.. where 

p (z. y) J H(z. x) K(x. y) dx. 

b. 

Hence 

J H(z. x) K 2 (x. z) dx - J H(z. x) K(x. y) K(y. z) dxdy = 

b. b.X b. 

J p (z. y) K (g. z) dg =}; ).71 Xi (z) 1
2

• 

b. 

Ol:. ohserving that A (z) Xi (z) = ).i!pi (z ) . 

K3 (z. z) = J K (z. x) K 2 (x. z) dx = A (Z).f H (z. x) K (x. z) dx = 
b. b. 

~.l.: A (z) Xi (z) XI (z) = 2.l.: 1J11 (z) Xi (z) 

for almost every z E: 6.. This shows that 

J K3 (z. z) dz · 2;':. 

b. 
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Theorem 4. (Expansion Theorem). If Ifti conlIerges, where 

ftt{ i = 1. 2, ... ) 

is the sequence of characteristic values of the kemel H (x, y), we have 

K (x, y) - p (x. y) (/) 1:).; 1p;(x) X;{y) , . . . . . (7) 
U'here 

.f H (x, z) p (z, y) dz = 0 
l; 

a/most everywhere in 6 X 6; 

Kn (x, y) (/) 1: ).1 lP; (xfx~~y) (n ~ 2);. . . . . (8) 
; 

[ Kn (x, x) dx =.2).7 (n ~ 2). . . . . . . (9) 
• I 
l; 

Proof. If I fti converges. the uniquely determined, positive self-adjoint 
transformation H" ·, is of the form 

H~" {= J H.,. (x, y) ((y) dy, 
l; 

where H" .(x,y)€L~m), so that the transformation Q = AH" · is expressible 
as 

Q{= JQ(x,y) {(y)dy, 

l; 

where Q(x,y) = A(x)H,/. (x , y) € L~m) . Thetheorem to be proved is there
fore a consequence of IV, Theorem 12. 

§ 3. The case that H(x, y) is continuous. 

Theorem 5. (Expansion Theorem for the kemel). If H(x, y) is con-
tinuous, then 

K (x, y) - p (x, y) = 1: ).; lP; (x) Xi (y), 

uniformly in 6 X 6, where the function p(x. y) satisfies the relation 

q (x. y) = J H (x, z) p (z, y) dz = 0 

ó. 

for every point (x. y) € 6 X 6. 

(10) 

Proof. Since H(x, y) is continuous, the transformation H" , is , on 
account of 11, Theorem 10, given by 

H" · {=.f H.,. (x, y) {(y) dy, 

l; 
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where JI H 'I. (x, y) 12 dy is bounded. For al most every Xl € 6 and almost 

I'; 

every X2 € 6 we have now 

JIH/' (x2 ' y) - Hl. (XI. y)i2 dy = 
I'; 

J 1 Hl. (X2. y) - Hl. (XI' y) I1 Hl. (X2' y) - Hl. (XI' y) I dy = 
I'; 

J I Hl. (X2' y) - Hl. (XI' y) I1 HI/• (y. X2) - H'/. (y. XI) I dy = 
I'; 

consequently, since H (x, y) is continuous in 6 X 6. there exists for any 
f. > 0 a number 15(e) > 0 such that 

JI H /z (X2' y) - Hl. (XI' y) 1
2 dy < E.. . . . • (11) 

I'; 

if only the distance 

m 
e (XI' X2) = (.E 1 x~i) -xlj' 12)'/. i=1 

of the points xl and X2 satisfies the relation e(Xl' X2) < 15, and xk(k = 1,2) 
does not belong to a set Ek € 6 (k = 1, 2) of measure O. Further, on account 
of 

xdx) = H 'ljJi = H'/. H'/''ljJi = H'/. 'Fi - J Hl. (x. y) 'Fdy) dy. 
I'; 

holding for almost every x € 6, we have 

Xi (X2) - XI (XI) J I Hl. (X2' y) ~ Hl. (XI' y) I 'FI (y) dy 
I'; 

for almost every Xl € 6 and almost every X2 € 6; hence. in virtue of 
BESSEL' s inequality (the system 'F;(x) is .orthonormal), 

i~11 Xi (X2) - Xi (x.) 12 ~JI Hl. (X2. y)-H/. (XI' y) 12 py. . (12) 
I'; 

for these values of Xl' X2 and for arbitrary p. 
From (11) and (12) we deduce that 



577 

for almost every XI€ 6. and almost every X2 € 6., if only e (Xl' X2) < b. 

Since however the functions X;(x) = f H(x, Y)lpt{y)dy are continuo us in 

b. 
p 

Û, the function l: I X;(X2) - xt{xd 12 is continuous in xl and in X2' so 
i= I 

that the relation 

holds eVidently for every pair of points Xl' X2 € 6., if only e(XI' X2) < b. 
Observing th at P is arbitrary, we obtain finally 

in other words 

lim l: I Xi (X2) - Xi (XI) 1
2 = O. 

x2 -+-x t i 

By MINKOWSKI's inequality we see now that 

the sumfunction of the series ~ I X;(x) 12 is therefore a contiIiuous function. 
Hence, on account of DINI's well-known Theorem, since the functions 
i x;(x) 12 are non-negative and continuous, the uniform convergence of 
~ I x;(x) 12. The inequality 

l:IXi (X) Xi (y)l :S; (l: IXi (x) 12)'/, . (l:IXt (y)l2)'/. 

shows then that .2 Xi (X)xi (y) converges uniformly in 6. X 6.. W riting 

H(x, y) - PI (x, y) = l:Xi (x) Xi (y),. . . (13) 

we see, sin ce both H(x, y) and ~xdx)xdy) are continuous in 6. X 6., that 
pdx, y) is continuous in L X 6.. Multiplying the relation (13) with A(x) 
and writing A(x)pdx, y) = p(x, y), we find 

K (x. y) - p (x, y) = ~ Ài 'Ijli (x) Xi (y). 

lInjformly in 6. X 6., and we know already (cf. Theorem 4) that 

q (x. y) = f H (x. z) p (z. y) dz = 0 

b. 

for almost every point (x, y) € 6. X 6.. We have still to prove that 
q (x, y) = 0 everywhere in 6. X 6.. For this pllrpose we observe that, since 
H (x, z) is continuous. q(x. y) is continuous in X for a fixed value of y. 
and, since 

q (x. y) = f H (x. z) A (z) PI (z. y) dz. 

b. 
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where Pl (z. y) is .continuous. q (x. y) is continuous in y for a fixed value 
of x. Starting now with the fact that. for almost every y € 6. q(x. y) = 0 

. for almost every x € 6. we find on account of the continuity in x that. for 
almost every y € 6. q (x. y) = 0 for every x € 6; in other words. for every 
x€ 6 we have q(x. y) = 0 for almost every y€ 6. On account of the 
continuity in y we have therefore q(x. y) = 0 for every point (x. y) € 6 X lJ. . 
This completes the proof. 

Theorem 6. (Expansion Theorem for the iterated kemels). lf H(x. y) 
is continuous. then 

Kn (x. g) = Z À.~ 'Pi (x) Xi (g) (n ;::: 2). . . . . (14) 
i 

uniformly in 6 X 6 . 

Proof. The result for n = 2 follows immediately from the preceding 
theorem. since 

J K (x. z) p (z. g) dz = A (x) J H (x. z) P (z. g) dz = 0 

~ ~ 

in 6 X 6. The relation 

Kn (x. g) = Z À.~ 'Pi (x) Xi (g) (n > 2) 
i 

follows easily by induction. 

Theorem 7. (Expansion Theorem). lf H(x. y) is continuous. and 

ai = ({. Xi) - J {(x) Xi (x) dx {or an arbitrarg {(x) € L 2• 

~ 

we have 

J' K (x. g) {(g) dg - p (x) = Z À. i ai 'Pi (x). 

~ 

J' Kn (x. g) {(g) dg = f À.~ ai 'Pi (x) (n ;::: 2). 
~ 

uniformly in 6. where p(x) satisfies the relation 

J H (x. g) p (g) dg = 0 
~ 

for every x € 6 . 

Proof. The formula (10) iO\plies 

J' K (x. g) {(g) dg - p (x)' = I À. i ai 'Pi (x). 

b. 
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ttniformly in 6., wh ere 

p(x) = J p (x, y) [(y) dy. 

6 

Hence 

J H (x. y) p (y) dy = J H (x. y) p (y. z) [(z) dy dz = 0 

A ~ X 6 

for every x € 6.. 
The formula (14) implies 

J Kn (x. y) [(y) dy = f À~ ai 'Pi (x) (n ): 2). 

uniformly in 6.. 

A Hermitean kemel A(x, y)€L~m) is called a general kernel (0. HIL

BERT), when the set of all functions Ag = J A(x, y)g(y)dy is lying dense 

6 . 

in the space L2 : in other wOl'ds, when,given f(x) € L 2 and the number 
f> 0, there exists a function g(x) € L 2 such that 

JI [(x) -JA (x. y) g (y) dy 12 dx< e. 

6 6 

Theorem 8. In order that the H ermitean kemel A (x , y) € L~ m) be 
general. it is necessary and sufficient that Af = 0 should imply f = O. 

Proof. Oenoting by ftdi = 1. 2, ... ) the sequence of all characteristic 
values ~ 0 of A (x, y). and by tpd x) a corresponding orthonormal system 
of characteristic functions. it is not difficuIt to prove that the condition 
that Af = 0 should imply f = 0 is equivalent with the condition that the 
system fPi (x) is complete (that is, the finite linear combinations 2aifPi (x) 

are lying dense in L 2 ). 

Let now Af = 0 imply f = O. and let f(x) € L2 and e> 0 be given. 
Since the system fPdx) is orthonormal and complete, we have f = 2aifPi 

N 
with ai = (f, fPi). Taking the index N such that 11 f - ~ aifPi 11 2 < e, and 

1=1 
N 

writing ai = ftib i , we have for g = 1: bi fPi the relation 
i=1 

N N N 
Ag = 1: bi A fPi = ~ fti bi fPi = 1: ai fPi. 

i=1 i=1 i=1 
hence 

J I [(x) - j'A (x. y) g (y) dy 12 dx= 11 [-Ag W = 11 [-i~lai fPi 11 2 < e. 
6 6. 

The kern el A(x, y) is therefore genera!. 
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Conversely. if A(x. y) is general. the elements Ag = ~ftdg. rpt}rp/ are 
lying dense in L2 • 50 that the 'System rp; (x) is complete. Then however. as 
we have seen. Af = 0 implies f = O. 

Let f(x) be a measurahle function on the interval 6. El the set where 
f(x) = O. E 2 = 6 -El the set where f(x) ~ O. 

Definition. We shall say that f (x) possesses the property (G) when 
every measurable set E3 CE2' for which meas. (E2-E3) = 0, is lying 

dense in E 2• in other words, when E 2 is contained in the closure E3 of E3' 

Theorem 9. If f(x) =j:- 0 almost everywhere in 6. f(x) possesses the 
property (G). 

Proof. Since now meas. E 2 = meas. 6. we have for every E3 for which 

meas. (E2 - E 3)= O. also meas. E3 = meas. 6. This implies E 2 C E3 = 6. 
so that f (x) possesses the property (G) . 

Theorem 10. If f(x) is continuous in 6. f(x) possesses the property 
(G). In the case that 6 is a linear interval. it is even sufficient to suppose 
that f(x) is. for every XE 6. continuous to the lelt or to the right. 

Proof. Let f(x) he continuous in 6. Then the set El is close<!. so that 
El! is open (relative to 6); in other words. E 2 contains only internal points. 
Given now the set E 3 cE2 such th at meas. (E2 -E3) = O. every neigh. 

bourhood of a point XE E 2 must contain points of E 3 ; hence E 2 C E3' Every 
continuous function possesses therefore the property (G) . In the case that 
6. is a linear interval. the same proof holds if only f (x) is, for every XE. 6. 
continuous to the left or to the right. 

Theorem 11. (Expansion Theorem). If H(x, y) is continuous and 
general. and i[ A (x) possesses the property (G) . then 

K (x. y) = 1: 1; VJ;(x) Xdy) • . (15) 

uni[ormly in 6 X 6, and, writing a; = (f. X;) = J f(x)x;(x)dx [or an 

t; 

J K (x. y) f (y) dy = 1: 1i ai VJi (x). . (16) 

uniformly in 6. Furthermore 

J K(x. x) dx= ~ 1i. . • • . • • • (17) 
t; 

Proof. By Theorem 5 we have 

K (x. y) - p (x. y) = 1: 1/ VJI (x) Xi (y). 
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uniformly in 6 X 6. where p(x. y) = A(x)pdx. y). the function pdx. y) 

is continuous in 6 X 6. and J H(x. z)p(z. y)dz = 0 in 6 X 6. Since 

I:> 

H(x. y) is a general kern el. Hp = 0 implies p = O. so that. for every 
y € 6. p (x. y) = 0 for almost every x € 6.. Denoting by El C 6 the set 
where A(x) = O. and by E 2 the complementary set where A(x) ~ O. we 
see that p(x. y) = A(X)PI (x, y) = 0 for x €EI' Furthermore 

pdx. y) = p(x. y) / A(x) = 0 

almost everywhere in E2 ; hence. in a set E3 C E2 for which meas. 
(E2-E3) = O. In virtue of the continuity of PI(X. y) the relation PI(X, y) = 0 

holds also for X€ E3' But. A(x) possessing the property (G). we have 

E 2 C E3' so that pdx. y) = O.and therefore also p(x. y) = O. for x € E 2 

Having established thus that. for every y € 6.. p(x. y) = 0 for x€ El and 
x€ E 2 • we see that p(x.y) = 0 in 6 X '6. hence 

K (x. y) = 1: Ài 'Pi (x) Xi (y). . (15) 

uniformly in 6 X 6. 
The formulae (16) and (17) follow immediately from (15). 

Theorem 12. Let H (x, y) be continuous and general, and A (x) possess 
the property (G) . Let furthermore À. ~ 0, and g(x) € L 2 be H-orthogonal 
to all characteristic functions of K (x, y), belonging to the characteristic 
value. (If À is no characteristic value, g(x) may be any function belonging 

' to L2 ). Then the solution of the equation (1) is given by 

f ( ) g (x) I À; ( ) 
x =--À- -~ À (JL-À

i
) ai 'Pi x. 

whe.re ai J g (x) X;( x) dx for }.i ~ }L. X' denotes that for those values of i 

I:> 

for which }.i =}, the coefficient of "P;(x) is arbitrary, and the series 

I Ài ) 
~ À (JL-À

i
) ai 'P;(x 

converges uniformly in 6. 

Proof. By the preceding theorem we have 

g (x) + À f(x) = J·K(x. y) f{y) dy = ~ Ài bi "Pi (x). 
I:> 

unjformly in 6.. wh ere bi = (f. Xi) . Since 

Ài bi = Ài ({. Xi) = Ài ({. H "Pi) = (f. H K "Pi) = (H K (. "Pi) = 
(K f. H "Pi) = (g + À (. Xi) = ai + À bi. 
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we find bi = - ai/ (l - l;) • Eor li o:j= l. Furthermore, the solution f (x r 
being determined except for a characteristic function of K (x, y) , helonging 
to the characteristic value J.. the coefficients bi may be taken arbitrary for
those values of i for whih li = l . Hence 

uniformly in L. 

f( ) g (x) ,<:,1 li ( ) 
X = - - l- - ~ l(l-li) ai 'Ijli x , 

Theorem 13. (GARBE 's Theorem). If H(x, y) is conténuous and generat 
and if moreover A (x) o:j= 0 for almost every x€. L, then 

H (x, y) = Z Xi (x) Xi (y), . . . (l8} 
uniformly in L X L. 

Proof. In the proof of Theorem 5 we have seen that ~ X;( x) X;( y ) 
converges uniformly. Furthermore, since A(x) possesses the property (G), 
we have by Theorem 11 

K (x, y) = A (x) H (x, y) = ~ li 'Ijl i (x) Xi (y) = A (x) Z Xi (x) Xi (y) 

for every point (x , y) €. L X L. Hence, for every y €. L , 

H (x, y) = Z Xi (x) Xi (y) . . . (18} 

for those values of x for which A (x) o:j= 0, that is, for almost every x€. L. 

Since however both H(x, y) and ~X;(x)x;(y) are continuous in L X L, 
the relation (18) holds for every point (x, y) €. L X L . 

Remark. It is not difficult to show that A(x) o:j= 0 almost everywhere 
i!l L is the necessary and sufficient condition that Af = A (x) f (x) = 0' 
should imply f = 0 in the space L2 • This condition therefore is, for a 
measurable, bounded and real function A (x), the analogue of the con
dition to be general for a Hermitean kernel A (x, y) €. L ~ m). 

It may be asked whether, in the case that A(x) = 0 in a set of positive 
measure, the relation 

H (x, y) = ~Xi (x) Xi (y) 

remains valid. We shall show that this is not necessarily true. Let, for this 
purpose, L he the Iinear interval 0 <: x <: 2n, and ti(X) the orthonormal 
trigonometrical system, hence 

tI (x) = (2 n)- 'I" tln (x) = n- 'I, cos nx (n ~ 1), t2 n+ 1 (x) = n-'/. sin nx (n ~ 1). 

It is well-known that the system t;(x) is complete in the space L 2 (O, 2n) of 
all functions f(x). for which I f(x)12 is summabie over L . 

Let now the continuous, generaI. positive H~rmitean kernel H (x, y) be: 
defined by 

H (x, y) = ~ i-i ti (x) ti (y); 
i 
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it has the characteristic values i- 4 (i = I , 2, . .. ) with the corresponding 
characteristic functions t;( x). The transformation Hl', corresponds then 
with the continuous, general, positive Hermitean kemel 

H." (x, y) = 2 i-2 ti (x) ti (y), 
i 

having the .characteristic values i- 2 with the characteristic functions ti (x) . 
Furthermore we define the bounded self~adjoint transformation A by 
Af = A(x)f(x}, where 

A (x) = ~ 0 for 0 :::; x ~ n, 
(1 for n < x :::; 2 n . 

Let us con si der now the periooic function f (x), defined by 

{ (x) = \ x 5 (n - X)5 for 0:::; x -::; n, 
? 0 for n :::; x :::; 2 n. 

The fourth derivative of f(x) is periodic and continuous; if therefore the 
Fourier series of f(x) is .J:(f, ti )t;(x) = .J: bi t;(x), we Eind without any 
difficulty by partial integration that there exists a constant M such that 
Ibi l-<Mi- 4 (i=I,2, ... ), so that f(x)=.J:bit;(x), uniformly in 6. 
Defining now ai = i2bi (i = 1, 2, . .. ), we have I ai I -< Mi- 2 , which shows 
that .J: ai t;(x) also converges uniformly in 6 . Writing IJ' (x) = .J: ai t;(x}, 
we find 

Hl', IJ' = 2: ai Hl', t i = 2: a i i-2 ti = 2 bi ti = (. 
while from the definitions of A (x) and f (x) follows immediately 
A(x)f(x) = 0; hence 

H l', A Hl', IJ'=HI', A{=O. . (19) 

Denoting the H -orthonormal characteristic functions with characteristic 
values ~O of the kemel K(x,y) = A(x)H(x, g) by '!ji i(X), we know 
by I, Theorem 18 that the functions IJ' i = HI'2'!ji i are the orthonormal 
characteristic functions with characteristic values ~ 0 of the self-adjoint 
transformation HI',AHI',. From (19) follows therefore that P(x) is 

orthogonal to all functions IJ' ;( x ) . W riting ~ (x) = P (x) / 11 Pil , the 

system {P' (x), IJ';( x)} is orthonormal, and, since for every x € 6 

Xi (x) = H'!jii = Hl', Pi - J H.,. (x, y) '!ji/ (y) dy, 
l::, 

. {(x) I11 Pil = Hl', Ijl = J H." (x, y) 'Ij (y) dy, 
l::, 

we find in virtue of BESSEL'S inequality 

2 1 X;(x) 12 + I f(x)12 /11 PW:::; f l H.'2 (x, y) 12 dy = H (x. x). 
l::, 
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so that. on account oE f(x) =j:- 0 Eor 0 < x < n. 

~Xi (x) Xi (x) < H(x. x) 

Eor these va lues oE x. The Eunctions H(x.y) and L:X;(x)X;(Y) being con
tinuous in 6 X 6. there exists consequently Eor every point (xo.xo) E 6 X 6. 
subject to 0 < Xo < n. a two-dimensional neighbourhood E (xo') c 6 X 6 
such that 

H (x. y) -=f ~ Xi (x) Xi (y) 

Eor (x. y) E: E(xo) . 

§ 4. An example. 
We shall illustrate the theorems. proved in the preceding paragraph. by 

an example showing that the Eunctions p(x) and p(x. y). occurring in the 
Theorems 7 and 5. need not vanish identically. 

Let 6 be the linear interval [0.2n]. and 6!. 6 2, 6 3 the subintervals 
[0. n /2]. (n/2. n). [n. 2n]. The orthonormal system oE Eunctions cp! (x) . 
9'2 (x) . CP3 (x) is defined by 

CP. (x) = ~ (2In)'/. Isin 2 xl Eor xE ~q + 6 2 , 

o Eor XE 6 3 

~ 
-(2/n)'/. sin 2 x 

CP2 (x) = o 

CP3 (x) = ~ 
0 

-(2In)'/. sin x 

Eor xE 6. + 6 2 • 

Eor XE 6 3 

Eor XE 6. + 6 2 , 

Eor XE: 6 3 

The positive. self-adjoint transformation H is then defined by 

H f=,[ H(x. y) f(y) dy. 

b. 

where 

H (x, y) = CP. (x) CP. (y) + CP3 (x) CP3 (y). 

The kemel H(x. y) is evidently continuous, and 

H CP. = CP •• H CP2 = O. H CP3 = CP3' 

Let now the bounded. self-adjoint transformation A be given by 
Af = A(x)f(x). where 

~ 
-1 Eor xE 6. 

A (x) = 1 
Eor xE 6 2 + 6 3, 

Then 
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hence 

K (x. y) = A (x) H (x. y) = CP2 (x) CPI (y) + cp, (x) CP3 (y). 

Since evidently H 'I. = H, the self~adjoint transformation K = H",AH", is 
. corresponding with the kernel 

K (x. y) = J H (x, z) K (z. y) dz = CP3 (x) CP3 (y). 
6. 

As we know, K (x, y) and K(x, y) have the same characteristic values ~ 0; 

hence, since K(x, y) has eViclently only the characteristic value À. = 1, 
different from 0, with the characteristic function CPs (x), the kernel K (x. y) 
has also )'1 = 1 as the only characteristic value ~ 0 with the H ~normal 
characteristic function 1f'1 (x) = CPs (x). Observing that xdx) = H1f'1 = 
= Hcps = CP3(X), so that À.11Pl(X)xdy) = CPs(x)CPs(y), we have therefore 

K (x. y) - p (x. y) = À. I 1f'1 (x) XI (y). 

where p(x. y) = CP2(X)CP\ (y) ~ 0 for x and y in the interior of 6 1 or 6 2 : 

and.fH(x. z)p(z. y)dz = O. as required by Theorem 5. 

t::, 

Furthermore. by Theorem 7 . 

. 1' K (x. y) f (y) dy = À. I al 1f'1 (x) + p (x). 
(:, 

where 

.a) =.f f(x) x;(x) dx and Hp = J H (x. y) p (y) dy = O. 
t::, 6 

Taking f(x) = rpI (x). we have 

.r K(x. y) f(y) dy = K CPI = AH CPI = CP2 (x) and al = (cp\. CP3) = 0; 
(:, 

hence 

CP2 (x) = P (x). 

which shows that p(x) ~ 0 for x in the interior of 6 1 and 6 2 , EVidently 
Hp = HCP2 = 0, as required. 


