Mathematics. — On the G-function. IV. By C. S. Meijer. (Communicated by Prof. J. G. VAN DER CORPUT.)

(Communicated at the meeting of April 27, 1946.)

§ 10. Second expansion formula.

Theorem 2. Assumptions: k, l, m, n, p and q are integers with

$$q \ge 1$$
, $0 \le l-1 \le n \le p \le q$ and $0 \le m \le k \le q$; . (111)

the numbers $a_1, ..., a_n$ and $b_1, ..., b_k$ fulfil the conditions (1), (99) and (100); r is an arbitrary integer which satisfies the inequality

$$r \ge \text{Max}(0, k + l - m - n)$$
 (112)

Assertion:

$$G_{p,q}^{m,n}(z) = A^{m,n-l+1} \sum_{s=0}^{r-1} \Omega^{m,n-l+1}(s) G_{p,q}^{k,l-1,n}(z e^{(k+l-m-n-2s-1)\pi l}) + \sum_{t=1}^{n-l+1} e^{(m+n-k-l+2r)\pi i} a_t \triangle^{m,n-l+1}(t) G_{p,q}^{k,l,n}(z e^{(k+l-m-n-2r)\pi i} || a_t).$$
(113)

Proof. We may distinguish three cases:

First case:

$$1 \le l \le n \le p \le q$$
, $k + l - n \le m \le k \le q$, $r \ge 0$.

Formula (113) can be established by induction. If r = 0, then (113) reduces to (102) with $\lambda = 0$. We may therefore suppose $r \ge 1$ and assume that (113) with r - 1 instead of r has yet been proved.

Now we have by (58)

$$G_{p,q}^{k,l,n}(ze^{(k+l-m-n-2r+2)\pi i}||a_t) = e^{2\pi i a_t} G_{p,q}^{k,l,n}(ze^{(k+l-m-n-2r)\pi i}||a_t) -2\pi i e^{\pi i a_t} G_{p,q}^{k,l-n}(ze^{(k+l-m-n-2r+1)\pi i}).$$

If this is substituted on the right-hand side of (113) with r-1 instead of r, the sum $\sum_{t=1}^{n-l+1}$ not only gives the corresponding sum in (113) but also

$$-2\pi i G_{p,q}^{k,l-1,n} \left(z e^{(k+l-m-n-2r+1)\pi i}\right) \sum_{t=1}^{n-l+1} e^{(m+n-k-l+2r-1)\pi i a_t} \triangle^{m,n-l+1} (t)$$

and this expression may by means of (59) be reduced to

$$A^{m,n-l+1} \Omega^{m,n-l+1} (r-1) G_{p,q}^{k,l-1,n} (z e^{(k+l-m-n-2r+1)\pi i}),$$

since
$$\overline{\mathcal{L}}_{k}^{m,n-l+1}(k+l-m-n-r)=0$$
, because of $k+l-m-n-r \leq -1$.

It follows therefore that the sum $\sum_{s=0}^{r-2}$ on the right-hand side of (113) with r-1 instead of r reduces to the sum $\sum_{s=0}^{r-1}$ in (113). Thus the first case is finished.

Second case:

$$1 \le l \le n \le p \le q, 0 \le m \le k + l - n, r \ge k + l - m - n.$$

This case may also be proved by induction. Owing to the first case formula (113) is true if m = k + l - n. We may therefore suppose $0 \le m \le k + l - n - 1$ and assume that (113) with m + 1 instead of m has yet been proved.

Now it follows from (113) with m+1 instead of m, $ze^{-\pi i}$ instead of z, r-1 instead of r and s replaced by s-1

$$e^{\pi i b_{m+1}} G_{p,q}^{m+1,n}(z e^{-\pi i}) = e^{\pi i b_{m+1}} A^{m+1,n-l+1} \sum_{s=1}^{r-1} \Omega^{m+1,n-l+1}(s-1) G_{p,q}^{k,l-1,n}(z e^{(k+l-m-n-2s-1)\pi i})$$

$$+ \sum_{s=1}^{n-l+1} e^{(m+n-k-l+2r)\pi i a_t} e^{\pi i (b_{m+1}-a_t)} \Delta^{m+1,n-l+1}(t) G_{p,q}^{k,l,n}(z e^{(k+l-m-n-2r)\pi i} || a_t).$$

We further have by (113) with m+1 instead of m and $z e^{\pi i}$ instead of z

$$e^{-\pi i b_{m+1}} G_{p,q}^{m+1,n}(z e^{\pi i}) = e^{-\pi i b_{m+1}} A^{m+1,n-l+1} \sum_{s=0}^{r-l} \Omega^{m+1,n-l+1}(s) G_{p,q}^{k,l-1,n}(z e^{(k+l-m-n-2s-1)\pi i})$$

$$+ \sum_{t=1}^{n-l+1} e^{(m+n-k-l+2r)\pi i a_t} e^{\pi i (a_t-b_{m+1})} \Delta^{m+1,n-l+1}(t) G_{p,q}^{k,l,n}(z e^{(k+l-m-n-2r)\pi i} || a_t).$$

From these two relations and (55) it appears

$$G_{p,q}^{m,n}(z) = -\frac{e^{-\pi i b_{m+1}}}{2\pi i} A^{m+1,n-l+1} \Omega^{m+1,n-l+1} (0) G_{p,q}^{k,l-1,n} (z e^{(k+l-m-n-1)\pi i})$$

$$-\frac{e^{-\pi i b_{m+1}}}{2\pi i} A^{m+1,n-l+1} \sum_{s=1}^{r-1} \{ \Omega^{m+1,n-l+1} (s) - e^{2\pi i b_{m+1}} \Omega^{m+1,n-l+1} (s-1) \} \times G_{p,q}^{k,l-1,n} (z e^{(k+l-m-n-2s-1)\pi l})$$

$$+ \frac{1}{\pi} \sum_{t=1}^{n-l+1} e^{(m+n-k-l+2r)\pi i a_t} \sin(b_{m+1} - a_t) \pi \cdot \Delta^{m+1,n-l+1} (t) G_{p,q}^{k,l,n} (z e^{(k+l-m-n-2r)\pi i} || a_t).$$
(114)

Now it is obvious on account of the definition of the coefficients A

$$-\frac{e^{-\pi i b_{m+1}}}{2\pi i}A^{m+1,n-l+1} = A^{m,n-l+1}_{k}.$$

Moreover we find without difficulty in view of the definition of the coefficients Ω

$$\Omega^{m+1,n-l+1}_{k}(0) = \Omega^{m,n-l+1}_{k}(0)$$

and

$$\Omega^{m+1,n-l+1}_{k}(s) - e^{2\pi i b}_{m+1} \Omega^{m+1,n-l+1}_{k}(s-1) = \Omega^{m,n-l+1}_{k}(s).$$

Finally it follows from the definition of the coefficients \triangle that

$$\frac{1}{\pi} \sin (b_{m+1}-a_t) \pi \cdot \triangle^{m+1, n-l+1} (t) = \triangle^{m, n-l+1} (t).$$

Formula (114) is therefore equivalent to (113). So the second case is also finished.

Third case:

$$q \ge 1, n = l - 1, 0 \le l - 1 \le p \le q, 0 \le m \le k \le q, r \ge 1 + k - m.$$

From the definition of the function G we easily deduce

$$G_{p,q}^{m,l-1}\left(z \begin{vmatrix} a_1, \dots, a_p \\ b_1, \dots, b_q \end{vmatrix}\right) = G_{p+1,q+1}^{m,l}\left(z \begin{vmatrix} \alpha, a_1, \dots, a_p \\ b_1, \dots, b_k, \alpha, b_{k+1}, \dots, b_q \end{vmatrix}\right); \quad (115)$$

herein is α an arbitrary number.

To the function $G_{p+1,q+1}^{m,l}(z)$ on the right-hand side of this relation we may apply (113) with n=l, k+1 instead of k, p+1 instead of p and q+1 instead of q. Now it is clear, on account of the definitions of the coefficients A, Q and Δ and the function G, that in the particular case under consideration $(a, a_1, ..., a_p)$ instead of $a_1, a_2, ..., a_{p+1}$ and $b_1, ..., b_k, a, b_{k+1}, ..., b_q$ instead of $b_1, ..., b_{q+1}$

$$A^{m.1}_{k+1} = A^{m,0}_{k}$$
 , $\Omega^{m,1}_{k+1}(s) = \Omega^{m,0}_{k}(s)$, $G^{k+1,l-1,l}_{p+1,q+1}(\zeta) = G^{k,l-1,l-1}_{p,q}(\zeta)$

and

$$\triangle^{m,1}_{k+1}(1) = 0.$$

We therefore get (113) with n = l - 1 when we apply (113) to the right-hand side of (115).

With this the theorem has been completely proved.

§ 11. Third expansion formula.

Theorem 3. Assumptions: k, l, m, n, p and q are integers with

$$q \ge 1$$
, $0 \le l-1 \le n \le p \le q$, $0 \le m \le k \le q$ and $m+n \le k+l$;

the numbers $a_1, ..., a_n$ and $b_1, ..., b_k$ fulfil the conditions (1), (99) and (100); r is an arbitrary integer which satisfies the inequality

$$0 \le r \le k + l - m - n$$
.

Assertion:

$$G_{p,q}^{m,n}(z) = A^{m,n-l+1} \sum_{s=0}^{r-1} \Omega^{m,n-l+1}(s) G_{p,q}^{k,l-1,n}(z e^{(k+l-m-n-2s-1)\pi i})$$

$$+ \overline{A}^{m,n-l+1} \sum_{s=0}^{k+l-m-n-r-1} \overline{\Omega}^{m,n-l+1}(\tau) G_{p,q}^{k,l-1,n}(z e^{(m+n-k-l+2\tau+1)\pi i})$$

$$+ \sum_{t=1}^{n-l+1} e^{(m+n-k-l+2r)\pi i a_t} \Delta^{m,n-l+1}(t) G_{p,q}^{k,l,n}(z e^{(k+l-m-n-2r)\pi i} || a_t).$$

$$(116)$$

Proof. The theorem can be established by induction. The formula is true if r = k + l - m - n, since (116) with r = k + l - m - n is equivalent to (113) with r = k + l - m - n. We may therefore suppose $0 \le r \le k + l - m - n - 1$ and assume that (116) with r + 1 instead of r has yet been proved. Now it follows from (57), if $n \ge l$,

$$G_{p,q}^{k,l,n}\left(z\,e^{(k+l-m-n-2r-2)\pi i}\,||\,a_{t}\right) = e^{-2\pi i a_{t}}\,G_{p,q}^{k,l,n}\left(z\,e^{(k+l-m-n-2r)\pi i}\,||\,a_{t}\right) \\ + 2\,\pi\,i\,e^{-\pi i a_{t}}\,G_{p,q}^{k,l-1,n}\left(z\,e^{(k+l-m-n-2r-1)\pi i}\right).$$

If this is substituted on the right-hand side of (116) with r+1 instead of r, the sum $\sum_{t=1}^{n-l+1}$ not only yields the sum $\sum_{t=1}^{n-l+1}$ in (116) but besides

$$2\pi i G_{p,q}^{k,l-1,n} \left(z e^{(k+l-m-n-2r-1)\pi i}\right) \sum_{t=1}^{n-l+1} e^{(m+n-k-l+2r+1)\pi i a_t} \triangle^{m,n-l+1}_k(t)$$

and this expression is by (59) equal to

$$-G_{p,q}^{k,l-1,n}(z\,e^{(k+l-m-n-2r-1)\pi l})\{A^{m,n-l+1}\,\Omega^{m,n-l+1}\,(r)\\ -\overline{A}^{m,n-l+1}\,\overline{\Omega}^{m,n-l+1}\,(k+l-m-n-r-1)\}$$

The sums $\sum_{s=0}^{r}$ and $\sum_{\tau=0}^{k+l-m-n-r-2}$ on the right-hand side of (116) with r+1 instead of r reduce therefore to the sums $\sum_{s=0}^{r-1}$, respect. $\sum_{\tau=0}^{k+l-m-n-r-1}$ in (116). So the theorem is established.

§ 12. Extension of theorem 3.

In the same manner as formula (113) we may prove the formula conjugate to (113)

$$G_{p,q}^{m,n}(z) = \overline{A}^{m,n-l+1} \sum_{s=0}^{r-1} \overline{\Omega}^{m,n-l+1}(s) G_{p,q}^{k,l-1,n}(z e^{(m+n-k-l+2s+1)\pi i}) + \sum_{t=1}^{n-l+1} e^{(k+l-m-n-2r)\pi i a_t} \Delta^{m,n-l+1}(t) G_{p,q}^{k,l,n}(z e^{(m+n-k-l+2r)\pi i} || a_t).$$
(117)

This is still true if n = l - 1, since the sums $\sum_{t=1}^{n-l+1}$ then vanish.

This relation holds, provided that the conditions (111), (112), (1), (99) and (100) are satisfied.

We now replace r by k + l - m - n - r and s by τ . Then formula (117) reduces to

$$G_{p,q}^{m,n}(z) = \overline{A}^{m,n-l+1} \sum_{\tau=0}^{k+l-m-n-r-1} \overline{\Omega}^{m,n-l+1}(\tau) G_{p,q}^{k,l-1,n}(ze^{(m+n-k-l+2\tau+1)\pi i})$$

$$+ \sum_{t=1}^{n-l+1} e^{(m+n-k-l+2\tau)\pi i a_t} \triangle^{m,n-l+1}(t) G_{p,q}^{k,l,n}(ze^{(k+l-m-n-2\tau)\pi i} || a_t);$$
(118)

herein is r an arbitrary integer which satisfies the inequality

$$r \leq Min (0, k+l-m-n)$$
.

We may now show that formula (116) holds under conditions which are much more general than those of theorem 3. Indeed, I will prove:

Theorem 4. Suppose that k, l, m, n, p and q are integers which satisfy the conditions (111); further that the numbers $a_1, ..., a_n$ and $b_1, ..., b_k$ fulfil the conditions (1), (99) and (100); finally that r is an arbitrary integer (positive, negative or zero).

Then formula (116) is valid.

Proof. Observing that $\Omega^{m,n-l+1}(s)$ and $\overline{\Omega}^{m,n-l+1}(s)$ vanish for s=-1,-2,-3,..., we may distinguish six cases ³⁷):

First case: $m + n \ge k + l$, $r \ge 0$. Formula (116) reduces to (113). Second case: $m + n \ge k + l$, $k + l - m - n \le r \le 0$. Formula (116) reduces to (102) with $\lambda = -r$.

Third case: $m+n \ge k+l$, $r \le k+l-m-n$. Formula (116) reduces to (118).

Fourth case: $m + n \le k + l$, $r \ge k + l - m - n$. Formula (116) reduces to (113).

Fifth case: $m+n \le k+l$, $0 \le r \le k+l-m-n$. This is the case of theorem 3.

Sixth case: $m + n \le k + l$, $r \le 0$. Formula (116) reduces to (118).

§ 13. Some more lemmas.

Lemma 19. Suppose that k, l, p, q, \varkappa and ν are integers with

$$l \ge 1, q \ge 1, \varkappa \ge 1, 0 \le \varkappa \le k \le q$$
 and $l + \varkappa - 1 \le p \le q$;

suppose further that the numbers $a_1, ..., a_{l+r-1}$ and $b_1, ..., b_k$ satisfy the conditions

$$a_j - b_h \neq 1, 2, 3, \dots (j = v + 1, \dots, l + v - 1; h = 1, \dots, k),$$
 (119)
 $a_j - a_t \neq 0, \pm 1, \pm 2, \dots (j = 1, \dots, v; t = 1, \dots, v; j \neq t).$ (120)

³⁷⁾ Comp. also definition 4.

Then the following formula holds 38):

$$G_{p,q}^{k,l-1,l+\nu-1}(\zeta) = -\sum_{h=1}^{k-\nu+\nu-1} \Omega_{k}^{0,\nu}(h) G_{p,q}^{k,l-1,l+\nu-1}(\zeta e^{-2h\pi i})$$

$$-\frac{1}{A_{k}^{0,\nu}} \sum_{\tau=1}^{\nu} e^{(k-\nu+2\nu-1)\pi i a_{\tau}} \Delta_{k}^{0,\nu}(\sigma) G_{p,q}^{k,l,l+\nu-1}(\zeta e^{(2\nu-2k-2\nu+1)\pi i} || a_{\tau}).$$
(121)

Proof. If we put m=0, $n=l+\nu-1$, $r=k-\nu+\varkappa$ and $z=\zeta e^{(\nu-k)\pi i}$ in (113) and suppose that $\nu \le k$, then we find (121), because of (5) and (50).

Lemma 20. Suppose that k, l, p, q, \varkappa , λ and ν are integers with

$$l \ge 1, q \ge 1, 1 \le \lambda \le \kappa, 0 \le \nu \le k \le q$$
 and $l + \nu - 1 \le p \le q$;

suppose further that the numbers $a_1, ..., a_{l+r-1}$ and $b_1, ..., b_k$ satisfy the conditions (119) and (120).

Then the following formula holds:

$$G_{p,q}^{k,l-1,l+\nu-1}(\zeta) = \sum_{h=1}^{k-\nu+\nu-\lambda} \Phi_{\nu,k}^{k,0}(h;\lambda) G_{p,q}^{k,l-1,l+\nu-1}(\zeta e^{(-2h-2\lambda+2)\pi i})$$

$$= \frac{1}{A_{\nu,r}^{0,r}} \sum_{\tau=0}^{\lambda-1} \Phi_{\nu,k}^{k,0}(1;\tau) \sum_{\sigma=1}^{r} e^{(k-\nu+2\nu-2\tau-1)\pi i a_{\tau}} \triangle_{k}^{0,r}(\sigma) G_{p,q}^{k,l,l+\nu-1}(\zeta e^{(2\nu-2k-2\nu+1)\pi i} || a_{\tau}).$$
(122)

Proof. From (74) (with $\lambda = 1$) and (73) (with $\lambda = 0$) it follows

$$\Phi_{r,k}^{k,0}(h;1) = -\Omega^{0,r}(h)$$
. (123)

We further have by (74) if $\lambda \neq 1 - h$

$$\Phi_{r,k}^{k,0}(h;\lambda) = -\sum_{\tau=0}^{\lambda-2} \Phi_{r,k}^{k,0}(1;\tau) \, \Omega_{k}^{0,r}(h+\lambda-\tau-1) - \Phi_{r,k}^{k,0}(1;\lambda-1) \, \Omega_{k}^{0,r}(h);$$

in view of (74) we find therefore if $\lambda \neq 1 - h$

$$\Phi_{r,k}^{k,0}(h;\lambda) = \Phi_{r,k}^{k,0}(h+1;\lambda-1) - \Phi_{r,k}^{k,0}(1;\lambda-1) \Omega_{k}^{0,r}(h). \quad (124)$$

From (123) and (73) (with $\lambda = 0$) it appears that (122) with $\lambda = 1$ reduces to (121). Hence we may suppose $2 \le \lambda \le \varkappa$ and assume that (122) with $\lambda = 1$ instead of λ has already been proved.

Now formula (122) with $\lambda-1$ instead of λ may be written in the following way

$$G_{p,q}^{k,l-1,l+r-1}(\zeta) = \Phi_{r,k}^{k,0}(1;\lambda-1) G_{p,q}^{k,l-1,l+r-1}(\zeta e^{(-2\lambda+2)\pi i}) + \sum_{h=1}^{k-r+z-\lambda} \Phi_{r,k}^{k,0}(h+1;\lambda-1) G_{p,q}^{k,l-1,l+r-1}(\zeta e^{(-2\lambda+2)\pi i}) - \frac{1}{A^{0,\frac{r}{k}}} \sum_{\tau=0}^{\lambda-2} \Phi_{r,k}^{k,0}(1;\tau) \sum_{\sigma=1}^{r} e^{(k-r+2z-2\tau-1)\pi i a_{\sigma}} \Delta_{k}^{0,r}(\sigma) G_{p,q}^{k,l,l+r-1}(\zeta e^{(2r-2k-2z+1)\pi i} \parallel a_{\sigma}).$$

The products $\triangle^{0,r}_k(\sigma)G^{k,l,l+r-1}_{p,q}$ ($w \parallel a_{\sigma}$) on the right of (121) must be defined by a limiting process when $a_{\sigma}-b_{\hbar}=1,2,3,...$ ($1 \leq h \leq k$); comp. the Remark at the end of § 9.

The first term on the right-hand side of this relation is because of (121) with $\zeta e^{(-2\lambda+2)\pi i}$ instead of ζ and $\varkappa - \lambda + 1$ instead of \varkappa equal to

$$\begin{split} & \Phi_{\nu,k}^{k,0}\left(1;\lambda-1\right) G_{p,q}^{k,l-1,l+\nu-1}\left(\zeta e^{(-2\lambda+2)\pi i}\right) \\ & = -\sum_{h=1}^{k-\nu+\varkappa-\lambda} \Phi_{\nu,k}^{k,0}\left(1;\lambda-1\right) \varOmega_{k}^{0,\nu}\left(h\right) G_{p,q}^{k,l-1,l+\nu-1}\left(\zeta e^{(-2h-2\lambda+2)\pi i}\right) \\ & - \frac{\Phi_{\nu,k}^{k,0}\left(1;\lambda-1\right)}{\lambda^{0,\nu}} \sum_{\sigma=1}^{\nu} e^{(k-\nu+2\varkappa-2\lambda+1)\pi i a_{\sigma}} \triangle_{k}^{0,\nu}\left(\sigma\right) G_{p,q}^{k,l,l+\nu-1}\left(\zeta e^{(2\nu-2k-2\varkappa+1)\pi i} \| a_{\sigma}\right). \end{split}$$

If this is substituted on the right-hand side of (125), then (125) reduces in virtue of (124) to (122), so that the lemma has been proved.

Lemma 21. Suppose that k, l, p, q, r and v are integers with

$$l \ge 1, q \ge 1, r \ge 1, 0 \le \nu \le k \le q \text{ and } l + \nu - 1 \le p \le q;$$

suppose further that the numbers $a_1, ..., a_{l+r-1}$ and $b_1, ..., b_k$ satisfy the conditions (119) and (120).

Then the following formula holds:

$$G_{p,q}^{k,l-1,l+\nu-1}(\zeta) = \sum_{h=1}^{k-\nu} \Phi_{\nu,k}^{k,0}(h;r) G_{p,q}^{k,l-1,l+\nu-1}(\zeta e^{(-2h-2r+2)\pi i})$$

$$-\frac{1}{A^{0,\nu}} \sum_{\sigma=1}^{\nu} e^{(k-\nu+1)\pi i a_{\sigma}} \Theta_{\nu}^{k,0}(\sigma;r-1) \triangle_{k}^{0,\nu}(\sigma) G_{p,q}^{k,l,l+\nu-1}(\zeta e^{(2\nu-2k-2r+1)\pi i} \| a_{\sigma}).$$
(126)

Proof. From (80) it follows

$$\sum_{\tau=0}^{r-1} e^{(2r-2\tau-2)\pi i \, a_{\tau}} \, \Phi_{r,k}^{k,0}(1;\tau) = \Theta_{r}^{k,0} \, (\sigma;r-1).$$

We therefore find (126) if we put $\varkappa = \lambda = r$ in (122).

Remark. Formula (122) is also valid if the following conditions are satisfied: k, l, p, q, \varkappa , λ and ν are integers with

 $l \ge 1$, $q \ge 1$, $0 \le k \le q$, $v \ge 0$, $l+v-1 \le p \le q$, $k \le 0$ and $k \ge 1+v-k$; the numbers $a_{v+1}, ..., a_{l+v-1}$ and $b_1, ..., b_k$ fulfil the condition (119).

For, if $\lambda \leq 0$, the sum $\sum_{k=1}^{k-\nu+\nu-\lambda}$ on the right-hand side of (122) is because of (73) and (75) equal to $G_{p,q}^{k,l-1,l+\nu-1}$ (ζ); since $\Phi_{\nu,k}^{k,0}$ (1; τ) = 0 for $\tau < 0$, the sum $\sum_{\tau=0}^{\lambda-1}$ is zero for $\lambda \leq 0$ (comp. definition 4).

Similarly formula (126) is also true under the following conditions: k. l, p, q, r and ν are integers with

$$l \ge 1$$
, $1 \le 1 + \nu \le k \le q$, $1 + \nu - k \le r \le 0$ and $l + \nu - 1 \le p \le q$;
the numbers $a_{\nu+1}, \ldots, a_{l+\nu-1}$ and b_1, \ldots, b_k fulfil the condition (119).

Lemma 22. Suppose that k, l, m, n, p, q and v are integers with

$$l \ge 1$$
, $q \ge 1$, $0 \le m \le k \le q$, $0 \le n - l + 1 \le \nu \le k$ and $l + \nu - 1 \le p \le q$;

further that λ is an arbitrary integer; finally that the numbers $a_1, \ldots, a_{l+\nu-1}$ and b_1, \ldots, b_k satisfy the conditions (119) and (120).

Then the following formula holds:

$$\sum_{s=0}^{\lambda-1} \Omega^{m,n-l+1}(s) G_{p,q}^{k,l-1,l+\nu-1}(w e^{-2s\pi i})$$

$$= \sum_{h=1}^{k-\nu} \left\{ \Phi_{\nu,k}^{m,n-l+1}(h;\lambda) - \Omega^{m,n-l+1}(h+\lambda-1) \right\} G_{p,q}^{k,l-1,l+\nu-1}(w e^{(-2h-2\lambda+2)\pi i})$$

$$- \frac{1}{A_{k}^{0,\nu}} \sum_{\sigma=1}^{\nu} e^{(k-\nu+1)\pi i a_{\sigma}} \Theta_{\nu}^{m,n-l+1}(\sigma;\lambda-1) \Delta_{k}^{0,\nu}(\sigma) G_{p,q}^{k,l,l+\nu-1}(w e^{(2\nu-2k-2\lambda+1)\pi i} || a_{\sigma}).$$
(127)

Proof. We first suppose $\lambda \le 0$. Then the left-hand side of (127) vanishes since $\Omega^{m,n-l+1}_{k}$ (s) = 0 for s < 0. Because of $\Phi^{m,n-l+1}_{r,k}$ $(1; \tau) = 0$ if $\tau < 0$, it appears from (71)

$$\Phi_{r,k}^{m,n-l+1}(h;\lambda) = \Omega^{m,n-l+1}(h+\lambda-1) = 0 \text{ for } \lambda \leq 0.$$

We further have by (54)

$$\Theta_{r}^{m,n-l+1}(\sigma;\lambda-1)=0$$
 for $\lambda \leq 0$.

Hence formula (127) is certainly true if $\lambda \leq 0$.

We now consider the case with $\lambda > 0$. Because of (77) we have

$$\sum_{s=0}^{\lambda-1} \Omega^{m,n-l+1}_{k}(s) \Phi^{k,0}_{r,k}(h;\lambda-s) = \Phi^{m,n-l+1}_{r,k}(h;\lambda) - \Omega^{m,n-l+1}_{k}(h+\lambda-1); . (128)$$

besides it follows from (79)

$$\sum_{s=0}^{\lambda-1} \Omega^{m,n-l+1}_{k}(s) \Theta_{r}^{k,0}(\sigma; \lambda-s-1) = \Theta_{r}^{m,n-l+1}(\sigma; \lambda-1) . . (129)$$

If we replace in (126) ζ by $w e^{-2s\pi i}$ and r by $\lambda - s$ and use (128) and (129), we easily find (127).

Lemma 23. Suppose that k, l, m, n, p, q, μ and ν are integers with

 $l \ge 1$, $q \ge 1$, $0 \le m \le k \le q$,

$$0 \le n-l+1 \le \nu$$
, $0 \le \mu \le k-\nu$ and $l+\nu-1 \le p \le q$;

further that λ is an arbitrary integer; finally that the numbers $a_1, ..., a_{l+\nu-1}$ and $b_1, ..., b_k$ satisfy the conditions (119) and (120).

Then the following formula holds:

$$A^{m,n-l+1} \sum_{s=0}^{\lambda-1} \Omega^{m,n-l+1}(s) G_{p,q}^{k,l-1,l+\nu-1}(w e^{-2s\pi i})$$

$$= A^{m,n-l+1} \sum_{h=1}^{k-\nu-\mu} \{ \Phi_{\nu,k}^{m,n-l+1}(h;\lambda) - \Omega^{m,n-l+1}(h+\lambda-1) \} G_{p,q}^{k,l-1,l+\nu-1}(w e^{(-2h-2\lambda+2)\pi i})$$

$$- \overline{A}_{k}^{0,\nu} B_{\nu}^{m,n-l+1} \sum_{s=1}^{\mu} \Psi_{\nu,k}^{m,n-l+1}(\varkappa;\lambda) G_{p,q}^{k,l-1,l+\nu-1}(w e^{(2\nu-2k-2\lambda+2\varkappa)\pi i})$$

$$- B_{\nu}^{m,n-l+1} \sum_{\sigma=1}^{\nu} e^{(k-\nu-2\mu+1)\pi i a_{\sigma}} \Theta_{\nu}^{m,n-l+1}(\sigma;\lambda-1) \triangle_{k}^{0,\nu}(\sigma) G_{p,q}^{k,l,l+\nu-1}(w e^{(2\nu-2k-2\lambda+2\mu+1)\pi i} \| a_{\sigma}).$$
(130)

Proof. From the definitions 5 and 6 it follows

Formula (130) with $\mu=0$ is therefore equivalent to (127). Hence we may suppose $1 \le \mu \le k - \nu$ and assume that (130) with $\mu-1$ instead of μ has already been proved.

Now it follows from (57), if $\nu \ge 1$,

$$G_{p,q}^{k,l,l+\nu-1}(w e^{(2\nu-2k-2\lambda+2\mu-1)\pi i} \| a_{\tau}) = e^{-2\pi i a_{\tau}} G_{p,q}^{k,l,l+\nu-1}(w e^{(2\nu-2k-2\lambda+2\mu+1)\pi i} \| a_{\tau})$$

$$+ 2\pi i e^{-\pi i a_{\tau}} G_{p,q}^{k,l-1,l+\nu-1}(w e^{(2\nu-2k-2\lambda+2\mu)\pi i}).$$
(132)

If this is substituted on the right-hand side of (130) with $\mu = 1$ instead of μ , the expression $-B_r^{m,n-l+1} \sum_{\sigma=1}^r$ not only yields the corresponding expression in (130) but besides

$$-2\pi i B_{r}^{m,n-l+1} G_{p,q}^{k,l-1,l+r-1} (w e^{(2\nu-2k-2\lambda+2\mu)\pi i}) \times \\ \times \sum_{\sigma=1}^{r} e^{(k-\nu-2\mu+2)\pi i a_{\sigma}} \Theta_{r}^{m,n-l+1} (\sigma; \lambda-1) \triangle^{0,r}_{k} (\sigma)^{-39})$$

and this expression is by virtue of (80) equal to

$$-2\pi i B_{\nu}^{m,n-l+1} G_{p,q}^{k,l-1,l+\nu-1} (w e^{(2\nu-2k-2\lambda+2\mu)\pi i}) \times \\ \times \sum_{\tau=0}^{\lambda-1} \Phi_{r,k}^{m,n-l+1} (1;\tau) \sum_{\tau=1}^{\nu} e^{(k-\nu+2\lambda-2\mu-2\tau)\pi i a_{\tau}} \Delta^{0,\nu}_{k} (\sigma) \\ = G_{p,q}^{k,l-1,l+\nu-1} (w e^{(2\nu-2k-2\lambda+2\mu)\pi i}) \sum_{\tau=0}^{\lambda-1} \Phi_{r,k}^{m,n-l+1} (1;\tau) \times \\ \times \{A^{0,\nu}_{k} B_{\nu}^{m,n-l+1} \Omega^{0,\nu}_{k} (k-\nu+\lambda-\mu-\tau) - \overline{A}^{0,\nu}_{k} B_{\nu}^{m,n-l+1} \overline{\Omega}^{0,\nu}_{k} (\mu+\tau-\lambda)\}$$
(after (59)).

This is still true for $\nu=0$, since the sums $\sum_{\tau=1}^{\nu}$ then vanish.

The right-hand side of this relation is on account of (131), (71) (with $h=k-\nu-\mu+1$) and (81) equal to

$$G_{p,q}^{k,l-1,l+\nu-1}(w e^{(2\nu-2k-2\lambda+2\mu)\pi i}) \times \\ \times [A^{m,n-l+1} \{ \Omega^{m,n-l+1}(k-\nu+\lambda-\mu) - \Phi_{r,k}^{m,n-l+1}(k-\nu-\mu+1;\lambda) \} \\ - \overline{A}_{k}^{0,r} B_{r}^{m,n-l+1} \Psi_{r,k}^{m,n-l+1}(\mu;\lambda)].$$

It appears therefore that the sums $\sum_{h=1}^{k-r-\mu+1}$ and $\sum_{\kappa=1}^{\mu-1}$ on the right-hand side of (130) with $\mu-1$ instead of μ reduce by the substitution (132) to the corresponding sums $\sum_{h=1}^{k-r-\mu}$ and $\sum_{\kappa=1}^{\mu}$ in (130). This establishes the lemma.