Mathematics. — On the G-function. IV. By C. S. MElJER. (Communicated
by Prof. J. G. vaN DER CORPUT.)

(Communicated at the meeting of April 27, 1946.)

§ 10. Second expansion formula.
Theorem 2. Assumptions: k, I, m, n, p and q are integers with
q=1, 0=l-1=n=p=qand 0=m=k=gq:. . (111)

the numbers ay, ..., an and by, ..., by [ulfil the conditions (1), (99) and
(100); r is an arbitrary integer which satisfies the inequality
=Max (0, k+1—m—n) . . . . . . (112
Assertion:
',',','Z( = AMn— 1+1 2 Qm,ﬂ—’gﬂ(s) G’;;(IJ_""(ze(k+l—m—n—2$—l)nl)
s=0

[+1 W13
n—
+ 3 elmtn-k—l+2r=iap \™ I“(t) k, I"(ze(k+1 m-n=2r)ai || . ,

t=1

Proof. We may distinguish three cases:

First case:
1=I=n=p=q. k+1-n=m=k=q, r=0.

Formula (113) can be established by induction. If r = 0, then (113)
reduces to (102) with 2 = 0. We may therefore suppose r =1 and assume
that (113) with r—1 instead of r has yet been proved.

Now we have by (58)

G’f,jf,’" (zelk+I—m—n=2r+2)ai|| 5) — g2nia; Gf,: "lr" (zelk+i=m—n-2r)ai || 5)
— 2 nieniag G:’ ‘1]_1, " (z elk+ I-m—n—2r + 1) xi),

If this is substituted on the right-hand side of (113) with r—1 instead

n—1I1+1

of r,the sum Y not only gives the corresponding sum in (113) but also
t=1

k,1-1,n (k+1 2r+1)=i &k (m+n—k—1+2r—1)ai m,n—1+1
ni Gl (zelk-mon-2r4ini) 3 far AL (g
t=1

and this expression may by means of (59) be reduced to

Am n—H'l Qm n— l+l ( __l) Gk [-1,n ( e(k+l—m—n—2r+l)n1)'

since ™"} *Y(k + —m—n—r) = 0, because of k + —m—n—r = —1.
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~2
It follows therefore that the sum rZ on the right-hand side of (113)
s=0

r—1
with r— 1 instead of r reduces to the sum 3 in (113). Thus the first case
s=0
is finished.

Second case:
1=I=n=p=q.0=m=k+!l—nr=k+1—m—n.

This case may also be proved by induction. Owing to the first case
formula (113) is true if m =k +I1—n. We may therefore suppose
0<m<k+1l—n—1 and assume that (113) with m + 1 instead of m
has yet been proved.

Now it follows from (113) with m + 1 instead of m, z e—" instead of z,
r—1 instead of r and s replaced by s—1

r—1

: - La—l+175) omat,n—t+1 k, 1-1 ;

e"itmt1 Gpg"" (ze ™) = e Omat ATV 3 QTN (s—1) Gplg " (zetktimmon-2s-1)i)
s=1

n—I+1
141 k1, m—n—2p=i
= 1%1 elmta—k—l+2rnia i (bpmi1—a;) AMTHA v ()Gp:q"(ze(k+l m-n-2r)ai || g,),

We further have by (113) with m 4+ 1 instead of m and z e™ instead of z
y
r—1
+1, i i 1,n—1+1 1,n—I+1 k,[-1, I
e~ bm+1 Gm ﬂ( en():e—ntbm+l A L k+ > Qmhna k+ (s) Gp,q "(Z elk+1-m—n—2s 1).—:1)
§s=0
n—1I1+1 [ K1,
4 3 elmtn—k—l+2r)aias grilag—bmyr) AN “()G ¢" (zelkti-m—n—2n=i|| g.)

t=1

From these two relations and (55) it appears

e—*ub +1 - .
Gp,q ) zn”l' Am+l ,n— I+l Qm+l = I£+l ( ) ny:tll 1,n (zc(k+l—m_"_1)"’)
¢ Bmtl | iy a—131 Tl p amdL sl ; m+1,n—1+1
Sl e aal Q" s)—e?*om+1 QT s—1)§ X
I k s§1{ kK (s) K (s—1)} (114)
X le l"( glk+I—m—n—2s—1)xl)
17 H m+1,n—1+1 k,l,n
+ - 2 e(m+n —k—l+2r)nia; sin (bm+l—‘at) A e (t) Gp:q' (Ze(k+l—m—n—2r):t1 ||at).
t=1

Now it is obvious on account of the definition of the coefficients A

e "ibmi1

m+1,n—1+1 m,n—I+1
T A e = A R

Moreover we find without difficulty in view of the definition of the
coefficients Q

.Qm+l,n—’£+1 (0) - Qm,n—’1‘+l (0)
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and
Qm+1,n—1£+l (S) o ez"'”’m+l Qm+1,n——’£+l (S-— 1) p— Qm,n—l£+l (s).

Finally it follows from the definition of the coefficients A that

% sin (bm+1—at)ﬂ Am+l n— 1+1 ( ) Am n— I+1 (t)

Formula (114) is therefore equivalent to (113). So the second case is
also finished.

Third case:
g=ZlLn=Il—1, 0=ZI—1=p=q, 0=m=k=q, r=Z1+k—m.

From the definition of the function G we easily deduce

/
a,,...,a,,) G""I (
+1,g+1
by by CP

a,al,...,ap

bl, ERp— bk. a, bk+1. . on 2w iy bq>; (115)

m,l—1
Gra (2

herein is a an arbitrary number.

To the function G4y 4+1(2) on the right-hand side of this relation we
may apply (113) with n = [, k + 1 instead of k, p + 1 instead of p and
q + 1 instead of g. Now it is clear, on account of the definitions of the
coefficients A, 2 and A and the function G, that in the particular
case under consideration (a, ay,...,ap instead of a,,as, ...,ap4, and
by,....bk,a bgiy,..., bg instead of by, ..., bg41)

m;c+| = A" k , m;c+l ( ): Qm'I? (S)'
GrLLL (g = Ghiv i g
and

"1 (1)=0.
We therefore get (113) with n = [—1 when we apply (113) to the
right-hand side of (115).
With this the theorem has been completely proved.
§ 11. Third expansion formula.
Theorem 3. Assumptions: k, I, m, n, p and q are integers with
q=1, 0=1—1=n=p=q 0=m=k=qand m+n=k+1;

the numbers ay, ...,an and by, ..., by [ulfil the conditions (1), (99) and
(100); r is an arbitrary integer which satisfies the inequality

0=r=k+1—m—n.
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Assertion:

GI (2) = AmniH ’2*,1 QML+ (s) Gz,‘l]»l,n (z elk+1—m—n—-2s—1)zi)
, s=0 !
k+l—m—-n—r—1 __
+ Km,n—liﬂ mZn r Qm'n_lﬁﬂ (T) Gf,’é_l'n (ze(m+n—k—l+2r+1)ni) (1 16)
=0

n—I+1
+ 3 elmtn—k—l2nziap \TIIEY () GRLR (4 etk l-m—n—2n)ai || 5,),
t=1
Proof. The theorem can be established by induction. The formula is
true if r =k +[—m—n, since (116) with r = k +[—m—n is equi-
valent to (113) with r =k +1—m—n. We may therefore suppose
0Zr<k-+I1l—m-—n—1 and assume that (116) with r 4+ 1 instead of r
has yet been proved. Now it follows from (57), if n =1,

Gf,jf,’" (z elk+1=m=n-2r-2ai || ar) = e~2viat Gf,jf,’" (zetk+i-m=n-2nai || a,)

+2ni e—ia; Gf,’f,—"" (z e(k+l—m—n—2r—l):u’)’

If this is substituted on the right-hand side of (116) with r + 1 instead
n—I+1

n—I+1
of r, the sum 3 not only yields the sum 3 in (116) but besides
t=1 t=1

n—I+1
. — i i —1+41
2 ni G’;,:,’, 1-"(Ze(k+1—m—n—2r—nm) > elm+n—k=l+2r+)miap \M0- [T 0 %*)
t=1

and this expression is by (59) equal to
——G’;jf,_""(z etk + 1-m—n—2r—1)=i) {Am'"‘,ﬁﬂ (v A (r)

—A™"TI Q™ (k + l—m—n—r—1)}.

r k+l—-m-n—r—2
The sums 3 and 2 on the right-hand side of (116) with
=0 =0
) r-1 k+l-m—n—r-—1
r + 1 instead of r reduce therefore to the sums 3, respect. >
s=0 =0

in (116). So the theorem is established.

§ 12. Extension of theorem 3.

In the same manner as formula (113) we may prove the formula con-
jugate to (113)

Gzr.qn (z) = Zm,n—lgﬂ rz,_l S_.?m’"_,iﬂ (s) GZ,lII——l,n (z e(m+n-k~—l+23+1):ti)
3 = :
141 s (117)
—
1 3 eltrim-a-anaiay AT GREN (zemin—b-tiannd | 5),
t=1

n—1I1+1
36)  This is still true if n = [—1, since the sums X then vanish.

t=1

41
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This relation holds, provided that the conditions (111), (112), (1), (99)
and (100) are satisfied.

We now replace r by k +{—m—n—r and s by 7. Then formula (117)
reduces to

(118)

n—1I1+1

+ ¥ e(m+n—k—1+zr)niatAm-"—k’+1 (t) G;:é'”(ze(k+1—-m—n—’!r):zi llas);

m,n Smy g1 KMl 1 k,I—1,n L
pa(2)=A"""k > QU ()Gpg (zelm+n-k=l+2e+1)i) a

herein is r an arbitrary integer which satisfies the inequality
r =Min (0, k +-l—m—n).

We may now show that formula (116) holds under conditions which are
much more general than those of theorem 3. Indeed, I will prove:

Theorem 4. Suppose that k, I, m, n, p and q are integers which satisfy
the conditions (111); further that the numbers a(,...,an and by, ..., bk
fulfil the conditions (1), (99) and (100); finally that r is an arbitrary
integer (positive, negative or zero).

Then formula (116) is valid.

Proof. Observing that Q™" L' (s) and Q™" ("' (s) vanish for
s = —1,—2,—3, ..., we may distinguish six cases 37):

First case: m+n=2k+ 1, r20. Formula (116) reduces to (113).

Second case: m+n=2k+1l, k+1—m—n<r<0. Formula
(116) reduces to (102) with A = —r.

Third case: m+n=2k—+1, r<k+1—m—n. Formula (116)
reduces to (118).

Fourth case: m+n<k+1, r=2k+1—m—n. Formula (116)
reduces to (113),

Fifth case: m+n<k+ [ 0r<k+1l—m—n. This is the
case of theorem 3.

Sixthcase: m+n<k-+1 r<0. Formula (116) reduces to (118).

§ 13. Some more lemmas.
Lemma 19. Suppose that k. I, p, q. » and v are integers with
IZ1,q=1,2=1, 0=v=k=q and |+v—1=p=q;

suppose [urther that the numbers ay, ...,a;y,_1 and by, ..., bx satisfy the
cenditions

aj—bp#1,23,...=v+1,....14+r—1;h=1,..., k)., (119)
aj—arF0,x1,+2,...=1,....v;t=1,...,v;jF 0. (120)

37)  Comp. also definition 4.
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Then the following formula holds 38):

k—v+7—1 )
Ghg "= 2 %R G T e (
- (121)
AloT e(A v+2/—1)ia, AOI ( ) G;:‘IJ,H—I'—I (C e(21'—2k—21+l)1i H a7)’s
=

Proof. If we put m=0, n=I14+»—1, r=k—v»+ » and
z=2C_e"M=1 jn (113) and suppose that y <k, then we find (121), because
of (5) and (50).

Lemma 20. Suppose that k, I, p, q, », A and v are integers with
IZ1,q=Z1,1=1=%x0=v=k=q and l+v—1 =p=q;
suppose further that the numbers a,, ..., a;;,_, and b,..... by satisfy the

conditions (119) and (120).
Then the [ollowing formula holds:

k—v+2—2

Gk[ 1,1+r—1 (C) — 2 q){\ls (h /) le Lil+v—1 (&. e('zh_z).+2)"i) (

h:’ll | (122)

Alo: T G (17) 5 b vraeinias 7Oy (o) G (g ezt ). |
o el

Proof. From (74) (with 2=1) and (73) (with 2 = 0) it follows

SR )=— ). . . . . . . (123)
We further have by (74) if A=£1—h

DR (h; )= —2¢1‘2(1 7) Q% (hHA—1—1)— PR (1: 2—1) Q% (h);

=0

in view of (74) we find therefore if 1 54 1 —h
Dk (h: ) = Bk (h+ 1:0—1)— DR (15 4—1) % (R). . (124)

From (123) and (73) (with 2 = 0) it appears that (122) with 2 =1
reduces to (121). Hence we may suppose 2 < 1 < x and assume that (122)
with 2— 1 instead of 1 has already been proved.

Now formula (122) with 21— 1 instead of 2 may be written in the
following way

Gk [—1,14r- I(C): Q,k:]?(l : l )Gk -1, 1+v—1 (te(_2)’+2)ni)

—r4z2—A

+ Z' DU (h+1;2—1) Gl "' (¢ et-2h—2i42)i) (125)

10 2 @1‘2(1 7) Z plk—r+22—27—)nia, AO'( )G " 1,l+*'—1 (¢ elr—2k=2241)7i Haﬂ)-
A k s=1

38)  The products A 'k(o) G’;:I(}H’ ! (w ay) on the right of (121) must be defined
by a limiting process when a.—b, =1,2,3,... (1<h<k); comp. the Remark at the
end of § 9.



638

The first term on the right-hand side of this relation is because of (121)
with fei=24+271 jnstead of { and x— 4 + 1 instead of » equal to

¢f"]?( ) le 1,l+v—1 (c e(_z;_+2),,i)

k—v+z2—24

=— 2 qulg( 1—1) Q% (h) le L=t (r ol—2h—242)i)

k0
_ka(l A-1) ; 2 (k- ’+27—2).+1)ma,.A0'( )G"”+’ 1(ie(21-—2k—22+l)nillaa).

on =1

If this is substituted on the right-hand side of (125), then (125) reduces
in virtue of (124) to (122), so that the lemma has been proved.

Lemma 21. Suppose that k, I, p, q. r and v are integers with
IZ1,q=Z1,rZ1, 0=v=k=qand |+ rv—1=p=gq;

suppose further that the numbers ay, ..., aiyv—y and by, ..., by satisfy the
conditions (119) and (120).
Then the following formula holds:

Gk 1-1, 1+v— 1(5)::2:" 45,::"( - Gk -1, 14— I(Ce(—zh—2r+2)ni)
=! (126)

A%) fg elk=r+iaias @60 (g, r—1) A% (o) G" LI+l (r ov—2k—2r407i | 2.),

"k o=
Proof. From (80) it follows
r—1
D elr—r=2)nia; (Df,’,?(l §¥) = er° (o; r—1).
=0
Woe therefore find (126) if we put x =1 = r in (122).
Remark. Formula (122) is also valid if the following conditions are
satisfied: k, L, p, q, », A and » are integers with

I=1,q=1,0=k=q, =0, |4+»—1=p=q, A=0 and x=1+r—k;

the numbers ay,q, ..., ar4v_q and by, ..., bx fulfil the condition (119).
kK—v+r—2
For, if 2<0, thesum 3  on the right-hand side of (122) is because
h=1

of (73) and (75) equal to Gk LIl (1) since fD’:’,f (1; z) =0 for
i-1

7<<0, the sum 3 is zero for <0 (comp. definition 4).
=0

Similarly formula (126) is also true under the following conditions:
F. 1, p, q, r and v are integers with

IZ1L1=14v=k=q, 1+v—k=r=0and I+v—1=p=q;

the numbers avyq, ....a14v—y and by, ..., bx fulfil the condition (119).
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Lemma 22. Suppose that k, |, m, n, p, q and v are integers with
I=1,q=1,0=m=k=q, 0=n—I+1=v=kand |+v—1=p=q;

further that ] is an arbitrary integer; finally that the numbers a,, ...,a;4+v-1
and by, ..., by satisfy the conditions (119) and (120).
Then the following formula holds:

Z !)mn 1+1 ( ) le 1,14r— 1( e—Zs.'ti)

Z {¢mn I1+1 (h }s) mn 1+1 (h _*_}__ 1)} le ~1,l+v— l(w e(—z’l—21+2)"i) (127)

_nl_ 3 elk—r+n)ria; @M= 1+1( ;l—l)A ( )Gk”“— (w e(z:-—zk—21+l)niHa7).

AO: =
Proof. We first suppose 2<0. Then the left-hand side of (127)
vanishes since Q™" 7[*' (s) = 0 for s < 0. Because of @"7~'*' (1; 1) =0
if <0, it appears from (71)
ST (hy ) — Q™ (h1—1) =0 for 1=0.
Woe further have by (54)

@™+ (o; A—1) =0 for 2=0.
Hence formula (127) is certainly true if 2 <0.
We now consider the case with 2 > 0. Because of (77) we have
-1
Z,.Qm,n—,gﬂ(s) diﬁ';?(h; l—s): m n—-l+1(h 1) .Qm'"_}(H(h 4 l——l): . (128)
$=0
besides it follows from (79)
21
3 Q™ (s) O8°(0; i—s—1)= O (6;0—1) . . (129)
s=0
If we replace in (126) ¢ by we=2s7"fand r by 1—s and use (128) and
(129), we easily find (127).
Lemma 23. Suppose that k, I, m, n, p, q. u and v are integers with
=1, qg=Z1, 60=Em=k=q,
0=n—I+1=», 0=u=k—v and | +r—1=p=q;

further that ). is an arbitrary integer; finally that the numbers a;, ..., ar4v_4
and by, ..., by satisfy the conditions (119) and (120).
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Then the following formula holds:

A—1
Am,ﬂ—li'l'l 2 .Qm,n—’£+1( ) le 1, l+r— l(w e_2$_.”')
$=0

— Amn I+| z¢m ,n—1+1 (h ;) . mel I+1 (h + 1_1 ; Gk A—=1,14+r— 1( e(—2h—2;~+2)ﬂi
= . (130)

70 pma—I+1 & n—I+1 Ky I—1,0+v—1 " e
— A% B ¥ L (2:2) Gpg 7 (w e 2h—20+20)i)

i~ |

,
— 141 5 —f ’ - ., o i

— B 3 etkeov-zwtiimia; @ (55 0-1) A% (0) Gyt (w ekt iini || g,),

7=1

Proof. From the definitions 5 and 6 it follows

—I+1
Am n X

7 - OO § &)
A% (131)
Formula (130) with u = 0 is therefore equivalent to (127). Hence we
may suppose 1 < u < k— v and assume that (130) with x— 1 instead of u
has already been proved.
Now it follows from (57), if v>1,

Gk 1, 1+v—1 ( e(2r—2k=20+2p—1) i H 37) — e—27ia; G;,I.Hv—] (w e(@r—2k—22+2u+ )i ||aa) )
' - (132)

+ 2nie—"ias Gf,’ (’]—1.1+"—1 (w el@r—2k—21+20) i), S
If this is substituted on the right-hand side of (130) with «—1 instead

of u, the expression — BM" ™' 3 not only yields the corresponding

s=1

expression in (130) but besides
— Y Bm n-I1+1 Gk -1, l4+r— l( e(Zv—Zk—Zl-{-Z,ﬂ)"i) <

S 3 elk—r-2ut2)zia; @mn—I+ (0: A—1) A% (o) %)

=1

and this expression is by virtue of (80) equal to

—27!!Bm yn—I+1 Gk 1-1,14+r-1 (we(z"—Zk_2}'+2/")“i) ><

b4 Z' A 2 elk—r+2i-2u—2) nia; A% (o)

=0 —

-1
k.1—1,1 —2k—2042p) i ,n—I+1
=G5y bdbv— 1( eltr—2k=20+2p)7i) 37 G Ea (1:7) X
=0

X {AO,;" B;n,n—H-l QO,;(' (k—v—}-l—,u—t)—Ao’,: B:n,n—l+1 50,;" (/k—*—t—).)}
(after (59)).

5
39)  This is still true for » = 0, since the sums = then vanish.
=1

7
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The right-hand side of this relation is on account of (131), (71) (with
—k—wv—u+ 1) and (81) equal to

GZ:(’}-LH"-I (w e(?v—2k~21+2,u):ri) e
X [Am,nA’{_H g.()m,n—liﬂ (k—i’ + l—[u)— qj'.n-,’Z_IH (k—l‘—,u +1; l)f
o ZO,I: _B,’."’”_[+1 W’,’.’,'Z‘I“ (l“ A)]

k—r—u+1 u—1
It appears therefore that the sums 2 and 3 on the right-hand
h=1 z=1
side of (130) with 11— 1 instead of 1 reduce by the substitution (132) to
k—v—n "
the corresponding sums Y and 3 in (130). This establishes the
h=1 =1

lemma,



