
Mathematics. - On the fundamental thearem af algebra. (First com
munication.) By J. G. VAN DER CORPUT. 

(Communicated at the meeting of June 29, 1946.) 

§ 1. Intraductian I). 

There exist several versions of the fundamental theorem of algebra. One 
of these versions is as follows: 

If Q be the field af the real numbers, then any palynamial 

F(X) = fo + fIX + ... + fl'XI' 

af degree ,u ~ 1, the caefficients af which belang ta Q and the highest 
coeflicient af which is equal ~ta 1, pas~esses .exactly fL I'aats Xl' ... , XI" belan-

ging tathe field Q(i), where i = V -1; in other words it is possible to 
write F(X) in the form 

where Xe . al! + ib(! (e = I, ... , p) and al! and be denote elements af Q. 
It is not passible to give a purely algebraic proof af this thearem, because 

th is propositian involves the notian of real numbers and therefore the 
notion of a limit, which does not belong to algebra. It is not appropriate 
to caB the theorem in this form the fundamental theorem af algebra, because 
by far the greatest part of algebra does not require the thearem in this 
form at all. The simplest proof of the theorem in this form is given by 
J. E. LITTLEWOOD 2), who uses the fact (belonging to analysis), th at a 
continuous function ~ 0, given an a bounded closed set, assumes at one 
point af this set at least a minimum value. 

Now the second version that may justly be called the fundamental 
theorem of algebra: 

If Q be an arbitrary cammutative field, then ta any palynamial F(X) af 
degree fL ~ 1, the caefficients af which belang ta Q and the highest caeffi
cient of which is equal ta the unit element e af Q, carrespands a cammutative 
field QI' containing all elements af Q, such that F(X) possesses exactly fL 

raots, all belanging to Ql' 

The proof of this theorem is purely algebraic. Here V2 is a symbol, for 
which addition, subtraction, multiplication and division are defined in such 
a manner, that the usual rules remain valid and that the square of this 
symbal equals 2. 

1) Lecture given at the Manchester University, Ma,y 28th 1946. 
2) J. E. LITTLEWOOD, Mathematica1 notes (14): "Every polynomial has a root", 

J. London Math. Soc, 16,95-98 (1941). 



723 

The arguments. applied in this part of mathematics. do not permit us to 

distinguish between V2 and - V2. Any rational relation with rational 

coefficients. involving Vf. remai,ns valid if V2 is replaced by - V2. On 
this facto suitably generalised. is based the whole Galois theory. 

In this theory we suppose that it is always possible to decide. whether a 
given polynomial F(X). the coefficients of which belong to the given com~ 
mutative field Q. is reducible or not. The polynomial F(X) of degree ,il is 
called reducible (with respect to Q). if it is possible to write F(X) as a 
product FI (X). F 2 (X) of two polynomials of degree < ft, the coefficients 
of which belong to fl. There are many fields. Li. the field of the rational 
numbers. which satisfy this condition. but there are exceptions. And even 
if it is theoretically possible. then the calculations are so long. that practi~ 
cally nobody gets through them. N evertheless this investigation is of ten 
necessary. even for the very simplest problem. 

Let a be a root of F(X). so that a is an element of DI . Consider a 
polynomial 

of degreel' ~ 1. the coefficients of which belong to SJ (and therefore to 
DJ) and the highest coefficient of which is the unit element of Q (and 
therefore also of Dl). According to the fundamental theorem of algebra. 
applied with Q 1 instead of Q. th ere exists a commutative extension Q~ of 
D. such that G(X) possesses exactly J' roots. all belonging to Q'2 . If (3 be 
a root of G(X). then what do we know about (l + (3 and a(3? We can 
construct in the followi,ng manner two polynomials U (X) and V (X). both 
of degree ./11'. such that a + (3 is a root of U(X) and (1(3 is a root of V(X). 
The products 

(I) 

where Q runs over I. 2 ...... Il and a over 1. 2 ..... l' and where 

denote indeterminates. are integral rational symmetrical functions of the 
indeterminates Y l' ...• Y,l and also of the indeterminates 2 1 •...• Z,.. Hence 
these products may be written as integral rational functions of X. the 
elementary symmetrical functions of Y J ••••• Y,l. and the elementary sym~ 
metrical functions of Z1' .... Z1'. If we replace the elementary symmetrical 
functions .1'Y 1 • .1'Y 1 Y 2 •...• Y 1 Y'2 ... Y/' successively by 

-{'J-I. {,,-2 ..... (-I}/l fo 

and similarly the elementary symmetrical functions 
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successively by - g.'_I. g"-2 ....• (- 1 ) vgo . th en the products in question 
transfarm into polynomials 

u (X. fo • . ..• (,,-I • go . ... ,g"-I) and V (X. fa ..... (,'-I • go •... ,g,'-I) 

in the X, fl! en ga (e = 0 .... "u-I; a= 0, ... ,'V-I). 
These polynomials, bath of degree fW in X. and both uniquely determined 

by the polynomials F(X) and G(X). will be denoted by F(X) + G(X) 
and F(X) X G(X). It is easy to see that a + (3 is a root of the first and 
a{3 is a root of the second polynomial. 

Por in stance. if 

F(X) = X2-2 and G(X) = X2-2X -1. 

then we find 

F(X) + G(X) = (X-I)2 (X2-2X-7) 

F(X) X G(X) = (X2 + 4X + 2) (X2-4X -2). 

This example shows. that the proper ties of a + {3 are not completely 
determined by the fact, that a + (3 is a root of F(X) + G(X), for a + (3 
may be equal to 1. or a + f3 may be a root of Xz - 2X - 7, and the roots 
of the last polynomial do not have the same proporties as the number 1. 

Ta Eind the properties of a + f3 we must decompose F(X) + G(X) into 
irreducible factors (generally a tiresome problem) and th en we must know 
which of these factors has a + (3 as a root. 

Ta a third polynomial H(X) corresponds a commutative extension Q3 

of Q, containing the roots of F(X). G(X) and H(X), and sa we can go on . 
IE the number of elements of the given commutative field is enumerable, 

th en we find in this manner after an infinite number of steps a commutative 
extension Q" of Q, containing all roots of each polynomial, whose coeffi
cients belang to Q. 

The last features of this theory, on which I draw the attention, is that 
it is not possible to distinguish here beween real and non-real roots, and 

that we may not say, th at V2 is situated between 1 and 2; in fact if that 

were the case, th en - V2 would be negative, and. as we have said, it is 

impossible in this theory to distinguish between V2 and - V2. It is 

therefore impossible to approximate V2 by rational numbers. 
Let us now consider a third version of the fundamental theorem of 

algebra. Let Q be a commutative Archimedeanly ordered field. i.e. I assume 
that it is possible for any couple of elements a and b to decide whether 
a = b, a > b or a < b; furthermore an arbitrary element a being given, a 
natural number 'V can be found, such that a is less than the sum of 'V terms, 
each of which is equal to the unit-element e of the field. 

In a purely algebraic manner I will show th at it is possible to construct 
in one step a commutative Archimedeanly ordered extension Q' of Q with 
the following property: 
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Any palynamial of degree fl. ?:' 1, the' caefficients of which belang ta Q 
and the highest caefficient of which equals the unit element e of Q, possesses 
exactly ,tl roots, all belanging to a third field Q'(i) , where Q'(i) denates 

the field, formed by adjaining ta Q' the number i = V -eo 
lf Q is the field of the rational numbers, th en D' is the field of the real 

algebraic numbers. lf Q is the field of the real algebraic numbers, then Q' 
is identical with Q. lf we take for Q the field of the real numbers, we 
depart from algebra because then we want the notion of limits. Every real 
number belongs in this case to [J', since Q' isan extension of Q. Conversely 
each element of Q' can be approximated 3) byelements of Q', i.e . by real 
numbers and is therefore a real number itself, Hence Q' is identical with Q. 

Now same remarks about the proof. By an interval W we mean the set 
of elements x of the given ordered field Q, satisfying the inequalities 
a ;-::;; x ;-::;; b, where a and bare elements of Q with a ;-::;; b. The elements a 
and b may coincide; in that case the interval consists of only one point . 

By the characteristic divisor P*(X) of P(X) we mean the quotient 

where (F, ~r) denotes the greatest common divisor of the polynomial 

P(X) d ' d' . dF(X) 'f h h' h ff' . f h' an lts envatIve dX -; I we put telg est coe IClent 0 t IS 

greatest common divisor equal to the unit element of Q, this divisor is 
uniquely determined. 

I say that the polynomial F(X) , the coefficients of which belong to Q , 

changes sign in the interval cp, if cp contains two elements u and v of Q, 

satisfying the inequalities 

P* ( v) ;-::;; ° ;-::;; P* ( u ) ; 

if u and v coincide, we have P*(u) = 0, hen ce P(u) = 0 4 ). 

a) As will appear presently, each element ;' of Sl' has the form (r, Cl. where C 
denotes a polynomial and r an interval, which may bI' taken arbitrarily smal!. The 
endpoints of 1', which belong to n, give an arbitrarily precise approximation of y. 

4) If the polynomial F(X) and the interval (/J are given, it is possible to decide in a 
finite nurnber of steps, whether </J contains two elements 11 and v which satisfy the 
above named incqualities. In fact by § 3 the interval <1> can bI' divided into a finite number 
of subintervals. such that throughout each of these subintervals the polynomial F* (X) 
has either a fixcd sign or is an increasing or a decreasing function of X. If F* (X) has 
the same sign in the enelpoints of all these subintervals. then F* (X) has a fixed sign in 
the interval <1>. Otherwisc 1> contains two elcments IJ anel p. which satisfy the above 
named inequalities; in fact one of the subintervals in question has the property that F* (X) 
ta ke~ a value ;;::: 0 at one endpoint and a value ;-::;; 0 at the other endpoint. 
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I say, that P(X) changes sign in ifJ more than once, if ifJ contains three 
elements, u, v and w of Q, with u < v < w, such th at either 

P*(u) ~ 0, P*(v);;;; 0, P*(w) ~ 0 

or 

F*(u) ;;;;0, F*(v) ~O, P*(w) ;;;;0. 

Now the main point: 
Let us con si der couples (r. Cl. where C = C(X) denotes a polynomial 

in Q with highest coefficient = e, that changes sign only once in the inter
val r. If r contains only one point w, then the polynomial C(X) vanishes 
at that point w; in this case we identify (r. C) with that point w. The set 
Q' formed by couples (r. C) is therefore an ex ten sion of the given field Q. 

We write (r, C) = (6, D) if and only if the greatest common divisor 
of C(X) and D(X) changes sign in the common part (r, 6) of the inter
vals rand 6; in that case this greatest common divisor changes sign only 
once in (r. 6). as I wiII show in § 2. 

It is easy to show that this notion of equality is reflexive and symmetrical. 
i.e. we have (r. C) = (r. C) and the relation (r, C) = (6, D) implies 
(6. D) = (r. Cl. In § 2 I show. that this notion of equality is also tra~si
tive. i.e. (r, C) = (6. D) and (6.D) = (A. L) implies (r. C) = (A. L). 

Now we have to define the sum of two couples (r. C) and (6, D). If u 
runs through the interval rand v runs through the interval 6, then u + v 

runs through an interval which we denote by r + 6. In § 3 I show that 

the above defined polynomial C(X) + D(X) changes sign in the interval 
r + 6. It is possible. th at this polynomial changes sign in this interval 
more than once, but we can find a subinterval r 1 of r. in which C(X) 
changes sign. and a subinterval 6 1 of 6. in which D(X) changes sign. in 
such a manner that C + D changes sign only once in the interval r l + 6 1, 

(This last condition is satisfied. if the subintervals r 1 and 6 1 are small 
enough.) In that case we have by definition 

(r. C) = (rl ' C) and (6, D) = (61 , D). 

In § 3 I wiII show, that then the couple (rl + 6 1 • C + D) is uniquely 
determined by the couples (r. C) and (6. D) (also independant of the 
choice of the subintervals r 1 and 6 1 ), 1 put: 

(r, C) + (6,D) = (rl + 6 1 • C+ D). 

Let us con si der the special case in which r consists of only one point u, 

and 6 of only one point v. Then r 1 = rand 6 1 = L. so that r 1 + 6 1 

consists of the point u + v only. The polynomial C + D, which changes 
sign in th at interval, vanishes therefore at the point u + v and we have: 

(r. C) = u; (6. D) = v; (rl + 6 1 • C + D) = u + v. 

Hence it appears. that the above definition of addition of two couples is 
allowed. 
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In a similar way we defi.ne the product of two couples. lf u runs through 
the interval l' and v through the interval 6, then uv runs through an inter

vaL which we denote by l' X 6. The polynomial C(X) X D(X) changes 
sign in that intervaL but perhaps more than once. It is possible to replace 
again l' and 6 by subintervals TI and 6 1 with (1', C) = (1'1' C) and 
(6, D) = (6 1 , D). such th at C X D changes sign only once in the 

interval Tl X 6 1; th en the couple (Tl X 6 1 • C X D) is uniquely 
determined (also independent of the choice of the sub-intervals) and I put: 

(1'. C) (6, D) = (1'1 X 6 1, CX D). 

Similarly as above it is obvious. that this definition is allowed. 
It is easy to show, as shall be done in § 4. th at the couples (1'. C) 

form a commutative field D'. It is therefore possible to calculate the value, 
which the polynomial F(X) assumes. if we replace the indeterminate X by 
a couple (q). F). We find that F vanishes in that case; hence (cf>, F) is a 
root of the polynomial F (X). Therefore I call D' the field of the real 
algebraic numbers with respect to the given field Q. 

To give an example: If q) is the interval with theendpoints 1 and 2 and 
if we put F(X) = X2 - 2. then we have to show that (cf>. F)2 = 2. Here 

F X F = (X2 - 4) 2 and cf> X cf> is the interval 'P with endpoints 1 and 4. 
H '1'1 consists of only the number 2, we have 

(cf>, F)2 = (<1> X <1>, (X2-4)2) = ('P, (X2-ijl) = (1JI1, (X2-4)2) = 2. 

The proof of the formula V 2 l / j = V6 proceeds as follows: If cp is 

again the interval with endpoints 1 and 2, hence '1' = q) X cf> the interval 
with endpoints 1 and 4, we have 

In the field Q'. formed by the e1ements. which are real algebraic with 
respect to !J. the element 0 is the couple (11, P), where n contains the 
element 0 of !J and P is a polynomiaL which vanishes in that point. In fact 
(n, P) = (11o, X) by definition, where Ilo is the interval which consists 
of only the element 0; if (Ilo. X) is added to an arbitrary element (6, D). 

we get again (6. D), for 6 + 11u = 6 and D+ X = D. 
To order the field D' it is sufficient to distinguish wh ether a couple 

y = (1', Cl, which is not equal to the element 0, is positive or negative. 
Sin ce y -::j::- 0, it is impossible th at l' contains the element 0 and that at 
the same time C (0) = O. Hence only two cases are possible: 

1°: C(X) cha,nges sign in the intervaL formed by the elements X;;:: 0 
of 1'; in this case we put y positive. 

2° C(X) changes sign in the intervaL formed by the e1ements X:;;;; 0 of 
1'; in that case we put y negative. 

It is obvious that the sign of (1', C) is independant of the choice of 
l' and C i.e. if (1', C) = (6, D), then (6, D) is positive, 0 or negative 
according to wh ether (1', C) is positive, 0 or negative. 
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The two conditions imposed on an ordered field are satisfied here, viz.: 
10: For every couple y one and only one of the relations y = 0, 

y > 0 and y < 0 is valid. In fact, put L(X) = (-1 )I'C(-X), where /1 

denotes the degree of the polynomial C(X). Be A the interval of the 
elements -x ·of Q, where x runs through the interval r. Then we have 
- y = (A, L), which means th at (r, C) + (A, L) is the element 0 of Q'. 
It is obvious that, if y is not equal to the element 0, only one of the couples 
(r, C) and (A, L) is positive. 

20
: If y = (r, C) and J = (6, D) are positive, th en also their sum and 

product are positive. In fact, we may suppose, that all elements both of r 
and 6 are;:;;: 0, consequently also all elements of r + 6 and r X 6. 

In th is manner we have ordered Q'. 
The axiom of ARCHIMEDES is valid, for to a given couple y corresponds 

an element c > y of Q and Q being Archimedeanly ordered, a natural 
number ')J exists, such th at the sum of ')J terms, each equal to the unit element 
of Q, isgreater than c, hence greater than y. 

By means of the arbitrary commutative Archimedeanly ordered field Q 

we have constructed a new Archimedeanly ordered field Q' consisting of 
the elements, which are real-algebraic with respect to Q. Repeating our 
argument with Q' in stead of Q we find thé commutative Archimedeanly 
ordered field, formed by the elements, whic'h are real-algebraic with respect 
to Q'. In order to prove. that th is new field is identical with Q', it is 
sufficient to show, that an arbitrary element (t/J', F') of the new field 
belongs to Q'; here ifJ' denotes an interval. formed by elem.ents of Q'; the 
polynomial F'(X) changes sign only once in the interval cp' and the coef
ficients of this polynomial belong to ifJ' . The coefficients of the polynomial 
F' belang to Q' and therefore are real algebraic with respect to the original 
field Q'. As we show in § 5 it is possible to construct a polynomial F(X), 
not identically = 0, such th at the coefficients of F(X) belong to Q and 
that F'(X) is a divisor of F(X). The polynomial F(X) changes sign in 
CP', but perhaps more than once; however it is possible to ·find a subinterval 
ifJ\ of cp', such that F'(X) and F(X) both change sign only once in t/J'!. 
By definition we have 

(cl)', F') = (q>'l' F). 

If the characteristic divisor of the polynomial F (X) vanishes at one end
point of CP\, then (ifJ\, F) is by definition equal to that endpoint, and 
therefore equal to an element of Q'. Hence we may assume, th at this 
characteristic divisor does not vanish at either of the endpoints of the 
interval. Then it is possible to find a subinterval ifJ' 2 of cp'] , such that the 
end points a and b of q/2 belong to Q and that F changes sign only once 
ir: that interval q)' '2' So we obtain 

(CP', F') = (CP\, F) = (cP' 2' F). 

Be q) the interval formed by the elements of Q, belonging to ifJ' 2; hence 
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rJJ is formed by the elements ~ a and ~ b of Q. The couple (CP, F) is an 
element ~ a and ~ b of D' and belongs consequently to cp' 2' Moreover the 
polynomial F (X) vanishes, if the indeterminate X is replaced by (CP, F) . 
By definition (rJJ', F') = (rJJ''.!, F) is equal to the element (CP, F) of 
CP' 2' and this element belongs to Q'. 

Hence it is not possible to extend the field Q' in the specified manner. 
Now we pass to the third version of the fundamental theorem of algebca, 

which we state as follows: 
Be SJ an arbitrary commutative Archimedeanly orde red field, Q' the 

ordered commutative field, formed by the elements which are real~algebraic 
with respect: to SJ. Then any polynomial of degree ft ~ L the' coetficients ot 
which belong to Q' (i), and the highest coetficient of which is equal to e, 
possesses exactly ft roots and these roots belong to Q'(i). 

In order to give a proof we show first, that the polynomial F(X) 
possesses at least one root, belonging to Q' (i). Let us first consider the case 
F(X) = X'2 - q, where q denotes a positive element of Q'. Then it is 
possible to find a positive element b of Q', such that b:l> q. If cp denotes 
the interval with the e,ndpoints 0 and b, formed by elements of Q', then 
X'2 - q changes sign only once in that interval; hence the couple 
X l = (rJJ , X'2_q) is a root of the polynomial X'2-q. Consequently this 
polynomial possesses in D' the root Xl and the polynomial X'2 + q possesses 
in Q'(i) the root Xli. Hence each quadratic polynomial X '2 + pX + q. with 
highest coefficient = e and the coefficients of which belong to Q', possesses 
at least one root. belonging to Q' (i), for this polynomial is identical with 

Consider now the case that F(X) is a polynomial of odd degree with 
coefficients , belonging to D'. Then it is possible to find two elements a 
and b of [2', such .that the polynomial changes sign in the interval with the 
end points a and b. Perhaps it changes sign more than on ce in that interval, 
but it is always possible to find a subinterval (P, such that F changes sign 
only once in rJJ . Hence the polynomial F(X) possesses a root (cf), F) 
belonging to Q'. 

So we have shown that each quadratic polynomial and also each poly~ 
nomial of odd degree with coefficients belonging to D' possesses at least 
one root, belonging to Q'(i). As GAUSS has shown in his sec011d proof of the 
fundamental theorem of algebra, herefrom it follows, that each polynomial 
with highest coefficient equal to e and the coefficients of which belong to 
[}'(i) , possesses at least one root belonging to !1'(i). 

If X l is a root of F(X), belonging to n'(i) , the coefficients of XF(X) 
-XI 

belong also to SJ' (i), 50 that the argument may be repeated with this 
quotient instead of F(X). Continuing in this manner we find the number 
of roots to be equal to the degree of the polynomial. 
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In the last section (§ 6) I give a proof of the following lemma. 
Be O:s;}.:s; fl-. Suppose that the polynomials A(X) = ao + ... + al'XI' 

and B(X) = bo + ... + bl'XI'. the coefficients of which belong to Q'(i). 
satisfy the inequalities 

i. a I' a i. b 
~ I a!, I =- -; X I ae I =- -; ~ I be I =- - ; 

('=0 U !'=!. U (>=0 U 

here a denotes the sum -::j::- 0 of the absolute values of the coefficients of 
A (X) and b the sum -::j::- 0 of the absolute values of the coefficients of 
B(X) . whereas u and rare positive elements of Q. 

1° Then Q contains a positive element v depending only on ,ti and u 
with the following property: 

A (X) may be written in the form 

A (X)= a' (X-XI)'" (X-Xi.) (e-Xi.+1 X) ... (e-x" X). . (2) 

where 

I X2 I """" v (e = 1 ....• ft) and I a' I """" a v. . (3) 

2° To any decomposition of A(X) of the form (2). satisfying the 
inequalities (3). corresponds a decomposition of B(X) of the form 

B(X) = b'(X - Ytl ... (X - Yl) (e- Y!.+IX) ... (e- YIIX). 

such that 

I Y!!-X!] 1< wr (e = 1. .... fl-) and I b'-a' I < war. 

where w depends only on Jit. u and v. 
The intuitionist does not object to the above arguments. since each 

consists of a finite number of steps . For instanee. in the preceding lemma. 
it is possible to evaluate v in a fini te number of steps. if ft and u are 
given. One has however to take into consideration that. according to the 
intuitionist. the set of the real numbers does not posses the property 
imposed on the field Q. viz~ that it is possible for any couple of elements 
a and b of Q to decide in a finite number of steps. which of the three cases 
a = b. a > b or a < b occurs. Therefore it is in the intuitionistic mathe
matics not allowed to take for Q the set of the real numbers. Nevertheless 
it is possible to give in a few lines a purely intuitionistic proof of the 
fundamental theorem of algebra. 1 prove even this theorem in the following 
stronger form. due to L. E. J. BROUWER 5). 

5) Compare: H. WEYL. Randbemerkingen zu Hauptproblemen der Mathematik. Mathe
matische Zeitschrift 19. 131-150 (1921). 

B. DE LOOR. Die hoofstelling van die algebra van intuïsionistiese standpunt. Disser
tation Amsterdam. 1925. 63 p. 

L. E. J. BROUWER and B. DE LOOR. Intuitionistischer Beweis des Fundamentalsatzes der 
Algebra. Proc. Kon. Akad. v. Wetenseh .. Amsterdam. 27. 186---188 (1921). The same 
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The polynomial 

F(X) = [0 + ... + [I'XI' 

with complex coefficients, where [a and [r (0;;:;; 0;;:;; T;;:;; ,u) are positively 
different from 0, may be written for any integer J. ;:;: 0 and ;;:;; T in the [orm 

F (X) = a (X-XI)' .. (X-Xi.) (l-XI.+I Xl . .. (I-xl' X). . (4) 

where a is positively different [rom O. 
If f I' is positively different from O. we may choose o. Tand J. all equal 

to ,u. so that then we get the decomposition 

F(X) = fl'(X -Xl) ... (X -xp). 

For a proof we remark that [a and [r differ positively from 0; hence a 
positive rational number u ;:;: f.t + 1 exists. such that 

here [ denotes the sum of the absolute values of the coefficients of F(X) 
and is therefore positively different from O. 

Consider a positively convergent series rl + r:! + .... consisting of 
positive. rational. decreasing num'hers r. ;;:;; I. such that 

tu r,.!'1 < 1. 

To any natural number 11 corresponds a polynomial 

A,. (X) = a,.Q + ... + a,.," X ,v. 

with rational complex coefficients. such that 

(e = O ....• .u). 

Hence 

,Il ti 

}; la, . ~ ! < 2.~ I f~ I +~- (.u+ l)fr .... '!<2f 
!}=o ~I=O 

~loreover we obtain 

paper in Duteh: Intuitionistisch bewijs van de hoofdstelling der algebra. Verslag Kon. 
Akad. v. Wetenseh .. Amsterdam. 33. 82-84 (1924). 

L. E. J. BROUWER. Intuitionistische Ergänzung des Fundamentalsatzes der Algebra. 
Proc. Kon. Akad. v . Wetenseh .. Amsterdam. 27. 631-634 (1924). The same paper i:1 
Duteh: Intuitionistische aanvulling van de hoofdstelling der algebra. Vers!. Kon. Akad. v. 
Wetensch.. Amsterdam. 33. 459-462 (1924). 

47 
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and similarly 

Finally we get. from rV+1 < rvo 

I' 
1 av+l.e - a. e 1 < t f r,.1' 1< r,.l'1 .2 1 a~ e I· 

e=O 

Hence it appears that the conditions of the lemma are satisfied with 
A (X) = Av(X). with B(X) = Av+dX) and with r = rvo Consequently 
we may write Al (X) in the form 

AI (X) = al' (X-XII)'" (X-XI!.) (l-XI.I.+I X) ... (I-xII' X). 

To th is form corresponds a decomposition of A 2 (X) 

A 2 (X) = a/ (X-X21)' .. (X-X21.) (I-X2.HI X) . .. (I-x21' X). 

such that 

I' 
1 X2e-Xle 1 < wrl , 1 a2'-al' 1 < wrl 2 1 ale 1 < 2wrl f, 

e=O 

where w denotes a positive rational number depending only on f1. and u. 

Continuing in this way we find for A. (X) (JI = 1.2 .... ) the decomposition 

A. (X) = a',. (X-X,. I) ... (X-x.l.) (I-X, .. À+I X) ... (I-X,I' X). (5) 

such that 

1 X.+I.~-X'e 1 < wr. and 1 a"·+I-a'.1 < 2 wr. f. 
Since the series r1 + r2 +... is positively convergent. the numbers 
Xpl, ... X'I'. a'. tend positively to limits Xl' .... XI'. a. so that (5) gives (4) 
by a passage to the liinit. 


