
Mathematics. - On the fundamental theorem of algebra. (Second 
communication) I). By J. G. VAN DER CORPUT. 

(Communicated at the meeting of September 21. 1946.) 

§ 2. Proof of the transitivity. 

Definition. A polynomial is called simple if it is relatively prime 
to its derivative. 

Lemma 1. Every divisor D(X) of a simple polynomial P(X) is 

simp!e. for a comman divisor of D (X) and ~ ~ would occur bath in 

dP dD dU 
P(X) = D(X) U(X) and in d X= U d X+ D d X. which is impossible. 

Lemma 2. The product of simpte relatively prime polynomials is 
simple. 

It is suflicient to give a proof for the product of two polynomials. 
dP dV dU 

Be P(X) = U(X) V(X). Then d X = U d X+ V d X is relatively prime 

bath to U(X) and V(X). hence also to U(X) V(X). 

Lemma 3. Two poLynomials. the product of which is simpie. are 
simple and relatively prime. 

In facto a cam man divisor of U(X) and ~ ~ (or V(x)) occurs bath in 

dP dV dU 
P (X) = U (X) V (X) and in d X = U d X + V d X. which is impossible. 

if U (X) V (X) is simpie. 

Lemma 4. Any polynomial P(X) may be written in the form 

P(X) = p~l ... Pf'-. 

where the exponents are positive and PI (X) ... .• FA (X) are simple. 
relatively prime polynomials. 

Proof. The theorem is obvious if P(X) is simpie. IE not. put 
P(X)=D(X)P"(X). where D is the greatest cam man divisor of P(X) 

dP 
and d X· In this case the degree of both D (X) and P" (X) is less than 

the degree of P (X). We may suppose. that for these polynomials the 

1) Compare Proc. Kon. Ned. Akad. v. Wetenseh .. Amsterdam. 49. 722-732 (1946) 
and Indagationes Mathematicae 4 (1946). 
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proof is already given. Consequently we may write 

F=F~' ... Frl.. (6) 

where the exponents ai are natural numbers and FI'" Fi. are simple 
polynomials. We may even assume that these polynomials are relatively 
prime. For. if for instanee FI = U V and F 2 = UW. then U. V and 
W. being divisors of simple polynomials. are simple and 

Continuing in this manner we finally find F(X) written in a form. similar 
to (6) with simpie. relatively prime polynomials. 

Lemma 5. If a polynomial F is written in the form (6). where 
FI ..... Pi. Bre simple and relatively prime and the exponents are positive. 
then FI (X) .. . Pi. (X) is the characteristic divisor of F(X). 

dF 
Proof. d X is the sum of À. terms; all but one of these terms are 

F . 
divisible by F~'. The exceptional term possesses the form al FI and IS 

divisible by p~, - I but has 

d · . dP. h f envatlve d X IS tere ore 

further no common factor with PI' The 

divisible by p~I-1 and has no further common 

factor with FI' A similar argument is valid for the polynomials F 2 ..... Pi .. 

so that G = p~,-I ... Pti. -I is the greatest common divisor of Pand : ~. 
Hence it follows. that PI'" Pi. is equal to the characteristic divisor. 

Corollaries. The characteristic divisor F*(X) of a polynomial P(X) 
is simpie. being the product of simpie. relatively prime polynomials. 

P(X) divides (P* (X) )-It. wh ere ft denotes the degree of F(X). since 
each a,. -=:: /-l. 

H D (X) is a divisor of F(X). th en D* (X) is a divisor of F* (X). 
In facto we may write D (X) = pr' ... Ft!. where 0 -=:: /1" -oe:: a,.. so that 
the characteristic divisor IJ F Q of D (X) is a divisor of the characteristic 

" I! >0 
i. 

divisor IJ F Q of F (X). 
1.'=1 

Lemma 6. If U is the greatest common divisor of F and G. then 
U* is the greatest common divisor of P* and G*. 

Proof. U is a divisor of bath F and G. By corollary of lemma 5 
the polynomial U* is a divisor of both P* and G*. hence also of their 
greatest common divisor. 

The greatest common divisor D of F* and G* is a divisor of U. 
Hence the characteristic divisor D* of D is a divisor of U*. But D is 
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a divisor of the simple polynomial P* (X). 50 that it is also simpIe. 
consequently identical with its own characteristic divisor. Hence D is 
a divisor of U·. Consequently U· and D are identical. 

Lemma 7. If q denotes a positive element of Q. then every interval 
can be divided in a finite number of subintervals. each with length -=:: q. 

In facto Q being Archimedeanly ordered. a natural number e exists. 
b-a 

such that e> --. where a and b denote the endpoints of the interval. 
q 

o (b-a) 
The points a + where 0 runs through O. 1 •... e. divide the given 

q 
interval in subintervals. each with length -=:: q. 

Lemma 8. To ang two relativelg prime polgnomials P(X) and G(X) 
corresponds a positive element p = p (P. G) -=:: e of Q. satisfging the 
inequalitg 

IP(X)I + I G (X)I > p 

for all elements X of Q. 

Proof. We can restrict ourselves to an interval r outside which 
I P (X) I > e. Since F (X) and G (X) are relatively prime. the unit 
element of Q can be written in the form 

e = U (X) P (X) + V (X) G (X). 

where U (X) and V (X) denote appropiate polynomials. The absolute 

value of· U (X) and V (X) in r is less than ~. where p is a suitable 
p 

positive element of Q. Then we have for all X of Q in r 

e < ~ (IP(X)I + I G (X)I). 
P 

which implies the required result. 

Lemma 9. To ang two relatively prime polgnomials P(X) and G(X) 
corresponds a positive element q = q (P. G) of Q. such that G (X) is 
definite in everg interval with lfmgth -=:: q. where P (X) changes sign. 
and P (X) is definite in everg interval with length -=:: q. where G (X) 
changes sign ("definite" means: always positive or always negative). 

Proof. We may restrict ourselves to a bounded interval 6. Consider 
the elements p (P*. G) and p (P. G*) of lemma 8. Be PI the smaller of) 
these two elements. SJ contains a positive element m::=- e. such that 
each derivative of P* (X) = H (X). of P (X). of G* (X) and of G (X 

has in 6 an absolute va\ue -=:: m. To prove that the element q = :~ 
possesses the required property we consider a subinterval 6 1 of 6 with 
length -=:: q. where P (X) changes sign. For any two elements x and 



881 

x+ h of 6. we have I h I-=:: q -=:: e, hence, if ft denotes the degree of P, 

IH(x+h)-H(x) I=lhll H~~x) + ... + hll-·:f(/<)(x) I I 
-=:: I h I m (11 f + ;! + ... + :!) < 2 1 h 1 m -=:: 2 q m = i· ~ . 

(7) 

Similarly 

I G (x+h)-G (x) I < ~. . . . . . . (8) 

Since P (X) changes sign in 6., this interval contains two elements 
u and v with P* (v) -=:: 0 -=:: P* (u). 

Hence from (7) we infer 

o -=:: P* (u) -=:: P* (u) - P* (v) < i· . 
From the preceeding lemma it follows then I G (u) I > i·. From (8) we 

find for each element x of 6. 

G (x) > G (u) - il > 0, if G (u) > i, 
and 

G (x) < G (u) + il < 0, if G (u) < - i . 
Hence G (X) is definite in 6 •. 

The second part of the theorem follows by exchanging Pand G. 

Definition. Two polynomials P(X) and G(X) are said to be equivalent 
in an interval (j"J, if two polynomials Pand Q. both definite in (j"J. exist, 
such that P* P = G* Q. 

Lemma 10. If a polynomial P (X) changes sign in an interval (j"J, 

then every multiple G (X) of P (X) changes also sign in (j"J . If further 
is given, that G (X) changes sign at most once in (j"J, then P (X) and 
G(X) are equivalent in (j"J (and therefore both change sign exactly once 
in (j"J). 

Proof. G* is a multiple of P*. Be G* (X) = P* (X) U (X). Since 
P* (X) changes sign in (j"J. by lemma 9 and 3 we can divide (j"J in 
sub inter vals. each with length -=:: q. where q denotes the element q (P*, U) 
of lemma 9. In at least one of these subintervals, say (j"J •• the polynomial 
P* (X) changes sign. In virtue of the choice of q the polynomial U (X) 
is definite in (j"J., hen ce G* (X) = P* (X) U (X) changes sign in (j"J •• 

Suppose that G (X) changes sign only once in (j"J . If U (X) were 
not definite in (j"J. in one of the constructed subintervals. say (j"J2. the 
polynomial U (X) would change sign and there P* (X) would be definite. 



882 

Hence G* (X) = F* (X) U (X) would change sign in çTJ2' Since U (X) is 
definite in çTJl' but not in çTJ2' the intervals çTJl and çTJ2 would be different 
and G* (X) would change sign in 4J more than once. This not being 
the case, we find U (X) to be definite in çTJ and therefore F (X) and 
G (X) to be equivalent in (]J. 

Remark, From (r, C) = (~, D) it follows, that (C, D) changes sign 
at most once in (r, ~), for (C, D) changes sign there and has a multiple 
D (X), which changes sign at most once in (r, D.). 

Lemma 11. If F (X) and G (X) are equivalent in çTJ, they are also 
equivalent to their greatest common divisor in ~. 

Proof, Put F* = U· Pand G· = U* Q, where U* is the greatest 
common divisor of F· and G·, 50 that Pand Q are relatively prime. 
By lemma 6 the polynomial U· is the characteristic divisor of the 
greatest common divisor U of F and G. If P (X) is not definite in ~, 
then a subinterval of ~ exists, in which P (X) changes sign and which 
has a length < q (U·, P) and < q (P, Q), where q denotes the element 
of Q, introduced in lemma 9. By th is lemma U* and Q are definite 
in this subinterval ; hence also G·, while F· changes sign in that sub. 
interval. This is impossible, since F (X) and G (X) are equivalent in ~. 

Proof of the transitivity. From W, C)~ (D., D) and (~, D) = (.ti, L) 
we must deduce (r, C) = (.ti, L). The greatest common divisor (C, D) of 
C and D changes sign in (r,~) and possesses a multiple D (X), whieh 
changes sign at most once in that interval. From lemma 10 these 
polynomials are equivalent in (r,~) and both change sign there. 
Similarly (D, L) and D are equivalent in (D.,.ti) and both change sign 
there. By lemma 11 the polynomial D (X) is in (r, D.,.ti) equivalent to 
the greatest common divisor (C,D,L) of (C,D) and (D,L). In (r,D.,A) 
the polynomial D (X) changes sign, for otherwise D (X) would change 
sign both in (r, D.) and (~, A) outside W' D., .ti), consequently more than 
once in D., which is impossible. Hence the polynomial (C, D, L) whieh 
is equivalent with D (X), changes sign in (F. D., A), and therefore also 
its multiple (C.L) by lemma 10. Then (C.L) changes signalsoin(r,A). 

§ 3. Definition of sum and product. 

Consider two polynomials 

F(X) = fo+fl X+· · .+f.XI' and G(X)=go+gl X+ ... +g" X", 

where r" = g,. = e. The products II (X - Ye - Z.) and II (X - Y!.' Z.), 
where (! runs through 1, ... ,I' and wh ere 0 runs through 1, ... , J', and 
where X, Y!' and Z. denote indeterminates, may be written as integral 
rational functions of X, of the elementary symmetrie functions of Y1, ••• , Y,< 
and of the elementary symmetrie functions of ZI' ... ' Z". If we rep la ce 
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the elementary symmetrie functions 2 YI' I YI Y2 •••• • YI Y2 ••• YI" ~ ZI' 
J; ZI Z2 •.... ZI Z2 ... Z. respectively by - fu-Io fu-2 ..... (-1)/1 fo. -gv-I. 
g.·-2 ..... (-1)" go. these produets become polynomials in X, whieh I 
denote by F (X) + G (X) and F (X) X G (X). 

If we put G (X) = G I (X) G 2 (X). the left side of the identity 

,u ,u I' 

IJ G (X- Y~) = IJ G I (X- Y['). IJ G 2 (X- Ye) 
!.l =1 !.) =1 .2= 1 

becomes F (X) + G (X). hence 

F(X)+ G(X)=(F(X)+ G I (X)) (F(X)+ G 2 (X)). 

Herefrom it follows: If G I (X) is a divisor of G (X). then F(X) + G I (X) 
is a divisor of F(X) + G (X) . In the same way we get: If also FI (X) 
is a divisor of F(X). then FI (X)+ G I (X) is a divisor of F(X)+ G I (X). 
hence of F(X) + G (X). In particular: 

Lemma 12. If u is a root of F (X) and v is a root of G (X), 
then (X-u) + (X-v) = X-u-v is a divisor of F(X) + G (X) . hence 
u + v is a root of F (X) + G (X) . 

Lemma 13. A polynomial F (X). the derivstive of which is always 
==- 0 in an interval CP, satisfies the inequality F (u) ~ F (v) for all 
elements u and v of cp with u -== v. 

Proof. The second and higher derivatives of F (X) in cp are absolutely 
less than a suitably chosen element m of Q. Divide the interval with 

v-u 
endpoints u and v into a equal parts. each of length I = ~- ~ e. For 

a 
the endpoints a and b (a < b) of such a part we have 

F (b) - F (a) = bI !é! F ' (a) + (b 2 ;r F" (a) + ... + (b-a): f(I') (a) • 

where p. denotes the degree of F. From F ' (a) ==- 0 it follows 

F(b)-F(a) =- -mF (:! + ... + ,~!) =- -mP. 

and adding we obtain 

F () F ' ) -- [2 m (V-U)2 
v - (u - -m a = - . 

a 

Since the number a may be taken arbitrary large. we find F(v) - F(u) ==- O. 
for otherwise the number (J could be taken as large as to contradiet 
the inequality. 

Remark. From this lemma it follows immediately: If a polynomial 
has a definite derivative in an interval , the polynomial changes sign 
there at most once. 
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Lemma 14. ft the polynomial C (X) changes sign in rand the 
polynomial D (X) in 6.. then the polynomial C (X) + D (X) changes 
sign in r+ 6.. 

Proof. Suppose first that C and D are simpie. Put C (X) + D (X) = F(X). 
If a and b denote the endpoints of r+ 6.. we may assume without loss 
of generality P*(a)=jéO and P*(b)=jéO. for otherwise the lemma is evident. 
Q contains a positive element m. such that the second and higher 
derivatives of P* (X) are all absolutely -== m in r+ 6.. Choose in Q a 
positive element I. satisfying the inequalities 

1-== e; [-== f ; [-== ~ P* (a); [-== ~ P* (b).. . . . (9) 
-xm p p 

(where p denotes the element p ( P*. ~ ~*). introduced in lemma 8). 

such that in the interval with end points a and a + I the inequality 
I P* (x) I > t I P* (a) I is valid and in the interval with endpoints b-l and 
b similarly I P* (x) I > t I P* (b) I. From lemma 5. corollary we know 
(P*}u = P G. where ft denotes the degree of Pand G is a suitable 
polynomial. Q contains a positive element g. such th at in r+ 6. the 
polynomial G possesses an absolute value -=:: g. 

If s and t are arbitrary elements of Q. then 

H(X. s. t) = I (C (X)-s) + (D (X)-t)I-1 C (X) + D (X)I 

is a polynomial in X. s and t. In each term of Heither a factor s or 
a factor t occurs. for H (X. O. 0) is identically equal to O. Hence a 
positive element k of Q exists. such that from I s 1< k and 1 ti < k it follows 

1 (p 1)" 
1 H (w. s. t) 1 < g 1 . . . . • (10) 

for all elements w of r+ 6.. Finally we choose the positive element h 
of Q such that in every subinterval of r with length -== h. the oscillation 
of C (X) is less than k. and that also in each subinterval of 6. with 
length -== h. the oscillation of D(X) is less than k. Divide rand 6. into 
subintervals. each of length -== h. In at least one of these subintervals 
of r. say rl • the polynomial C (X) changes sign and in at least one of 
the subintervals of 6.. say 6. 1, the polynomial D (X) changes sign. 

Then the interval r l contains two elements u and UI with C(UI)-==O-==C(u). 
Since the oscillation of C (X) in r l is less than k. it follows 

o -== C (u) -== C (u) - C (UI) < k. 

Similarly 6. 1 contains a point v with 0-== D (v) < k. Hence inequality (10) 
is valid for w = u + v. s = C (u) and t = D (v). Then u is a root of 
C (X) - s and v is a root of D (X) - t. hence w = u + v is a root of 
(C(X)-s) + (D(X)-t) by lemma 12. Therefore 

IP(w)1 = I C(w) + D(w)1 = 1 H(w. s. t)1 < ~ (P,/y. 
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Hence 

1 F* (w) 11' = 1 F(w) G (w) 1 < (~lr. 
Consequently 

1 F* (w) 1 < Pil < t p. . . . (11) 

( 
dF*) From the definition of P = P F*. d X it follows 

I 
dF*(w) I > 1 

dw "2p. . (12) 

From (11) and (9) we infer 

1 F* (w) 1 < t 1 F* (a) 1 and 1 F* (w) 1 < t 1 F* (b) I· 
Therefore it is impossible that w lies either in the interval with endpoints 
a and a + 1 or in the interval with endpoints b-I and b. As w lies in 
the interval with end points a and b. it lies in the interval with endpoints 
a + land b-I. The interval r+ /::. contains consequently the e1ements 
w-[ and w+l. 

Since the second and higher derivatives of F* are absolute1y -== m in 
r+ 6 and since 1-== e. the Taylor development gives 

I F*(w =F I)-F*(w) ± Id~~w) l -== mP(;,+ ;t+···+ ~,) <mP-==tpl. 

hence by (11) we get 

I
' F* ( I) I d F* (w) I 1 I w ± =F -~ J---;;- <"2 p . 

From (12) we infer that F* (w-/) and F* (w + l) have different sign; 
consequently F(X) changes sign in r+ 6. 

Suppose now that C and D are not both simpIe. Then C* and D*. 
and therefore C* + D* change sign resp. in r. 6 and r+ 6; consequently 
the multiple C + D of C* + D* changes sign also in r + 6. 

Now we pass to the definition of the sum of r=(CC) and b=(6.D). 
Put F = C + D. A subinterval r' of rand a subinterval 6' of 6 
can be found. both with leng th -== t q. where q denotes the element 

q ( F*. ~ ~). introduced in lemma 9. such that C changes sign in r' 

and D in 6'. In the interval I" + 6' with length -== q the polynomial 
dF* 

F changes sign by lemma 1 i. By lemma 9 the derivative d X is definite 

throughout that interval; therefore F* changes sign there at most once. 
So we have proved the existence of subintervals r' of rand 6' of /::.. 
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such that C changes sign on ce in r', D in 6' and C + D in r' + 6'. 
N ow we may put 

r + t5 = (r' + 6', C + D), 

iE we show that the couple (r' + 6', C + D) is uniquely determined. 
Suppose 

(r, C) = (rl' Cl) and (6, D) = (61, DI)' 

We have to prove 

(r' + 6', C + D) = (rl' + 6;, CI+ DI)' 

where r l ,6/, r l ' and 6; are subintervals respectively of r, 6, r l and 6 1, 

such that C changes sign only once in r ', D in 6', Cl in r l', DI in 6;, 
F=C+D in (]>=r'+6' and FI=CI+DI in tP l =rl'+6;. We 
must prove that the greatest common divisor L of F = C + D and 
FI = Cl + DI changes sign in the common part A of (]> and (]>I' Since 
S = (C, CI)+(D, DI) is a divisor both of F= C+D and FI = Cl +DI' 
the polynomial S is also a divisor of their greatest common divisor L. 
By assumption the couples (r, C) = (r' C) and (rl , Cd = (rl', Cl) are 
equal, so that (C, Cd changes sign in (r', rl') and similarly (D, DI) in 
(6',6;). By lemma 14 S changes sign in };= (r', rl') + (6',6;). By 
lemma 10 the multiple L of S changes sign in ~, hence certainly in A, 
which contains };; in fact each point w of ~ may be written in the 
form u + v, where u lies both in r' and r l', and v lies both in 6 ' and 
6;, hen ce w lies both in T' + 6' and r l' + 6;, consequently also in 
their common part A. This establishes the proof. 

In a similar way we define the product of two couples. 


