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§ 17. Further investigation of the expansions of § 16. 

I may recall that the function G;:~ (z) satis6es the homogeneous linear 
differential equation (34) and that. if q > pand the conditions (36). (37) 
and (38) are satis6ed. a system of fundamental solutions of this equation 
valid in the neighbourhood of z = 00 is formed by the p functions (39) 
together with the q - p functions (40) i8). 

In th is § I will express the function G;:~ (z) (q > p) as a linear combi
nation of these fundamental solutions; the expressions in question appear 
to be special cases of the expansion formulae (145). (148). (149). (150) 
and (152). My results can be stated as follows: 

Theorem 11. As s u m p t ion s: m. n. pand q are integers with 

l-=:'n-=:'p<q. 2-=:'m-=:'q and m+n=-q+ 1; (153) 

the number z satis{ies the inequality 

-(m+n-tp-tq)n<argz«m+n-tp-tq)n;. (154) 

the numbers al' ...• an. and bi . ...• bm ful{il the conditions (I) and (20); 
1 is an arbitrary integer which satis{ies the inequalities i9) 

O-=:'l-=:'m+n-q-l. (155) 

(m+n +t p-t q-2) n-arg z < 2ln«m+n-tp-tq) n-argz. (156) 

As ser t ion: The function G;: ~ (z) can by means of (145) be expressed 
in terms of fundamental solutions valid near z = 00 • 

Theorem 12 A. As s u m p t ion s: m. n. pand q are integers which 
ful{il the conditions (153); the number z satis{ies the inequality 

(m+n+tp-{-q-2)n<argz«m+n-p+e)n; . (157) 

48) Comp. also the Rem ark at the end of § 4. 
49) By (154) we have 

0< (m + n -tp-'-tq) n-arg z. 

(m + n + t p-t q-2) n-arg z < (2m + 2n-2q-2)n; 

from these relations it follows that there exists at least one integer ,l. satisfying (155) 
and (156). 
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the numbers a\ ..... d n and b\ . ...• bm fulfil the conditions (l) and (20); 
r is an arbitrary integer which satisfies the inequalities 50) 

r~O. (158) 

(tp+tq-m-n);re+ arg z< 2r;re< (~q-ip-m-n + 2);re+ arg z. (159) 

Assertion: The function G~:~(z) can by means of (148) be expressed 
in terms of {undamental solutions valid near z = co . 

Theorem 12B. Assumptions: m. n. pand q are integers which 
fulfil the canditions (153); the number z satisfies the inequality 

- (m + n-p + e) ;re < arg z < - (m + n + t p - t q-2) jJ; 

the numbers al' .... an and b\ . .... bm fulfil the conditions (1) and (20); 
r is an arbitrary integer which satisfies the inequalities 

r~O. 

(ip+ ~-q-m-n);re-arg z <2 r;re «~q -tp-m-n +2);re-arg z. 

Ass e r t ion: The functian G~: ~ (z) can by means af (149) be expressed 
in terms af fundamental salutians valid near z = co . 

Theorem 13A. Assumptions: m. n. pand q are integers with 

(160) 

and 
(161 ) 

the number z satisfies the inequality 

- (m + n -t p-t q);re < arg z < (m + n -p + E);re; (162) 

the numbers al' ...• an and b\ . .... bm fulfil the canditians (1) and (20); 
r is an arbitrary integer which satisfies the inequalities 5\) 

r =- q-m-n + I. (163) 

(tp+tq-m-n);re+ arg z< 2rn< (Jq-tp-m-n +2);re +arg z. (164) 

Assertion: The functian G~:~(z) can by means af(148) be expressed 
in terms af fundamental salutians valid near z = co . 

,,0) From (157) it follows 

(~4- q-tp-m-n + 2);re + arg z > 0; 
hen ce there exists at least one integer r satisfying (158) and (159). 

51) Because of (162) we have 

(2q-2m-2n + 2);re < (~q-t p-m-n + 2);re + arg z; 
from th is it appears that there exists at least one integer r which satisfies (163) and (164). 
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Theorem 13B. Assumptions: m. n. pand q are integers which 
ful{il the conditions (160) and (161); the number z satis{ies the inequality 

-(m + n-p+ E).n <. arg z < (m + n-tp-t q).n; 

the numbers a\ •. . . • an and bI' .... bm ful{il the conditions (1) and (20); 
r is an arbitrary integer which satis{ies the inequalities 

r=- q-m-n + 1. 

(tp +tq-m-n) n-arg z<2r.n«tq--lp-m-n +2).n-argz. 

As ser t ion: The function G;: ~ (z) can by means of (149) be expressed 
in terms of fundamental solutions valid near z = 00 • 

Theorem 14. Assumptions: m. n. pand q are integers with 

Ooe=::n~p<q. 1 ~m~q 
and 

p+ 1 ~m+n~tq+-.tp-tE+ 1; . . (165) 

the number z satis{ies the inequality 

-(m+n-p+E).n<argz«m+n-p+E).n; .. (166) 

the numbers a\ ... . . an and bI • .... bm ful{il the conditions (1) and (20); 
r is an arbitrary integer which satis{ies the inequalities 

o ~ r oe=:: q-m-n + 1.. . (167) 

(t p + t q-m-n).n + arg z < 2r.n< (ïq-tp-m-n +2).n+argz. (168) 

Assertion: The function G;:~ (z) can by means of (150) be expressed 
in terms of fundamental solutions valid near z = 00 • 

Theorem 15. As s u m p t ion s: m. n. pand q are integers with 

o ~ n ~ p < q and 0 -== m ~ q ; 

À. is an arbitrary integer; the number z satis{ies the inequality 

(m + n-p + E + 21-2).n ~ arg z < (m + n-p + E + U).n; (169) 

the numbers al' .... ap and bI • .... bm fulfil the conditions (1) and (38); 
p. is an arbitrary integer which satisfies the condition 

(m+n-fP+tq+2À.-2).n-argz<2p.n«m+n-tp+tq+2l).n-argz. (170) 

Assertion: The function G;:~(z) can by means of(I52) be expressed 
in terms of fundamental solutions valid near z = 00 • 

If À. runs through the sequence of all positive and negative integers 
(zero included). we find by means of theorem 15 for all values of arg z 
an expression of G;:~ (z) (q > p) in terms of fundamental solutions valid 
near z = 00. 
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If m + n :::=- p + 1 and at the same time I arg z I < (m + n - p + e) n. 
we may obtain in a simpIer way sueh an expression by means of the 
theorems 11. 12. 13 and 14. 

For insta nee : 
If m + n :::=- q + 1 and I arg z I < (m + n - t p - t q) n. we may use 

theorem 11 . 
If m + n :::=- q + 1 and (m + n - t p - t q) n -=:: arg z < (m + n - p + E) n, 

we may use the theorems 12 A. B. 
If -~ p + t q < m + n -== q + 1 and I arg z I < (m + n - p + EI n. we may 

use the theorems 13 A. B. 
If p + 1 -== m + n -== t p + t q and I arg z I < (m + n - p + E) n. we may 

use theorem 14. 

Proof of theorem 11. From (156) it follows 

-(tq- t p+ l)n<arg z +(q-m-n+2Ä+ l)n«tq-tp+ 1):r. 

Henee condition (36) (with - Ä instead of Ä) holds for the funetions 
G~: ~ on the right of (145) and sa these funetions are fundamental solutions. 

Proof of theorem 12A. By (159) we have 

-({-q- t p+ 1)n < argz+(q-m-n-2r+ l)n«tq- t p+ l)n. 

The functions G~:~ on the right-hand side of (148) are therefore funda
mental solutions. 

From (159) and (157) it follows 

2 r n < (f q - ,~ p + E + 2) n. 

eonsequently 

r<q-p+1. 

Henee the number of the funetions G~:g oeeurring on the right of (148) 
is at most equal to q - p. These funetions satisfy the condition (37) 
(with lP = s); for we have by (157) 

arg z + (q-m-n) n < (q-p + E) n 

and by (159) 

-(q-p + E) n < - (t q - t p) n < arg z + (q-m--n-2r + 2) n. 

The functions G~:g in (148) are therefore also fundamental solutions. 

Proof of theorem 12B. Similar to that of 12A. 

Pro of of theorem 13 A. The inequality (162) has a meaning; for 
it follows from (161) that 

- (m + n - t p - t q) n < (m + n-p + é) n. 

For the rest the proof is similar to that of theorem 12 A. 
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Proof of theorem 13 B. Similar to that of 13 A. 

Proof of theorem 14. Prom (166) it follows 

(t q + t p-2m-2n-e + 2) n < (t q-t p-m-n + 2) n + arg z (171} 

and 
(t p + t q-m-n) n + arg z < (t q - t p + e) n. (172} 

Because of (165) we have 

O-=t q + tp-2m-2n-E + 2 (173) 

and 

t q-t p + e -= 2 + 2q-2m-2n .. (174) 

By combining (171) and (173) we obtain 

0< (ï q-t p-m-n + 2)n + arg z; . . . . (175) 

similarly by combining (172) and (174) 

(t P + t q-m-n) n + arg z < (2 + 2q-2m-2n) n. . (176) 

Prom (175) and (176) it appears that there exists at least one integer 
r satisfying (167) and (168). 

N ow on the right-hand side of (150) there occur q - m - n + I functions 
of the type GZ;g (C). the values of arg C being 

arg z + (m + n-q) n. arg z + (m + n-q + 2) n . .... arg z + (q-m-n) n. (177) 

But by (165) we have q - m - n + 1 -= q - p. Hence the number of 
these functions GZ;g (C) is at most equal to q -- p. It is easily seen that 
these functions are fundamental solutioDs. Por it follows from (166) that 
the values (177) lie between - (q - p + e) n and (q - p + e) n. The 
condition (37) is therefore satisfied and sa the functions GZ;g (C) on the 
right-hand side of (ISO) are fundamental solutions. The functions GZ;~ are 
also fundamental solutions. This may be established in the same manner 
as in the proof of theorem 12 A. 

Proof of theorem IS. Pram (170) and (169) it follows 

(t q- t p-e-2) n < 2f'n < (ï q -~J- p-e + 2) n. 

hence 

-l<f'<q-p+l; 

the condition (151) of th eo rem 10 is therefore satisfied . 
The functions GZ;~ on the right-hand side of (152) are fundamental 

solutions. since we have by (170) 

- (tq-tp+ I)n<arg z+(2p-q-m-n-2À+2f'+I)n< (tq-tp+ I)n. 

We will still show that the q - p functions GZ: g (C) on the right-hand 
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side of (152) are fundamental solutions. Now the values of arg' are 

arg z + (2p-q-m-n-2J. + 2) n. arg z + (2p-q-m-n-2J. + 4) n • 

. . . • arg z + (q-m-n-2 J.) n. 

and these values lie because of (169) between -(q-p + E)n and (q-p +E)n. 
The functions GZ;g (C) satisfy therefore the condition (37) and so they are 
fundamental solutions. 

With this the theorem has been proved. 

§ 18. The asymptotic expansion of the function G;:~ (z) (q>p). 

We are now able. for all values of m. n. p. q and arg z. to investigate 
the behaviour of G;:~ (z) (q > p) as 1 z 1 ~ 00. For the theorems of § 17 
in connection with the expansion formulae (145). (148). (149). (150) and 
(152) enable us to express the function G;: ~ (z) linearly in terms of 
functions GZ;~ and GZ:g of which the asymptotic expansions can imme~ 
diately be deduced from the theorems A and C of § 2. 

In order to get an asymptotic expansion of G~; ~ (z) for 1 z 1-+ 00 

I investigate all the functions GZ;g and GZ;~ on the right~hand side of one 
of the mentioned expansion formulae and I determine the dominant 52) 

or the dominants among them 53). Unless the coefficients of all the dominant 
functions vanish. we need only take account of the asymptotic expansions 
of these dominants and may neglect the others. Now these coefficients 
are functions of the parameters al' ...• a p and bi' .... bq and these functions 
are in general not zero. Such a function is only zero if the parameters 
al •...• ap and bi' ... , bq satisfy a certain equation. Since these parameters 
are mutually independent. there exists in general no.relation between them. 

5~) I say that cf>(z) is dominant compared with 'j1(z) if the leading term of the 
asymptotic ex pan sion of .p(z) is of an order less than the error term of the asymptotic 
expansion of cf> (z). 

For instanee: If cf>d z ) ..... cf>u(z) possess the asymptotic expansions 

.:pI (z) (/) eZ (al. 0 + a~ I + ... ). .:p2 (z) (/) Z5 ( a2. 0 + a~ I + ... ) . 

4J3 (z) (/) z-l ( a3.0 + a~ I + ... ) . .:p4 (z) (/) eiz Z-2 ( a4.0 + a: I + ... ) . 

.:ps(z) (/) e- z ( a5. 0 + ~~~ + ... ) . .:pdz) (/) e-2Z ( a6. 0 + a~ I + ... ) 
and z is positive. then </l1(Z) is dominant compared with </l2{Z) . . ... </l6{Z) ; </l2(Z). </l3(Z) and 
</l4(Z) are dominant compared with </ls(z) and </l6(Z); </ls(z) is dominant compared with </l6(Z); 
but </l2(Z) is not dominant compared with </l3(Z) and </l'l(z), Among the functions </l2{Z) •...• </l6(Z) 
there are three dominants. viz. </l2(Z). </l3(Z) and </l4(Z), 

53) In many cases there is only one dominant functior: . v i::. a ft.:i1 ctic," C; ~:~ . 
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If there is only one dominant function. I will suppose in this § that 
the coefBcient of this function is not zero; if there are two or more 
than two dominant functions. I assume that at least one of them possesses 
a coefBcient which is not zero. So in formula (195) it is tacitly supposed 
that the coefBcient D;"qn().) does not vanish; in formula (196) that at most 
one of the coefBcients D;"qn ().) and D;"qn (J.-l) vanishes. 

If the coefBcients of all the dominant functions are zero. it is necessary 
to make a doser investigation. with which I will not occupy myself. 

Except in some simple cases the asymptotic behaviour of the function 
G';,'pn+1 (z) is quite different from that of the function G;"qn (z) with 
q::=- p + 2 (comp. the theorems 20 and 21). 

Substantially the results run as follows: 
1. If n ==- 1 and m + n > -Ir p + t q. then G;~'~' (z) has for large values 

of 1 z 1 with I arg z I < (m + n - -Ir p - t q) n an asymptotic expansion of 
algebraic order (This is the case of theorem B of § 2). 

2. If m > -Ir p + {- q. then G';,'~ (z) has for large values of I z I with 
I arg z I < (m - 1- p - {- q) n an asymptotic expansion which is exponentially 
zero. 

3. If q ==- p + 2 and m + n > -~ p + t q. then G;"qn (z) has for large 
values of I z I with I arg z I > (m + n - -} p - -Ir q) n an asymptotic expansion 
which is exponentially infinite. 

4. If q ==- p + 2 and m + n -c:: t p + t q. th en G;"; (z) has for large 
values of 1 z 1 an asymptotic expansion which is exponentially infinite 51). 

5. If m + n ==- p + 1 and J. is either an arbitrary integer ==- 0 or an 
arbitrary integer -c:: p - m - n. then G';,';+I (z) has for large va lues of 
Iz l with 

(m + n-p + U-{-)n < arg z < (m + n-p + 2J. + {-)n (178) 

an asymptotic expansion which is exponentially infinite. 

6. If J. is an arbitrary integer. then G';,'P"+.I (z) has for large values 
of I z I with 

(m + n-p + 2J.-t)n < arg z < (m + n-p + 2J.-t) n 

an asymptotic expansion of algebraic order. 

7. If m + n -c:: pand ). is an arbitrary integer. th en G';,';+I (z) has 
for large values of 1 z 1 in the sector (178) an asymptotic expansion 
which is exponentially infinite. 

I will now state my results. The simplest case is afforded by 

Theorem 16. Assumptions: m. n. pand q are integers with 

1 -c:: n -c:: p < q. 1 -c:: m -c:: q and m + n > t p + ~ q; 

the numbers al ..... an and bI ..... bm satisfy the conditions (1) and (20). 

54) There are certain special values of arg z for which 3. and 4. are not true; comp. 
assertion 4 of theorem 18 and assertion 3 of theorem 20. 
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As ser t ion: The function G;"~z (z) possesses for large values of 1 z 1 

with 
- (m + n -{- p - {- q) n < arg z < (m + n - -~ p-t q) n (179) 

the asymptotic expansion 55) 
n 

G;"~' (z) C/) 1: e(m+n-q - I):riat ,0,111,~ (t)Ep,q (ze(q-m-n+l):ri 11 at). (180) 
t=1 

Rem ark. This theorem is equivalent to theorem B of § 2. 
Pro 0 f: We may distinguish two cases: 
First case: m+n=-q+I 56). We apply theorem 11. The asym~ 

ptotic expansions of the functions G~: ~ on the right of (145) can he 
deduced from theorem A and (15) (with I' = À); the result is 

Gq, l (ze(q-m- II+U+I).--ci '1 1 a ) C/) e 21.:r ia t E (ze(q-m - n+l) -"i I1 a ). p,q t p,q I t 

From this relation and (145) follows (180). 
Sec 0 n dca se: {-p + t q < m + n -== q + 1. We use theorem 13 A. 

The asymptotic behaviour of the functions G~:~ (ze(q-m-n-2S)"i) on the 
right of (148) can he determined by means of theorem C. Now it follows 
from (179) 

arg (ze(q-m-II)---ci) < (~q - -~- p) n 

and from (164) 

-({q -{- p) n < arg (ze(q-l1I - n- 2r+2).--ci). 

Hence we have for s = 0, 1. ... , r - 1 

-(~- q- -~ p) n < arg (ze(q - m- n-2S)_--ci) < (t q-t p) n. 

From this relation and (26) and (25) it appears that the functions 

G~:~(ze(q-m-n-2S):ri) on the right of (148) tend exponentially to zero 
as 1 z l ~oo. 

The functions G~: ~ in (148) yield hy means of theorem A and (15) 
the same asymptotic expansions of algebraic order as in the first case. 
With this the theorem is established. 

G~) Comp. footnote 12). 

GQ) If m + n ;;;: q + 1. th en m ;;;: 2, since n < q. 


