Mathematics. — On a generalisation of the formula of HILLE and HARDY
in the theory of Laguerre polynomials. By O. BOTTEMA. (Com-
municated by Prof. W. vAN DER WOUDE.)

(Communicated at the meeting of October 26, 1946.)

1. The Laguerre polynomials L (x) can be defined by means of a
generating function
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For these polynomials the following theorem holds
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where Iq is the “Bessel function of imaginary argument". This formula is
often called the Hille-Hardy formula, but besides those of HILLE 1) and
HARDY 2) the names of WIGERT, BATEMAN and MYLLER LEBEDEW have
been associated with the discovery of the theorem 3). HARDY obtained his
result by an application of Mellin's inversion formula; the proof of Hille
involved the use of infinite integrals containing Bessel functions. A simple
proof for (3) has been given by WATSON 4) by means of generalized
hypergeometric functions.
If we write

I'n+a+41)
the left member of (3) is seen to be
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Now in recent years series of the form
2t (x)- P @)  ([t|=1) . . . (6)
have been investigated by WATSON and by ERDELYI. WATSON 5) has
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1) HILLE, Proc. Nat. Acad. of Sci., 12, 261—265, 265—269, 348—352 (1926).

2) HARDY, Journal London Math, Soc. 7. 138—139 (1932).

2) For the history of the formula see WATSON, Journal London Math. Soc., 8, 190
(1933), ERDELYI, Compositio Math, 6, 336—347 (1939), BATEMAN, Zb. Mathem. 21, 24
(1940).

%)  WATSON, l.c. 189—192.

WATSON, Sitzungsber. Ak. Wiss. Wien, 147, 151—159 (1938).
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shown that for t =1, ¢ca = 1 (6) can be expressed by incomplete

n-+1

I'-functions, thus generalizing a formula which had been given by R.
NEUMANN and by KosCHMIEDER for @ — 0. ERDELYI has published several
papers on the subject6), showing finally that the results obtained by
WATSON and by himself can be considered as special cases of a general
theorem concerning bilinear series of confluent hypergeometric functions.

The aim of the present note is far more unpretending and it tries to
Tn+atk+1)

I'in4+a+1)
|t| <1, the series (6) can be written as a sum of k Bessel functions which
coefficients are expressions containing Laguerre polynomials of the ar-
(x+uyt
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show only that for ca = where k is an integer and for
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2. We prove the following generalisation of (3)
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Since = 0 for m > p the second 3 on the right has g + 1 terms, where

m

q = min [k—p, p]. For k = 0 we have the Hille-Hardy theorem. The proof
is extremely elementary for (7) can be derived from (3) by multiplying
with te+k, differentiating k times with respect to ¢ and dividing by ta.
The only difficulty arises from the arrangement of the righthand member.
Once the formula discovered, the proof can best be given by induction.
We assume that (7) is valid for k, multiply by t2+¥+1, differentiate with
respect to ¢ and divide by t?+*¥. We obtain then the left member of (7)
for k + 1. For the reduction of the right member we make use of the
following relations
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6) ERDELYI, Rend. Acc. Linceir 24, 347—350 (1936); S.—B. Akad. Wiss. Wien Ila,
147, 513—520 (1938); id. 148, 38—39 (1939); Compositio Math. 6, 336—347 (1939);
id. 7, 340—352 (1939).
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For I (zll/_f :’ t) nd LY ((x +9) t) we obtain accordingly

1—¢
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From (8a) it is obvious that in the right member we obtain an expression
t—lla‘z 1 + t
(_leexp( Y(x+y ) k! 2 A,,(x. y ) lyp . (12)
and the functions A,(x, y, t) have to be found. If we differentiate
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with respect to ¢ and divide by t2+*, we obtain
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Again, differentiating ¢2 (:T_Fi) we have
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Thus if
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it follows that for 0 <p <k + 1
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where
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and the same result is valid for p = 0 and for p = k + 1. Thus from (12)
we take the conclusion that (3) is due for k& + 1.

3. From the special cases derivable from (7) we quote only the case
y — 0. We obtain then

™ n-i—a—{—k — . 1 ( xt) (a)<xt
HZZ/:( k )t Ly (x)-—mﬁexp —1—_—2 « Lg 1———t) (19)

a formula we have given elsewhere 7) and which can be used for the
evaluation of some definite integrals involving products of Laguerre poly-
nomials.

7) BOTTEMA, Een betrekking voor de polynomen van LAGUERRE en VAN HERMITE,
Proc. Kon. Ned. Akad. v. Wetensch.,, Amsterdam, 49, 65—71 (1946).



