Mathematics. - On the G-function. VIII. By C. S. Meijer. (Communicated by Prof. J. G. van der Corput.)
(Communicated at the meeting of November 30, 1946.)

Theorem 21. Assumptions: m, n and p are integers with ${ }^{65}$)

$$
p \leqq 1,0 \leqq n \leqq p \text { and } 1 \leqq m \leqq p+1 ;
$$

λ is an arbitrary integer;
the number z satisfies the inequality

$$
\left(m+n-p+2 \lambda-\frac{3}{2}\right) \pi \leqq \arg z<\left(m+n-p+2 \lambda+\frac{1}{2}\right) \pi ;
$$

the numbers a_{1}, \ldots, a_{p} and b_{1}, \ldots, b_{m} fulfil the conditions (1) and (38) in the formulae (203), (207) and (208) (assertions 1, 2, 3, 6, 7, 8 and 9); in formula (206) (assertions 4 and 5) I assume that they satisfy the condition (1).

Assertions: 1. The function $G_{p, p+1}^{m, n}(z)$ possesses for latge values of $|z|$ with

$$
\begin{equation*}
\left(m+n-p+2 \lambda-\frac{3}{2}\right) \pi<\arg z<\left(m+n-p+2 \lambda-\frac{1}{2}\right) \pi \tag{202}
\end{equation*}
$$

the asymptotic expansion

$$
\begin{equation*}
G_{p, p+1}^{m, n}(z) \sim \sum_{\sigma=1}^{p} e^{-(2 \lambda+1) \pi i a_{\sigma}} T_{p, p+1}^{m, n}(\sigma ; \lambda) E_{p, p+1}\left(z e^{(p-m-n+2) \pi i} \| a_{\sigma}\right) \tag{203}
\end{equation*}
$$

Formula (203) does not hold when $n=\lambda=0$ and $m=p+1{ }^{66}$).
2. The expansion (203) is also true if the following conditions are satisfied:

$$
\begin{gather*}
m+n \geqq p+2, p-m-n<\lambda<0, \\
\left(m+n-p+2 \lambda-\frac{1}{2}\right) \pi \leqq \arg z<\left(m+n-p+2 \lambda+\frac{1}{2}\right) \pi \tag{204}
\end{gather*}
$$

3. The expansion (203) is further valid if the following conditions a e satisfied:
$m+n \geqslant p+2, p-m-n+1<\lambda<1, \arg z=\left(m+n-p+2 \lambda-\frac{3}{2}\right) \pi$.
4. If $m+n \geqq p+2$ and λ is either an arbitrary integer $\geqq 0$ or an arbitrary integer $\leqq p-m-n$, then for large values of $|z|$ with

$$
\begin{equation*}
\left(m+n-p+2 \lambda-\frac{1}{2}\right) \pi<\arg z<\left(m+n-p+2 \lambda+\frac{1}{2}\right) \pi \tag{205}
\end{equation*}
$$

[^0]the following asymptotic expansion holds
\[

$$
\begin{equation*}
G_{p, p+1}^{m, n}(z) \backsim D_{p, p+1}^{m, n}(\lambda) H_{p, p+1}\left(z e^{(p-m-n-2 \lambda+1) \pi i}\right) \tag{206}
\end{equation*}
$$

\]

5. The asymptotic expansion (206) is also valid if the following conditions are satisfied:
$m+n \leqq p+1, \lambda$ is an arbitrary integer, $\arg z$ satisfies (205).
6. If $m+n \geqq p+2$ and λ is either an arbitrary integer $\geqq 0$ or an arbitrary integer $\leqq p-m-n$, then for large values of $|z|$ with $\arg z=\left(m+n-p+2 \lambda-\frac{1}{2}\right) \pi$ the following asymptotic expansion holds

$$
\left.\begin{array}{c}
G_{p, p+1}^{m, n}(z) \sim D_{p, p+1}^{m, n}(\lambda) H_{p, p+1}\left(z \mathrm{e}^{(p-m-n-2 \lambda+1) \pi i}\right) \tag{207}\\
+\sum_{\sigma=1}^{p} \mathrm{e}^{-(2 \lambda+1) \pi i a_{\sigma}} T_{p, p+1}^{m, n}(\sigma ; \lambda) E_{p, p+1}\left(z \mathrm{e}^{(p-m-n+2) \pi i} \| a_{\sigma}\right) .
\end{array}\right\}
$$

7. The asymptotic expansion (207) is also valid if the following conditions are satisfied:
$m+n \leqq p+1, \lambda$ is an arbitrary integer, arg $z=\left(m+n-p+2 \lambda-\frac{1}{2}\right) \pi$
8. If $m+n \geqq p+2$ and λ is either an arbitrary integer $\geqq 1$ or an arbitrary integer $\leqq p-m-n+1$, then for large values of $|z|$ with $\arg z=\left(m+n-p+2 \lambda-\frac{3}{2}\right) \pi$ the following asymptotic expansion holds

$$
\left.\begin{array}{rl}
& G_{p, p+1}^{m, n}(z) \sim D_{p, p+1}^{m, n}(\lambda-1) H_{p, p+1}\left(z e^{(p-m-n-2 \lambda+3) \pi i}\right) \tag{208}\\
+ & \sum_{\sigma=1}^{p} e^{-(2 \lambda+1) \pi i a_{z}} T_{p, p+1}^{m, n}(\sigma ; \lambda) E_{p, p+1}\left(z e^{(p-m-n+2) \pi i} \| a_{\sigma}\right) .
\end{array}\right\}
$$

9. The asymptotic expansion (208) is also valid if the following conditions are satisfied:
$m+n \leqq p+1, \lambda$ is an arbitrary integer, arg $z=\left(m+n-p+2 \lambda-\frac{3}{2}\right) \pi$.
Remark. Precisely as by theorem 20 there are by theorem 21 certain cases wherein an expansion coincides with an expansion given in one of the previous theorems.

For instance: Formula (180) with $q=p+1$ is a particular case of (203). It follows namely from (86), (87) and (54):

If $1 \leqq \sigma \leqq n$ and $p-m-n+1 \leqq \lambda \leqq 0$, then

$$
T_{p, p+1}^{m, n}(\sigma ; \lambda)=e^{(m+n-p+2 \lambda-1) \pi i a_{\sigma}} \Delta_{p+1}^{m, n}(\sigma) .
$$

If $n+1 \leqq \sigma \leqq p$ and $p-m-n+1 \leqq \lambda \leqq 0$, then $T_{p, p+1}^{m, n}(\sigma ; \lambda)=0$.
Hence, formula (203) with $n \geqq 1, m+n \geqq p+1$ and $p-m-n+1 \leqq \lambda \leqq 0$ is equivalent to (180) with $q=p+1$.

Proof of theorem 21. This proof rests, like that of theorem 20, on an application of the theorems 15 and 10 . The number ε, occurring in condition (169) of theorem 15 is now equal to $\frac{1}{2}$, since $q=p+1$.

The inequality (170) reduces for $q=p+1$ to $\left(m+n-p+2 \lambda-\frac{3}{2}\right) \pi-\arg z<2 \mu \pi<\left(m+n-p+2 \lambda+\frac{3}{2}\right) \pi-\arg z$.

Hence it is easily seen:
If $\arg z$ satisfies (204), then $\mu=0$.
If $\arg z=\left(m+n-p+2 \lambda-\frac{3}{2}\right) \pi$, then $\mu=1$.
If $\arg z$ fulifls the condition (202), then the inequality (209) is satisfied by both $\mu=0$ and $\mu=1$.
Now on the right of (152) there occurs for $q=p+1$ only one function $G_{p, p+1}^{p+1,0}$, viz. the function $G_{p, p+1}^{p+1,0}\left(z e^{(p-m-n-2 \lambda+1) \pi i}\right)$, the coefficient of this function being

$$
R_{p, p+1}^{m, n}(1 ; \lambda) \text { or } \bar{R}_{p, p+1}^{m, n}(1 ; p-m-n-\lambda+1)
$$

according as $\mu=0$ or $\mu=1$; these coefficients may because of (91) and (92) also be written in the form $D_{p, p+1}^{m, n}(\lambda)$, respect.

$$
\exp \left\{2 \pi i\left(\sum_{h=1}^{p+1} b_{h}-\sum_{h=1}^{p} a_{h}\right)\right\} D_{p, p+1}^{m, n}(\lambda-1) .
$$

On account of the just determined values of μ we see that the coefficient in question is equal to

$$
\begin{equation*}
D_{p, p+1}^{m, n}(\lambda) \text { if } \arg z \text { satisfies (204) } \tag{210}
\end{equation*}
$$

and equal to

$$
\begin{equation*}
\exp \left\{2 \pi i\left(\sum_{h=1}^{p+1} b_{h}-\sum_{h=1}^{p} a_{h}\right)\right\} D_{p, p+1}^{m, n}(\lambda-1) \text { if } \arg z=\left(m+n-p+2 \lambda-\frac{3}{2}\right) \pi ; \tag{211}
\end{equation*}
$$

the coefficient depends on the choice of μ if $\arg z$ fulfils the condition (202).
Now if $\arg z$ satisfies (205), then

$$
\frac{1}{2} \pi<\arg \left(z e^{(p-m-n-2 l+1) \pi i}\right)<\frac{3}{2} \pi ;
$$

hence it follows from (26) and (25) that the function $G_{p, p+1}^{p+1,0}\left(z e^{(p-m-n-2 \lambda+1) \pi i}\right)$ is exponentially infinite for $|z| \rightarrow \infty$.

If $\arg z$ satisfies (202), then

$$
-\frac{1}{2} \pi<\arg \left(z e^{(p-m-n-2 \lambda+1) \pi i}\right)<\frac{1}{2} \pi ;
$$

in this case the function $G_{p, p+1}^{p+1,0}\left(\mathrm{z}^{(p-m-n-2 k+1) \pi i}\right)$ tends exponentially to zero for $|z| \rightarrow \infty$. If

$$
\arg z=\left(m+n-p+2 \lambda-\frac{1}{2}\right) \pi \text { or } \arg z=\left(m+n-p+2 \lambda-\frac{3}{2}\right) \pi .
$$

the function $G_{p, p+1}^{p+1,0}\left(z e^{(p-m-n-2 \lambda+1) \pi i}\right)$ behaves like $e^{\mp i|z|}|z|^{0}$ for $|z| \rightarrow \infty$.
Hence, if $\arg z$ satisfies (205), we may, in writing down the asymptotic expansion of the right-hand side of (152) with $q=p+1$, neglect the asymptotic expansions of algebraic order which are caused by the functions $G_{p, p+1}^{p+1,1}\left(e^{(p-m-n-2 \lambda+2 \mu) \pi i} \| a_{s}\right)(\sigma=1, \ldots, p)$; we need only consider the exponential expansion of the function $G_{p, p+1}^{p+1,0}\left(z e^{(p-m-n-2 \lambda+1) \pi i}\right)$. provided that the coefficient of this function does not vanish.

On the other hand, if $\arg z$ satisfies (202), the expansion of the function $G_{p, p+1}^{p+1,0}\left(z e^{(p-m-n-2 \lambda+1) \pi i}\right)$, that is exponentially zero for $|z| \rightarrow \infty$, may be neglected; unless the coefficients of all the functions
$G_{p, p+1}^{p+1,1}\left(z e^{(p-m-n-2 \lambda+2 \mu) \pi i} \| a_{\sigma}\right)$ vanish, we need only take account of the algebraic expansions of these functions.

If $\arg z=\left(m+n-p+2 \lambda-\frac{1}{2}\right) \pi$ or $\arg z=\left(m+n-p+2 \lambda-\frac{3}{2}\right) \pi$, we must take account of both the exponential and the algebraic expansions.

Now the coefficients $D_{p, p+1}^{m, n}(\lambda)$ and $D_{p, p+1}^{m, n}(\lambda-1)$ vanish identically if ${ }^{67}$) $p-m-n<\lambda<0$, respect. $p-m-n+1<\lambda<1$. In these cases the coefficient of the function $G_{p, p+1}^{p+1,0}\left(z e^{(p-m-n-2 \lambda+1) \pi i}\right)$ is zero, so that this function does not at all occur on the right-hand side of (152) with $q=p+1$; asymptotic expansions which are exponentially infinite are then certainly impossible.

Hence we see in virtue of (210) and (211) that the asymptotic expansion of the right-hand side of (152) with $q=p+1$ contains no expansions which are exponentially infinite but only algebraic expansions in the two following cases:

1. $m+n \geqq p+2, p-m-n<\lambda<0$, arg z satisfies (204).
2. $m+n \geqq p+2, p-m-n+1<\lambda<1, \arg z=\left(m+n-p+2 \lambda-\frac{3}{2}\right) \pi$.

Of course, the algebraic expansions are also predominant in the above mentioned case that $\arg z$ satisfies (202).

Since the coefficients $\Theta_{p}^{m, n}(l ; \lambda)$ are zero for $\lambda=-1,-2,-3, \ldots$, it follows from (87) that the coefficients $T_{p, q}^{m, n}(l ; \lambda)$ of the second type $(n+1 \leqq l \leqq p)$ vanish identically if $p-m-n+1 \leqq \lambda \leqq 0$. On the other hand we deduce from (86) that the coefficients $T_{p, q}^{m, n}(l ; \lambda)$ of the first type ($1 \leqq l \leqq n$) are in general not zero if $p-m-n+1 \leqq \lambda \leqq 0$, since $\triangle^{m, n}(l)$ is only zero if the parameters b_{m+1}, \ldots, b_{q} and a_{l} satisfy a certain equation. If $n=0$, there occur no coefficients $T_{p, q}^{m, n}(l ; \lambda)$ of the first type. Hence, if $p-m+1 \leqq \lambda \leqq 0$, the coefficients $T_{p, q}^{m, 0}(l ; \lambda)$ vanish for $1 \leqq l \leqq p$. In the case before us the coefficients of the functions $G_{p, p+1}^{p+1,1}\left(z e^{(p-m-n-2 \lambda+2 \mu) \pi i} \| a_{\sigma}\right)$ on the right-hand side of (152) with $q=p+1$ are equal to $e^{(1-2 \mu) \pi i a_{\sigma}} T_{p, p+1}^{m, n}(\sigma ; \lambda)$; we further have $m \leqq p+1$. So we see that the coefficients of all the functions $G_{p, p+1}^{p+1,1}$ on the right-hand side of (152) with $q=p+1$ are zero if we take $n=0, m=p+1$ and $\lambda=0$. The function $G_{p, p+1}^{p+1,0}(z)$ possesses therefore for $-\frac{1}{2} \pi<\arg z<\frac{1}{2} \pi$ no expansion of algebraic order, but instead of that an expansion which is exponentially zero for $|z| \rightarrow \infty$. The expansion in question is $G_{p, p+1}^{p+1,0}(z) \backsim H_{p, p+1}(z)$ (see theorem C).

Now the expansions of algebraic order, which are caused by the $\operatorname{sum} \sum_{\sigma=1}^{p}$ in (152), have according to (18) (with $q=p+1$) and (15) (with $\gamma=\mu-\lambda-1$) the form

$$
\sum_{\sigma=1}^{p} \mathrm{e}^{-(2 \lambda+1) \pi i a_{\sigma}} T_{p, p+1}^{m, n}(\sigma ; \lambda) E_{p, p+1}\left(z \mathrm{e}^{(p-m-n+2) \pi i} \| a_{\sigma}\right)
$$

${ }^{67}$) Comp. the second Remark in §8.

The assertions 1,2 and 3 have therefore been proved.
The asymptotic expansion of the function $G_{p, p+1}^{p+1,0}\left(z e^{(p-m-n-2 \lambda+1) \pi i}\right)$ is in virtue of (26)

$$
G_{p, p+1}^{p+1,0}\left(z e^{(p-m-n-2 \lambda+1) \pi i}\right) \backsim H_{p, p+1}\left(z e^{(p-m-n-2 \lambda+1) \pi i}\right) .
$$

Hence the exponential expansion of the right-hand side of (152) with $q=p+1$ is

$$
D_{p, p+1}^{m, n}(\lambda) H_{p, p+1}\left(z e^{(p-m-n-2 \lambda+1) \pi i}\right)
$$

or

$$
\exp \left\{2 \pi i\left(\sum_{h=1}^{p+1} b_{h}-\sum_{h=1}^{p} a_{h}\right)\right\} D_{p, p+1}^{m, n}(\lambda-1) H_{p, p+1}\left(z e^{(p-m-n-2 \lambda+1) \pi i}\right)
$$

according as we find ourselves in the case (210) or (211). The second expansion may because of (27) with $q=p+1$ be written in the simpler form

$$
D_{p, p+1}^{m, n}(\lambda-1) H_{p, p+1}\left(z e^{(p-m-n-2 \lambda+3) \pi i}\right) .
$$

We can now easily verify the assertions $4,5,6,7,8$ and 9.
§ 19. The anslytic continuation of $G_{p, p}^{m, n}(z)$ (general case).
The function $G_{p, p}^{m, n}(z)$ satisfies the differential equation (34) with $q=p$. As I have proved in § 4 the p functions (43) form, provided that the conditions (41), (42) and (38) are satisfied ${ }^{68}$), a system of fundamental solutions in the vicinity of $z=\infty$.

In this § I will give the expression of $G_{p, p}^{m, n}(z)$ in terms of these fundamental solutions. From this expression we may derive by means of theorem F the analytic continuation of $G_{p, p}^{m, n}(z)$ outside the circle $|z|=1$.

The result runs as follows:
Theorem 22. Assumptions: m, n and p are integers with

$$
p \geqq 1,0 \leqq n \leqq p \text { and } 0 \leqq m \leqq q ;
$$

the numbers a_{1}, \ldots, a_{p} and b_{1}, \ldots, b_{m} satisfy the conditions (1) and (38); λ is an arbitrary integer.

Assertions: 1. The function $G_{p, p}^{m, n}(z)$ can in the sector

$$
\begin{equation*}
(m+n-p+2 \lambda-2) \pi<\arg z<(m+n-p+2 \lambda) \pi \tag{212}
\end{equation*}
$$

by means of

$$
\begin{equation*}
G_{p, p}^{m, n}(z)=\sum_{\sigma=1}^{p} T_{p, p}^{m, n}(\sigma ; \lambda) G_{p, p}^{p, 1}\left(z e^{(p-m-n-2 \lambda+1) \pi i} \| a_{\sigma}\right) . \tag{213}
\end{equation*}
$$

be expressed in terms of fundamental solutions valid near $z=\infty$.
${ }^{68}$) Comp. also the Remark at the end of § 4.
2. The function $G_{p, p}^{m, n}(z)$ possesses in the sector (212) an analytic continuation outside the circle $|z|=1$ which can be expressed in the form

$$
\begin{equation*}
\mathrm{G}_{p, p}^{m, n}(z)=\sum_{\sigma=1}^{p} \mathrm{e}^{-2 \lambda \pi i a_{\sigma}} T_{p, p}^{m, n}(\sigma ; \lambda) E_{p, p}\left(z \mathrm{e}^{(p-m-n+1) \pi i} \| a_{\sigma}\right) \tag{214}
\end{equation*}
$$

Proof. If we put $\mu=0$ and $q=p$ in (152), we find (213). The functions $G_{p, p}^{p, 1}$ on the right of (213) satisfy because of (212) the conditions (41) and (42). Hence they are fundamental solutions.

The analytic continuation of $G_{p, p}^{p, 1}\left(z e^{(p-m-n-2 \lambda+1) \pi i} \| a_{\sigma}\right)$ outside the circle $|z|=1$ is in virtue of (33)

$$
G_{p, p}^{p, 1}\left(z \mathrm{e}^{(p-m-n-2 \lambda+1) \pi i} \| a_{\sigma}\right)=E_{p, p}\left(z \mathrm{e}^{(p-m-n-2 \lambda+1) \pi i} \| a_{\sigma}\right)
$$

and this relation is on account of (15) equivalent to

$$
G_{p, p}^{p .1}\left(z e^{(p-m-n-2 \lambda+1) \pi i} \| a_{\sigma}\right)=e^{-2 \lambda \pi i a_{\sigma}} E_{p, p}\left(z e^{(p-m-n+1) \pi i} \| a_{\sigma}\right)
$$

Formula (214) follows therefore from (213), so that the theorem has been proved.

I now consider the particular case with $m+n \geqq p+1$ of formula (214) and I suppose that λ satisfies the inequality $p-m-n+1 \leqq \lambda \leqq 0$. Then it is clear on account of (86), (87) and (54)

$$
T_{p, p}^{m, n}(\sigma ; \lambda)=\mathbf{e}^{(m+n-p+2 \lambda-1) \pi i a_{\sigma}} \Delta^{m, n}(\sigma) \text { for } 1 \leqq \sigma \leqq n
$$

and

$$
T_{p, p}^{m, n}(\sigma ; \lambda)=0 \text { for } n+1 \leqq \sigma \leqq p
$$

It follows therefore from (214): If $m+n \geqq p+1,|\arg z|<(m+n-p) \pi$ and

$$
\arg z \neq(p-m-n+2) \pi,(p-m-n+4) \pi, \ldots,(m+n-p-2) \pi
$$

then the analytic continuation of $G_{p, p}^{m, n}(z)$ outside the circle $|z|=1$ has the form

$$
G_{p, \rho}^{m, n}(z)=\sum_{\sigma=1}^{n} \mathrm{e}^{(m+n-p-1) \pi i a_{\sigma}} \Delta_{p}^{m, n}(\sigma) E_{p, p}\left(z \mathrm{e}^{(p-m-n+1) \pi i} \| a_{\sigma}\right) .
$$

This formula is equivalent to formula (32) of theorem E^{*}. But the present result is slightly less general than that of theorem E^{*}, since we now have excluded the values

$$
\arg z=(p-m-n+2) \pi,(p-m-n+4) \pi, \ldots,(m+n-p-2) \pi,
$$

which are not omitted in theorem E^{*}.
§ 20. The asymptotic expansion of the generalized hypergeometric function ${ }_{p} F_{q}(z) \quad(q \geqq p)$.
Preliminary Remarks.
Remark 1. It is easily seen in view of (27) with $q+1$ instead of q that the expressions

$$
\begin{equation*}
(-2 \pi i)^{p-q} \exp \left\{\pi i\left(\sum_{h=1}^{p} a_{h}-\sum_{h=1}^{q+1} b_{h}\right)\right\} H_{p, q+1}\left(z e^{(q-p+1) \pi i}\right) \tag{215}
\end{equation*}
$$

and

$$
\begin{equation*}
(2 \pi i)^{p-q} \exp \left\{\pi i\left(\sum_{h=1}^{q+1} b_{h}-\sum_{h=1}^{p} a_{h}\right)\right\} H_{p, q+1}\left(z e^{(p-q-1) \pi i}\right) \tag{216}
\end{equation*}
$$

are equal one to another.
We now put

$$
\left.\begin{array}{c}
a_{j}=1-a_{j} \quad(j=1, \ldots, p) \tag{217}\\
b_{1}=0 \text { and } b_{j}=1-\beta_{j-1} \quad(j=2, \ldots, q+1)
\end{array}\right\}
$$

It follows from (25) and (23) that the expressions (215) and (216) then reduce to
$\exp \left\{(q-p+1) z^{\frac{1}{q-p+1}}\right\} z^{\gamma}\left\{\frac{(2 \pi)^{\frac{p-q}{2}}}{\sqrt{q-p+1}}+\frac{N_{1}}{z^{\frac{1}{q-p+1}}}+\frac{N_{2}}{z^{\frac{2}{q-p+1}}}+\ldots\right\}$,
where

$$
\begin{equation*}
\gamma=\frac{1}{q-p+1}\left\{\frac{1}{2}(q-p)+\sum_{h=1}^{p} \alpha_{h}-\sum_{h=1}^{q} \beta_{h}\right\} \tag{219}
\end{equation*}
$$

the values of the coefficients N can be deduced from those of the corresponding coefficients M in (25).

The expression (218), where γ is defined by (219), will, for brevity, be denoted by $K_{p, q}(z)$.

It is now easily seen, on account of (45) and (46), that the expressions

$$
A_{q+1}^{1, p} H_{p, q+1}\left(z e^{(q-p+1) \pi i}\right)
$$

and

$$
\bar{A}_{q+1}^{1, p} H_{p, q+1}\left(z e^{(p-q-1) \pi i}\right)
$$

also reduce to $K_{p, q}(z)$ when we make the substitution (217).
Remark 2. We consider

$$
\begin{equation*}
\sum_{t=1}^{p} \mathrm{e}^{(p-q-1) \pi i a_{t}} \Delta_{q+1}^{1, p}(t) E_{p, q+1}\left(z \mathrm{e}^{(q-p+1) \pi i} \| a_{t}\right) \tag{220}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{t=1}^{p} e^{(q-p+1) \pi i a_{t}} \Delta_{q+1}^{1, p}(t) E_{p, q+1}\left(z e^{(p-q-1) \pi l} \| a_{t}\right) \tag{221}
\end{equation*}
$$

These sums are equal one to another because of (15) with $q+1$ instead of q and $\gamma=q-p+1$.

After being transformed by means of the substitution (217) the sums (220) and (221) will be denoted by $L_{p, q}(z)$. It follows from (17) and (13) that (220) and (221), after the substitution (217) has been applied, may be written in the form

$$
\sum_{t=1}^{p} \frac{z^{-\alpha_{t}} \prod_{\substack{j=1 \\ j \neq t}}^{p} \Gamma\left(a_{j}-\alpha_{t}\right)}{\prod_{j=1}^{q} \Gamma\left(\beta_{j}-\alpha_{t}\right)} \sum_{h=0}^{\infty} \frac{\left\{(-1)^{q-p} z\right\}^{\}^{h}} \Gamma\left(a_{t}+h\right) \prod_{j=1}^{q}\left\{\left(1+a_{t}-\beta_{j}\right)\left(2+a_{t}-\beta_{j}\right) \ldots\left(h+a_{t}-\beta_{j}\right)\right\}}{h!\prod_{\substack{j=1 \\ j \neq t}}^{p}\left\{\left(1+a_{t}-a_{j}\right)\left(2+a_{t}-\alpha_{j}\right) \ldots\left(h+a_{t}-a_{j}\right)\right\}} .
$$

This expression will therefore be denoted by $L_{p, q}(z)$.

The behaviour of the generalized hypergeometric function ${ }_{p} F_{q}(z)(q \geqq p)$ for large values of $|z|$ has already been investigated in various ways and by several authors. I mention here the researches of STOKES, Barnes, Watson, Fox, Wrinch and Wright ${ }^{69}$).

Now the function ${ }_{p} F_{q}(z)$ is a special case of the function $G_{p, q+1}^{m, n}(z)$ and so it must be possible to deduce asymptotic expansions for ${ }_{p} F_{q}(z)$ from those of $G_{p, q+1}^{m, n}(z)$. Indeed it follows from (7) ${ }^{70}$)

$$
\frac{\prod_{j=1}^{p} \Gamma\left(a_{j}\right)}{\prod_{j=1}^{q} \Gamma\left(\beta_{j}\right)}{ }_{p} F_{q}\binom{a_{1}, \ldots, a_{p} ;}{\beta_{1}, \ldots, \beta_{q} ;-z}=G_{p, q+1}^{1, p}\left(2 \left\lvert\, \begin{array}{c}
1-a_{1}, \ldots, 1-a_{p} \tag{222}\\
0,1-\beta_{1}, \ldots, 1-\beta_{q}
\end{array}\right.\right)
$$

and
$\frac{\prod_{j=1}^{p} \Gamma\left(\alpha_{j}\right)}{\prod_{j=1}^{q} \Gamma\left(\beta_{j}\right)}{ }_{p} F_{q}\binom{\alpha_{1}, \ldots, \alpha_{p} ;}{\beta_{1}, \ldots, \beta_{q} ; z}=G_{p, q+1}^{1, p}\left(z e^{\pi i} \left\lvert\, \begin{array}{c}1-\alpha_{1}, \ldots, 1-\alpha_{p} \\ 0,1-\beta_{1}, \ldots, 1-\beta_{q}\end{array}\right.\right)$.
I will now write down the asymptotic expansions of the function ${ }_{p} F_{q}(z)$. I suppose that the parameters a_{1}, \ldots, a_{p} fulfil the condition

$$
a_{j} \neq 0,-1,-2, \ldots \quad(j=1, \ldots, p) ;
$$

in the formulae (224), (225), (226) and (227) I will assume that they satisfy besides the condition

$$
a_{j}-a_{t} \neq 0, \pm 1, \pm 2, \ldots \quad(j=1, \ldots, p ; t=1, \ldots, p ; j \neq t)
$$

We now distinguish two cases:
First case: $0 \leqq p \leqq q-1$. We apply theorem 18.
If $-\pi<\arg z<\pi$, it follows from (223) and (185) (with $m=1, n=p$, $q+1$ instead of q and $z e^{\pi i}$ instead of z) on account of Remark 1

$$
\frac{\prod_{j=1}^{p} \Gamma\left(a_{j}\right)}{\prod_{j=1}^{q} \Gamma\left(\beta_{j}\right)}{ }_{p} F_{q}\binom{a_{1}, \ldots, \alpha_{p} ;}{\beta_{1}, \ldots, \beta_{q} ; z} \backsim K_{p, q}(z) .
$$

If $0 \leqq p<q-1$ and $z>0$, it follows from (222) and (187) (with $m=1$, $n=p$ and $q+1$ instead of q) on account of Remark 1

$$
\frac{\prod_{j=1}^{p} \Gamma\left(a_{j}\right)}{\prod_{j=1}^{q} \Gamma\left(\beta_{j}\right)}{ }_{p} F_{q}\binom{a_{1}, \ldots, a_{p} ;}{\beta_{1}, \ldots, \beta_{q} ;-z} \sim K_{p, q}\left(z e^{-\pi i}\right)+K_{p, q}\left(z e^{\pi i}\right)
$$

[^1]If $p \geqq 0$ and $z>0$, it follows from (222) (with $q=p+1$) and (188) (with $m=1, n=p$ and $q=p+2$) on account of the Remarks 1 and 2
$\frac{\prod_{j=1}^{p} I\left(\alpha_{j}\right)}{\prod_{j=1}^{p+1} \Gamma\left(\beta_{j}\right)}{ }_{p} F_{p+1}\binom{a_{1}, \ldots, \alpha_{p} ;}{\beta_{1}, \ldots, \beta_{p+1} ;-z} \backsim K_{p, p+1}\left(z e^{-\pi i}\right)+K_{p, p+1}\left(z e^{\pi i}\right)+L_{p, p+1}(z)$.
Second case: $q=p \geqq 1$. We apply the theorems 16 and 19 .
If $-\frac{1}{2} \pi<\arg z<\frac{1}{2} \pi$, it follows from (222) (with $q=p$) and (180) (with $m=1, n=p$ and $q=p+1$) on account of Remark 2

$$
\begin{equation*}
\frac{\prod_{j=1}^{p} \Gamma\left(a_{j}\right)}{\prod_{i=1}^{p} \Gamma\left(\beta_{j}\right)}{ }_{p} F_{p}\binom{a_{1}, \ldots, a_{p} ;}{\beta_{1}, \ldots, \beta_{p} ;-z} \backsim L_{p, p}(z) . \tag{225}
\end{equation*}
$$

If $-\frac{1}{2} \pi<\arg z<\frac{1}{2} \pi$, it follows from (223) and the first assertion of theorem (19) (formula (185) with $m=1, n=p, q=p+1$ and $z e^{\pi i}$ instead of z) on account of Remark 1

$$
\frac{\prod_{j=1}^{p} \Gamma\left(a_{j}\right)}{\prod_{j=1}^{p} \Gamma\left(\beta_{j}\right)}{ }_{p} F_{p}\binom{a_{1}, \ldots, a_{p} ;}{\beta_{1}, \ldots, \beta_{p} ; z} \backsim K_{p, p}(z) .
$$

If $\arg z=\frac{1}{2} \pi$, it follows from (222) and (191) (with $m=1, n=p$ and $q=p+1$) on account of the Remarks 1 and 2

$$
\begin{equation*}
\frac{\prod_{j=1}^{p} \Gamma\left(\alpha_{j}\right)}{\prod_{j=1}^{p} \Gamma\left(\beta_{j}\right)}{ }_{p} F_{p}\binom{a_{1}, \ldots, a_{p} ;}{\beta_{1}, \ldots, \beta_{p} ;-z} \sim K_{p, p}\left(z e^{-\pi i}\right)+L_{p, p}(z) . \tag{226}
\end{equation*}
$$

If $\arg z=-\frac{1}{2} \pi$, it follows from (222) and (192) (with $m=1, n=p$ and $q=p+1$) on account of the Remarks 1 and 2

$$
\begin{equation*}
\frac{\prod_{j=1}^{p} \Gamma\left(\alpha_{j}\right)}{\prod_{j=1}^{p} \Gamma\left(\beta_{j}\right)}{ }_{p} F_{p}\binom{\alpha_{1}, \ldots, \alpha_{p} ;}{\beta_{1}, \ldots, \beta_{p} ;-z} \sim K_{p, p}\left(z e^{\pi i}\right)+L_{p, p}(z) \tag{227}
\end{equation*}
$$

Closing Remark. If it is desirable to express the function ${ }_{p} F_{q}(z)$ in terms of fundamental solutions near $z=\infty$ of the differential equation satisfied by it, we may use the formulae (222) and (223) in connection with the theorems 13 and 14.
§ 21. The asymptotic expansion of $W_{k, m}(z)$.
As another application of the theorems of § 18 I will write down
the asymptotic expansions of Whittaker's function $W_{k, m}(z)$. The wellknown expansion ${ }^{71}$)

$$
\begin{equation*}
W_{k, m}(z) \sim e^{-\frac{1}{2} z} z^{k}{ }_{2} F_{0}\left(\frac{1}{2}-k+m, \frac{1}{2}-k-m ;-\frac{1}{z}\right) \tag{228}
\end{equation*}
$$

holds only when $|\arg z|<\frac{3}{2} \pi$. This formula is because of (143) equivalent to

$$
G_{1,2}^{2,0}\binom{\frac{1}{2}-k}{m,-m} \sim \mathrm{e}^{-z} z^{k-\frac{1}{2}}{ }_{2} F_{0}\left(\frac{1}{2}-k+m, \frac{1}{2}-k-m ;-\frac{1}{z}\right) .
$$

Taking account of (26) the last expression may be interpreted as follows:

If $a_{1}=\frac{1}{2}-k, b_{1}=m$ and $b_{2}=-m$, then

$$
H_{1,2}(z)=e^{-z} z^{k-\frac{1}{2}}{ }_{2} F_{0}\left(\frac{1}{2}-k+m, \frac{1}{2}-k-m ;-\frac{1}{z}\right) .
$$

We now suppose $\left(2 \lambda+\frac{1}{2}\right) \pi<\arg z<\left(2 \lambda+\frac{3}{2}\right) \pi$, "where λ is an arbitrary integer. Then we have for large values of $|z|$ because of (143), the fifth assertion of theorem 21 and lemma 17

$$
\begin{gathered}
W_{k, m}(z) \sim(-1)^{\lambda} e^{-2 \lambda k \pi i} e^{-\frac{1}{2} z} z^{k}\left\{\frac{\sin 2(\lambda+1) m \pi}{\sin 2 m \pi}+\mathrm{e}^{-2 k \pi i} \frac{\sin 2 \lambda m \pi}{\sin 2 m \pi}\right\} \times \\
\times{ }_{2} F_{0}\left(\frac{1}{2}-k+m, \frac{1}{2}-k-m ;-\frac{1}{z}\right)
\end{gathered}
$$

This formula may also be proved by means of (144) and (228); it reduces for $\lambda=0$ and $\lambda=-1$ to (228).

We now suppose $\left(2 \lambda-\frac{1}{2}\right) \pi<\arg z<\left(2 \lambda+\frac{1}{2}\right) \pi$, where λ is an arbitrary positive or negative integer ($\lambda \neq 0$). Then it follows from (143), the first assertion of theorem 21 and lemma 18

$$
\begin{gathered}
W_{k, m}(z) \backsim(-1)^{\lambda-1} e^{2 \lambda k \pi i} 2 \pi i e^{\frac{1}{2} z} z^{-k} \times \\
\times \frac{\sin 2 \lambda m \pi}{\Gamma\left(\frac{1}{2}-k+m\right) \Gamma\left(\frac{1}{2}-k-m\right) \sin 2 m \pi}{ }_{2} F_{0}\left(\frac{1}{2}+k+m, \frac{1}{2}+k-m ; \frac{1}{z}\right) .
\end{gathered}
$$

The asymptotic expansion of $W_{k, m}(z)$ when $\arg z=\left(2 \lambda+\frac{1}{2}\right) \pi$ or $\arg z=\left(2 \lambda-\frac{1}{2}\right) \pi$, where λ is any integer, can be deduced from the seventh, respect. the ninth assertion of theorem 21. These expansions run as follows

$$
\begin{aligned}
& W_{k, m}(z) \sim(-1)^{\lambda} e^{-2 \lambda k \pi i} e^{-1 z} z^{k}\left\{\frac{\sin 2(\lambda+1) m \pi}{\sin 2 m \pi}+e^{-2 k \pi i} \frac{\sin 2 \lambda m \pi}{\sin 2 m \pi}\right\} \times \\
& \times{ }_{2} F_{0}\left(\frac{1}{2}-k+m, \frac{1}{2}-k-m ;-\frac{1}{z}\right)+(-1)^{\lambda-1} e^{2 \lambda k \pi} 2 \pi i e^{\frac{1}{j} z} z^{-k} \times \\
& \times \frac{\sin 2 \lambda m \pi}{\Gamma\left(\frac{1}{2}-k+m\right) \Gamma\left(\frac{1}{2}-k-m\right) \sin 2 m \pi}{ }_{2} F_{0}\left(\frac{1}{2}+k+m, \frac{1}{2}+k-m ; \frac{1}{z}\right)
\end{aligned}
$$

[^2]respect.
\[

$$
\begin{aligned}
& W_{k, m}(z) \sim(-1)^{2-1} \mathrm{e}^{-2(\lambda-1) k \pi i} e^{-\frac{1}{1} z} z^{k}\left\{\frac{\sin 2 \lambda m \pi}{\sin 2 m \pi}+\mathrm{e}^{-2 k \pi i} \frac{\sin 2(\lambda-1) m \pi}{\sin 2 m \pi}\right\} \times \\
& \times{ }_{2} F_{0}\left(\frac{1}{2}-k+m, \frac{1}{2}-k-m ;-\frac{1}{z}\right)+(-1)^{\lambda-1} \mathrm{e}^{2 \lambda k \pi i} 2 \pi i e^{\frac{1}{2} z} z^{-k} \times \\
& \times \frac{\sin 2 \lambda m \pi}{\Gamma\left(\frac{1}{2}-k+m\right) \Gamma\left(\frac{1}{2}-k-m\right) \sin 2 m \pi}{ }_{2} F_{0}\left(\frac{1}{2}+k+m, \frac{1}{2}+k-m ; \frac{1}{z}\right) .
\end{aligned}
$$
\]

[^0]: 65) We need not give attention to the cases with $p=0$ and $m=0$, since $\mathrm{G}_{0,1}^{1,0}(z \mid \lambda)=z^{\lambda} \mathrm{e}^{-z}$ and $G_{p, p+1}^{0, n}(z)=0$.
 66) The asymptotic expansion of $G_{p, p+1}^{p+1,0}(z)$ for $|\arg z|<\frac{1}{2} \pi$ is $G_{p, p+1}^{p+1,0}(z) \sim H_{p, p+1}(z)$ (see theorem C).
[^1]: ${ }^{69}$) StOkeS, [28]; BARNES, [3], 68, 83, 115 and [4]; WATSON [30], 37; FOX, [9]; WRINCH, [37], [38] and [39]; WRIGHT, [35]; comp. also WRIGHT, [36].
 ${ }^{70}$) Comp. footnote ${ }^{4}$).

[^2]: 71) Whittaker and Watson, [32], § 16.3-16.4.
