Mathematics. On sets of integers. (Third communication.) By J. G.
VAN DER CORPUT.

(Communicated at the meeting of April 26, 1947.)

§ 4. Theorems on more than two sets.

The “sumset” A; + ... + An of n sets Ay, ..., An, each consisting of
integers = 0, is defined as the set of all integers of the form a; + ... + as,
where, for each value of h, the integer as is a term of An.

By A(m) I denote again the number of positive elements < m of A.

In order to deduce a general result, I consider I systems s, ... ,si({ = 1),
where si, for each value of h, is formed by ns sets Awx (k =1, ..., nn),
each consisting of integers =0, each containing zero and satisfying the
inequality

Aniy(m)+...4+ Apnpy(m)=yam (m=1,...,9),. . (46)

where y; + ... + y1 £ 1. Further I consider a sum of the form 2, T(m),
extended over a finite number of sets T with the property, that any of
these sets T is the sumset of a number of systems Asr. I suppose that in
any T each system Axx is counted at most once, so that for instance T may
have the form A,y or Ay + A;gor Ao + Ayy + Ajsg, but not Ayq + Ayq;.
In connection with the fact that the given inequalities (46) are symmetrical
in the sets A;; belonging to sy, I will assume that 2, T(m) is symmetrical

in these sets, also symmetrical in the sets belonging to sy, ..., finally
symmetrical in the sets, belonging to si. Then it is possible to deduce for
m=—1,...,g a convenient lower bound for the sum 2, T(m), namely

Theorem 8. Under these conditions we have for m =1, ..., g

2 T(m=m3 (T),

Ayt
n; '

|
z(T)z'TlV_'+...+

where Jx denotes, for each value of h, the number of terms Ank, occurring
inT.
As corollaries of the special case I = 1 we obtain the theorems 9 and 10,

found by E. J. Dyson:
Theorem 9. If each system Aj, ..., An contains zero and

Am+t...+tA(mM=Zym (m=1,....9),
where y < 1, then

(A +...+A)(m=ym m=1,...,9)
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In fact, the left hand side is symmetrical in Ay, ..., As and is the sum

of n terms T (m), where 7(T) :%

Theorem 10. If the conditions of the preceding proposition are satisfied,
we have for every natural number r<n and form=1,...,g

22<A,1+...+At,)<m>z(""‘) ym,

r—1

where 3, is extended over the <n) systems of natural numbers ty, ..., tr

r
With t1<t2< # o <tr én.
In fact, the left hand side is symmetrical in A, ..., Ax and is the sum

2, of (n)terms T (m), where ©(T) = Enz , so that

| mme()a-()

Another example of theorem 8: If each of the systems A, B, C and D
contains zero,

A(m)+B(m)=ym and C(m)+ D (m)=dm m=Yisssegh
where y + 6 <1, then we obtain form =1, ..., g

(A+C)(m)+(A+ D)(m)+(B+C)(m)+(B+ D)(m)=2(y + é)m.

In fact, the left hand side is symmetrical in A and B, also in C and D
and is the sum of four terms T (m), where 7(T) = (y + 9).

We have treated the last problem already in § 2.

I propose not only to prove theorem 8, but simultaneously the following
proposition, involving positive weights f(m). These weights satisfy the
inequalities

fm4+1)=f(m) (m=1,...,g—1) and f2(m+ 1)=f(m)f(m +2)
m=1,...,g—2),

whereas A(m) denotes the sum 3 f(a), extended over all positive
a=m

(29)

elements a < m of A.

Theorem 11. If the positive numbers f(m) (m =1, ..., g) satisfy the
inequalities (29), if the sets A, ..., An consist of integers = 0, if each of
these sets contains zero and if

A+ ..+ A=y Z () (m=L....q),
where y £ 1, then [or these values of m

(A,—I—...—{—A,,)(m)i—yhé'mlf(h) =1, nup Bl
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To prove these theorems I make use of two lemmas. In these lemmas
A(m) denotes the sum of the weigths of the positive elements < m of A,
where for m > g the weight f(m) is defined such that

fim+1)=f(m) and f2(m+1)=f(m)f(m+2) (mn=1,...,9)

Let us consider n(n =2) systems Aj, ..., Aa each of which consists of
integers = 0 and < g and contains the number zero, whereas A. contains
moreover at least one positive integer. Be e the smallest integer = 0, such
that a natural number ¢ <n—1 can be found with the property that e is
an element of A; and that A, contains at least one positive element b,
such that e + b is not contained in A,. Such an element e exists, since the
greatest element a of A; and any positive element b of A have the property
that a + b does not belong to A;. After having fixed e and g, I cancel in
A, a positive element b, such that e 4+ b does not belong to Ay, and I add
to Ay this integer e + b, if it is < g. If Ay and Ax are transformed in this
manner into Ag and A, and if further Ay = As for h 54 q and =~ n, | say
that the system A,, ..., A, is transformed by an elementary transformation
into A}, ..., Ap. Thus Aj is the set of elements =~ b of An; ife+b>g,
then Ay = A,, and if e + b<g, then Ay is the set formed by e + b and
the elements of Ag.

Lemma 8. If each of the systems Ay, ..., An (n22) contains zero, if
Aq contains moreover at least one positive integer < g, and if

Al(m)—l—...—l—A,,(m)iyhzl':f(h) m=1,....9). . (47)

where y <1, then each elementary transformation transforms Aj, ..., Aa
into a system Ay, ..., Ay, with

Aim)+... + A=y 2 fH)  (m=1....g)

=3

We obtain even for any integer r =0

2 fEADtt I f@+0=y Zfhtn (m=1....9) (48)

aQ=m anp=m

if X isextended, for each value of h, over the positive elements ap < m
a},gm

of Ap.

Let us suppose that this assertion is not true. Be k the smallest positive
integer < g, for which the lemma is not valid, more precisely: the positive
integer k < g possesses the following properties:

1. It is possible to find a system Aj, ..., An, such that each set Ax
contains zero, that A, contains at least one positive element < g, that the
inequalities (47) are true for m = 1, ..., k and that a suitably chosen
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elementary transformation transforms the system Aj, ..., Ax into a system
Al,..., A, for which at least one of the inequalities

3 fla a0+ I flant0=y 2kt (m=1...K (49)

a1<m an__m

||Ma

where r denotes a convenient integer = 0, is not true.

2. Be ! an arbitrary positive integer <<k. If each of the systems
C.. ..., Ca contains zero, if moreover C» contains at least one positive
integer < g and if finally

C,(m)—i—...—i—C,,(m)iyhg‘lf(h) m=1,....1,

then each elementary transformation transforms Cy, ..., C» into Cy,..., Ch,
such that

Zf(cx-l-t)-l- + Zf(c,. +0=y Jfh+e) (m=1,...,1) (50)
clSm h=m h=1
for each integer £ = 0.

The special case | = k— 1, t = r, Cy = As gives, that the inequalities
(49) are true for m =1, ..., k— 1. Consequently (49) is not valid for
m = k, that is

2 fl@+0+...+ 2 flant r)<yh§'lf(h—|—r). .. 51

a1<m a,,Mm

From (47) and lemma 5 we conclude for m =11, ..., k

aZ‘mf(ax—l—r)—I— o+ 2 flan+0=7 Z'f(h+r) . (52)
: E==1 n_
Just as in the proof of lemma 6 (§ 3) we show, that the number b, cancelled
in Aa, is <k and that the number e + b, possibly added to Aq, is > k.
From the definition of e it follows that each element a < e of each set
Ar(h=1,...,n—1) has the property, that a + b belongs to As; in
particular b belongs to each of the sets Ay, ..., An_1. The system Ax (h <n)
contains 1 + As(k—>b) elements a<k—b<e and each of these
elements furnishes an element a + b of As, which is = b and < k, so that
we find for h=1,...,n—1

2 flant+r)— 2 flan+o)=flb+r)+ 2 flan+r+b). (53)
ap=k ap=>b-1 ap=k-b
The inequality
b-1
Z f(a|+r)+ .+ 2,’ f(a,, r)iyhé'lf(h-l—r). . (59

ap,=b

is obvious for b =1 and follows for 6>1 from (52). For h =1, ...,
n—1 the sets Ax and A} contain the same integers < k; the two
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sets An and A, contain the same integers < b—1, so that we obtain for
h=1,..,n—1 from (53)

2 flant)=flo+0+ 2 flan+ —I— 2’ f(ah+ +b) (55)

ah<k ah<b—-l
and further from (54)
b—1
2 fla+ad+...+ 2 flan+ r)iyhé'lf(h-l-f)- . (56)
a)=b-1 an_.b 1 -

The proof is established if we show

aZ’ flatr+b)+...+ 2 f(an_1+r+b)>72’f(h+f+b) (57)

an_l_

for then we may replace in this inequality aj, ..., an—1 by aj, ..., @n—1,

hence by (55) and (56)
2 fla+n+.. + 2 f(an+r)

I|/\
Y

IV

,Z f(al+)+ A4 2 f(an—1+f)+ Z f(an r)

a =k an—l—k a,,_b -1

IV

(n—VFB+0) +7 3 fh+ oty I flhtrtd)

\i

=, 3 f(h+9
h=1

{in virtue of n—12>12>y), contrary to (51).

The proof of (57) runs precisely as that of (6) in lemma 1 (§1). Thus
we find the assertion of our lemma.

Let us again consider n (n>2) systems Aj,..., An, each of which
consists of integers =0 and < g and contains the number zero, whereas
A: contains moreover at least one positive integer. Be e again the smallest
integer 2 0 such that a natural number ¢ <n—1 can be found with the
property that e is an element of A; and that A, contains at least one
positive element b, such that e + b is not contained in A4. I cancel in A,
all these elements b and I add e + b to Ay, as far as they are < g. In this
manner A, and Ay are transformed into the sets A’ and A; Iput A =As
for h 7~ q and £ n. | say that the system A, .. An is transformed into
the system A}, ..., A} by an e-transformation. Since this transformation
can be decomposed into a finite number of elementary transformations, the
preceding lemma gives:

Lemma 9. Suppose that each of the n (n=2) systems Aj ... An
consists of integers = 0 and < g, and contains the number zero, whereas
moreover An contains at least one positive integer. If the inequalities (47)
are true, where y < 1, we have also

AI(m)+...+A7.(m)§yé‘l[(h) m=1,...,g).. . (58)
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The proof of theorem 11 can now be given in a few lines. The assertion
of this theorem is obvious if n = 1, so that I may suppose n > 1 and I may
assume that the theorem is true for every value of n less than the actual
value. Consequently the theorem holds, if Ax consists only of the number
zero. I may therefore suppose, that A. contains at least one positive element
< g and that the theorem is true with the actual value of n, whenever the
value of Aa(g) is less than its actual value. I transform the system
Ay ... As by an e-transformation into a system A7, ..., A Then
A’ (g) <An(g) and the preceding lemma gives the inequalities (58), so
that it follows from the inductive hypothesis

(AY—G—...—{—AZ)(m)éyh%lf(h) m=1,....9)

‘We have A} = A for each value h <n—1, with the exception of one
value h — q and by lemma 3 (§ 1) A, + Aa contains each element < g of
A; + A3, hence

(A +...+ A (m)= (AT +...+ Az) (m).

This proves theorem 11.

Now the proof of theorem 8. I put ny + ... + ni = p. If p =1, then
I =1 and n; =1, so that each set T, occurring in the sum 2, denotes
the set A;; with 1(7T) =y, hence form =1, ..., g

T(m)=An (m=ym=mz(T)

Consequently I may suppose p > 1 and assume that the theorem is true
for any value of p less than the actual value. If one of the p sets Anx
consists only of the number zero, each set T, occurring in the sum 2y, is
the sumset of p— 1 systems A, so that the assertion of theorem 8 follows
from the inductive hypothesis. Consequently I may suppose, that each set
Ank contains at least one positive integer and I may assume that the
theorem holds with the actual value of p, whenever the value of A; ,,(g)
is less than its actual value. I distinguish two cases:

1. If ny =...= n; =1, then by (46)

Ah,1 (m) = Yhm
and T is the sumset Z3As: of a number of sets Apa. In virtue of
Y1+ ...+ 1 =<1 and n, = 1 it follows from the theorem of MANN
T(m)=2mZgyn = m(Ayyy + ... +diyt) =mo(T),
consequently

2y T(m)zmZ=(T).

2. In the remaining case at least one of the integers ny, ..., n: is greater
than 1. Without loss of generality | may assume n; > 1. I transform the

system Ay, .s Ay by an e-transformation into a system A:,l""'A;,n,’

Then A?,n,(g) <Al'"1(g). By the preceding lemma, applied with f(m) =1,



435

the inequalities (46) remain true, if As,n (1 <h < ni) is replaced by Af s
Consequently we deduce from the inductive hypothesis for m=1, ..., g

2T m=mZ«(T)=mZ «(T):

here T* denotes the set into which T is transformed, if Arx (1 <h < ni)
is replaced by Aj , . It is therefore sufficient to deduce the inequalities

S Tm=23,T" (m) (m=1,...,9)

It follows from the definition of the e-transformation, that A;’ .— Apn
for each h < n; — 1, only one value A = q excepted. I write

Z] TZZQ T+ 25 T"I‘ZG T;

The summation X, is extended over the sets T, involving neither A,
nor A, # the summation 2’5 over the sets T, involving one and only one of
the two sets A; 4 and Ay ,,; finally 2 is extended over the sets T invol-
ving both A, 4 and A, y,.

For the sets T, occurring in 5, we have T = T*, hence 3,T(m) =
2,T*(m). Each set T, occurring in 34, is a sumset containing both
sets A1,q and Ay ,; by convention, made at the beginning of this section,
each of these two sets is counted only once, hence

T=A,g+ Ain,+Uand T*=A5,+ Al + U
Bylemma3 (§1) Ang + A, n, contains each element < g of Ajg +A;:"1'
so that
T (m)= T"* (m), hence 35T (m)=J3s T" (m).
The sum 35T (m), which is symmetrical in Az,q and Al n, can be written

as a sum of terms of the form (U + Auq)(m) + (U + Ayn) (m), and
lemma 4 (§ 2) givesform=1,..., g

(U + Aug) (m) + (U + Ag,n) (m) = (U + Ai,g) (m) + (U + Aln) (m),

hence
25T(m) 2 25T*(m).
This completes the proof.



