Mathematics. — On sets of integers. (Third communication.) By J. G. VAN DER CORPUT.

(Communicated at the meeting of April 26, 1947.)

§ 4. Theorems on more than two sets.

The "sumset" $A_1 + ... + A_n$ of *n* sets $A_1, ..., A_n$, each consisting of integers ≥ 0 , is defined as the set of all integers of the form $a_1 + ... + a_n$, where, for each value of *h*, the integer a_h is a term of A_h .

By A(m) I denote again the number of positive elements $\leq m$ of A.

In order to deduce a general result, I consider l systems $s_1, \ldots, s_l (l \ge 1)$, where s_h , for each value of h, is formed by n_h sets A_{hk} $(k = 1, \ldots, n_h)$, each consisting of integers ≥ 0 , each containing zero and satisfying the inequality

$$A_{h,1}(m) + \ldots + A_{h,n_h}(m) \ge \gamma_h m \qquad (m = 1, \ldots, g), \ldots$$
 (46)

where $\gamma_1 + \ldots + \gamma_l \leq 1$. Further I consider a sum of the form $\Sigma_1 T(m)$, extended over a finite number of sets T with the property, that any of these sets T is the sumset of a number of systems A_{hk} . I suppose that in any T each system A_{hk} is counted at most once, so that for instance T may have the form A_{11} or $A_{12} + A_{13}$ or $A_{12} + A_{41} + A_{52}$, but not $A_{11} + A_{11}$. In connection with the fact that the given inequalities (46) are symmetrical in the sets A_{1h} belonging to s_1 , I will assume that $\Sigma_1 T(m)$ is symmetrical in these sets, also symmetrical in the sets belonging to s_2, \ldots , finally symmetrical in the sets, belonging to s_i . Then it is possible to deduce for $m = 1, \ldots, g$ a convenient lower bound for the sum $\Sigma_1 T(m)$, namely

Theorem 8. Under these conditions we have for m = 1, ..., g

$$\Sigma_1 T(m) \ge m \Sigma_1 \tau(T),$$

if

$$\tau(T) = \frac{\lambda_1 \gamma_1}{n_1} + \ldots + \frac{\lambda_l \gamma_l}{n_l},$$

where λ_h denotes, for each value of h, the number of terms A_{hk} , occurring in T.

As corollaries of the special case l = 1 we obtain the theorems 9 and 10, found by F. J. DYSON:

Theorem 9. If each system A_1, \ldots, A_n contains zero and

 $A_1(m) + \ldots + A_n(m) \ge \gamma m \qquad (m = 1, \ldots, g),$

where $\gamma \leq 1$, then

$$(A_1+\ldots+A_n)(m) \ge \gamma m \qquad (m=1,\ldots,g).$$

In fact, the left hand side is symmetrical in $A_1, ..., A_n$ and is the sum of *n* terms T(m), where $\tau(T) = \frac{\gamma}{n}$

Theorem 10. If the conditions of the preceding proposition are satisfied, we have for every natural number $r \leq n$ and for m = 1, ..., g

$$\Sigma_2(A_{t_1}+\ldots+A_{t_r})(m) \ge {\binom{n-1}{r-1}} \gamma m,$$

where Σ_2 is extended over the $\binom{n}{r}$ systems of natural numbers $t_1, ..., t_r$ with $t_1 < t_2 < ... < t_r \leq n$.

In fact, the left hand side is symmetrical in $A_1, ..., A_n$ and is the sum Σ_1 of $\binom{n}{r}$ terms T(m), where $\tau(T) = \frac{r\gamma}{n}$, so that $\Sigma_1 \tau(T) = \binom{n}{r} \cdot \frac{r\gamma}{n} = \binom{n-1}{r-1} \gamma$.

Another example of theorem 8: If each of the systems A, B, C and D contains zero,

 $A(m) + B(m) \ge \gamma m$ and $C(m) + D(m) \ge \delta m$ (m = 1, ..., g), where $\gamma + \delta \le 1$, then we obtain for m = 1, ..., g

$$(A+C)(m)+(A+D)(m)+(B+C)(m)+(B+D)(m)\geq 2(\gamma+\delta)m.$$

In fact, the left hand side is symmetrical in A and B, also in C and D and is the sum of four terms T(m), where $\tau(T) = \frac{1}{2}(\gamma + \delta)$.

We have treated the last problem already in § 2.

I propose not only to prove theorem 8, but simultaneously the following proposition, involving positive weights f(m). These weights satisfy the inequalities

$$f(m+1) \ge f(m)$$
 $(m = 1, ..., g-1)$ and $f^2(m+1) \ge f(m) f(m+2)$
 $(m = 1, ..., g-2)$, (29)

whereas A(m) denotes the sum $\sum_{a \le m} f(a)$, extended over all positive elements $a \le m$ of A.

Theorem 11. If the positive numbers f(m) (m = 1, ..., g) satisfy the inequalities (29), if the sets $A_1, ..., A_n$ consist of integers ≥ 0 , if each of these sets contains zero and if

$$A_1(m) + \ldots + A_n(m) \ge \gamma \sum_{h=1}^m f(h) \qquad (m = 1, \ldots, g),$$

where $\gamma \leq 1$, then for these values of m

$$(A_1+\ldots+A_n)(m) \ge \gamma \sum_{h=1}^m f(h) \qquad (m=1,\ldots,g).$$

To prove these theorems I make use of two lemmas. In these lemmas A(m) denotes the sum of the weights of the positive elements $\leq m$ of A, where for m > g the weight f(m) is defined such that

$$f(m+1) \ge f(m)$$
 and $f^2(m+1) \ge f(m) f(m+2)$ $(m=1,\ldots,g)$.

Let us consider $n(n \ge 2)$ systems $A_1, ..., A_n$ each of which consists of integers ≥ 0 and $\le g$ and contains the number zero, whereas A_n contains moreover at least one positive integer. Be *e* the smallest integer ≥ 0 , such that a natural number $q \le n-1$ can be found with the property that *e* is an element of A_q and that A_n contains at least one positive element *b*, such that e + b is not contained in A_q . Such an element *e* exists, since the greatest element *a* of A_1 and any positive element *b* of *A* have the property that a + b does not belong to A_1 . After having fixed *e* and *q*, I cancel in A_n a positive element *b*, such that e + b does not belong to A_q , and I add to A_q this integer e + b, if it is $\le g$. If A_q and A_n are transformed in this manner into A'_q and A'_n and if further $A'_h = A_h$ for $h \neq q$ and $\neq n$, I say that the system $A_1, ..., A_n$ is transformed by an elementary transformation into $A'_1, ..., A'_n$. Thus A'_n is the set of elements $\neq b$ of A_n ; if e + b > g, then $A'_q = A_q$, and if $e + b \le g$, then A'_q is the set formed by e + b and the elements of A_q .

Lemma 8. If each of the systems $A_1, ..., A_n$ $(n \ge 2)$ contains zero, if A_n contains moreover at least one positive integer $\le g$, and if

$$A_1(m) + \ldots + A_n(m) \ge \gamma \sum_{h=1}^m f(h) \qquad (m = 1, \ldots, g), \ldots$$
 (47)

where $\gamma \leq 1$, then each elementary transformation transforms $A_1, ..., A_n$ into a system $A'_1, ..., A'_n$, with

$$A'_{1}(m) + \ldots + A'_{n}(m) \ge \gamma \sum_{h=1}^{m} f(h) \qquad (m = 1, \ldots, g).$$

We obtain even for any integer $r \ge 0$

$$\sum_{a'_{1} \leq m} f(a'_{1}+r) + \dots + \sum_{a'_{n} \leq m} f(a'_{n}+r) \geq \gamma \sum_{h=1}^{m} f(h+r) \quad (m = 1, \dots, g), (48)$$

if $\sum_{\substack{a'_h \leq m \\ of A'_h}}$ is extended, for each value of h, over the positive elements $a'_h \leq m$

Let us suppose that this assertion is not true. Be k the smallest positive integer $\leq g$, for which the lemma is not valid, more precisely: the positive integer $k \leq g$ possesses the following properties:

1. It is possible to find a system $A_1, ..., A_n$, such that each set A_h contains zero, that A_n contains at least one positive element $\leq g$, that the inequalities (47) are true for m = 1, ..., k and that a suitably chosen

$$\sum_{a'_{1} \leq m} f(a'_{1} + r) + \ldots + \sum_{a'_{n} \leq m} f(a'_{n} + r) \geq \gamma \sum_{h=1}^{m} f(h + r) \quad (m = 1, \ldots, k), \quad (49)$$

where *r* denotes a convenient integer ≥ 0 , is not true.

2. Be *l* an arbitrary positive integer $\langle k$. If each of the systems C_1, \ldots, C_n contains zero, if moreover C_n contains at least one positive integer $\leq g$ and if finally

$$C_1(m) + \ldots + C_n(m) \ge \gamma \sum_{h=1}^m f(h)$$
 $(m = 1, \ldots, l),$

then each elementary transformation transforms $C_1, ..., C_n$ into $C'_1, ..., C'_n$, such that

$$\sum_{c_{1} \leq m} f(c_{1}'+t) + \ldots + \sum_{c_{n} \leq m} f(c_{n}'+t) \geq \gamma \sum_{h=1}^{m} f(h+t) \quad (m = 1, \ldots, l)$$
(50)

for each integer $t \ge 0$.

The special case l = k - 1, t = r, $C_h = A_h$ gives, that the inequalities (49) are true for m = 1, ..., k - 1. Consequently (49) is not valid for m = k, that is

$$\sum_{a_1' \leq m} f(a_1'+r) + \ldots + \sum_{a_n' \leq m} f(a_n'+r) < \gamma \sum_{h=1}^m f(h+r). \quad . \quad . \quad (51)$$

From (47) and lemma 5 we conclude for m = 1, ..., k

$$\sum_{a_1 \leq m} f(a_1 + r) + \ldots + \sum_{a_n \leq m} f(a_n + r) \geq \gamma \sum_{h=1}^m f(h + r) \quad . \quad . \quad (52)$$

Just as in the proof of lemma 6 (§ 3) we show, that the number b, cancelled in A_n , is $\leq k$ and that the number e + b, possibly added to A_q , is > k.

From the definition of e it follows that each element a < e of each set A_h (h = 1, ..., n - 1) has the property, that a + b belongs to A_h ; in particular b belongs to each of the sets $A_1, ..., A_{n-1}$. The system A_h (h < n) contains $1 + A_h$ (k - b) elements $a \le k - b < e$ and each of these elements furnishes an element a + b of A_h , which is $\ge b$ and $\le k$, so that we find for h = 1, ..., n - 1

$$\sum_{a_h\leq k}f(a_h+r)-\sum_{a_h\leq b-1}f(a_h+r)\geq f(b+r)+\sum_{a_h\leq k-b}f(a_h+r+b).$$
 (53)

The inequality

$$\sum_{a_1 \leq b-1} f(a_1 + r) + \ldots + \sum_{a_n \leq b-1} f(a_n + r) \geq \gamma \sum_{h=1}^{b-1} f(h + r). \quad . \quad (54)$$

is obvious for b = 1 and follows for b > 1 from (52). For h = 1, ..., n-1 the sets A_h and A'_h contain the same integers $\leq k$; the two

433

sets A_n and A'_n contain the same integers $\leq b-1$, so that we obtain for h = 1, ..., n-1 from (53)

$$\sum_{a'_h \leq k} f(a'_h + r) \geq f(b + r) + \sum_{a'_h \leq b-1} f(a'_h + r) + \sum_{a_h \leq k-b} f(a_h + r + b)$$
(55)

and further from (54)

$$\sum_{a'_{1} \leq b-1} f(a'_{1}+r) + \ldots + \sum_{a'_{n} \leq b-1} f(a'_{n}+r) \geq \gamma \sum_{h=1}^{b-1} f(h+r). \quad . \quad (56)$$

The proof is established if we show

$$\sum_{a_{1} \leq k-b} f(a_{1}+r+b) + \ldots + \sum_{a_{n-1} \leq k-b} f(a_{n-1}+r+b) \geq \gamma \sum_{h=1}^{k-b} f(h+r+b), \quad (57)$$

for then we may replace in this inequality $a_1, ..., a_{n-1}$ by $a'_1, ..., a'_{n-1}$, hence by (55) and (56)

$$\sum_{a_1' \leq k} f(a_1'+r) + \dots + \sum_{a_n' \leq k} f(a_n'+r)$$

$$\geq \sum_{a_1' \leq k} f(a_1'+r) + \dots + \sum_{a_{n-1}' \leq k} f(a_{n-1}'+r) + \sum_{a_n' \leq b-1} f(a_n'+r)$$

$$\geq (n-1) f(b+r) + \gamma \sum_{h=1}^{b-1} f(h+r) + \gamma \sum_{h=1}^{k-b} f(h+r+b)$$

$$\geq \gamma \sum_{h=1}^{k} f(h+r)$$

(in virtue of $n-1 \ge 1 \ge \gamma$), contrary to (51).

The proof of (57) runs precisely as that of (6) in lemma 1 (§ 1). Thus we find the assertion of our lemma.

Let us again consider n $(n \ge 2)$ systems A_1, \ldots, A_n , each of which consists of integers ≥ 0 and $\le g$ and contains the number zero, whereas A_n contains moreover at least one positive integer. Be e again the smallest integer ≥ 0 such that a natural number $q \le n-1$ can be found with the property that e is an element of A_q and that A_n contains at least one positive element b, such that e + b is not contained in A_q . I cancel in A_n all these elements b and I add e + b to A_q , as far as they are $\le g$. In this manner A_n and A_q are transformed into the sets A_n^* and A_q^* ; I put $A_h^* = A_h$ for $h \ne q$ and $\ne n$. I say that the system A_1, \ldots, A_n is transformed into the system A_1^*, \ldots, A_n^* by an e-transformation. Since this transformation can be decomposed into a finite number of elementary transformations, the preceding lemma gives:

Lemma 9. Suppose that each of the n $(n \ge 2)$ systems $A_1, ..., A_n$ consists of integers ≥ 0 and $\le g$, and contains the number zero, whereas moreover A_n contains at least one positive integer. If the inequalities (47) are true, where $\gamma \le 1$, we have also

$$A_1^*(m) + \ldots + A_n^*(m) \ge \gamma \sum_{h=1}^m f(h) \qquad (m = 1, \ldots, g).$$
 (58)

The proof of theorem 11 can now be given in a few lines. The assertion of this theorem is obvious if n = 1, so that I may suppose n > 1 and I may assume that the theorem is true for every value of n less than the actual value. Consequently the theorem holds, if A_n consists only of the number zero. I may therefore suppose, that A_n contains at least one positive element $\leq g$ and that the theorem is true with the actual value of n, whenever the value of $A_n(g)$ is less than its actual value. I transform the system A_1, \ldots, A_n by an e-transformation into a system A_1^*, \ldots, A_n^* . Then $A_n^*(g) < A_n(g)$ and the preceding lemma gives the inequalities (58), so that it follows from the inductive hypothesis

$$(A_1^*+\ldots+A_n^*)$$
 $(m) \ge \gamma \sum_{h=1}^m f(h)$ $(m=1,\ldots,g).$

We have $A_h^* = A_h$ for each value $h \le n - 1$, with the exception of one value h = q and by lemma 3 (§ 1) $A_q + A_n$ contains each element $\le g$ of $A_q^* + A_n^*$, hence

$$(A_1 + \ldots + A_n) (m) \ge (A_1^* + \ldots + A_n^*) (m).$$

This proves theorem 11.

Now the proof of theorem 8. I put $n_1 + ... + n_l = p$. If p = 1, then l = 1 and $n_1 = 1$, so that each set T, occurring in the sum Σ_1 , denotes the set A_{11} with $\tau(T) = \gamma_1$, hence for m = 1, ..., g

$$T(m) = A_{11}(m) \ge \gamma_1 m = m \tau (T).$$

Consequently I may suppose p > 1 and assume that the theorem is true for any value of p less than the actual value. If one of the p sets A_{hk} consists only of the number zero, each set T, occurring in the sum Σ_1 , is the sumset of p - 1 systems A_{hk} , so that the assertion of theorem 8 follows from the inductive hypothesis. Consequently I may suppose, that each set A_{hk} contains at least one positive integer and I may assume that the theorem holds with the actual value of p, whenever the value of $A_{l,n_l}(g)$ is less than its actual value. I distinguish two cases:

1. If $n_1 = ... = n_l = 1$, then by (46)

$$A_{h,1}(m) \geq \gamma_h m$$

and T is the sumset $\Sigma_3 A_{h,1}$ of a number of sets $A_{h,1}$. In virtue of $\gamma_1 + \ldots + \gamma_l \leq 1$ and $n_h = 1$ it follows from the theorem of MANN

$$T(m) \geq m \Sigma_3 \gamma_h = m(\lambda_1 \gamma_1 + \ldots + \lambda_l \gamma_l) = m \tau(T),$$

consequently

$$\Sigma_1 T(m) \geq m \Sigma_1 \tau(T).$$

2. In the remaining case at least one of the integers $n_1, ..., n_l$ is greater than 1. Without loss of generality I may assume $n_l > 1$. I transform the system $A_{l,1}, ..., A_{l,n_l}$ by an e-transformation into a system $A_{l,1}^*, ..., A_{l,n_l}^*$. Then $A_{l,n_l}^*(g) < A_{l,n_l}(g)$. By the preceding lemma, applied with f(m) = 1,

the inequalities (46) remain true, if $A_{l,h}$ $(1 \le h \le n_l)$ is replaced by $A_{l,h}^*$. Consequently we deduce from the inductive hypothesis for m = 1, ..., g

$$\Sigma_1 T^*(m) \ge m \Sigma_1 \tau(T^*) = m \Sigma_1 \tau(T);$$

here T^* denotes the set into which T is transformed, if $A_{l,h}$ $(1 \le h \le n_l)$ is replaced by $A_{l,h}^*$. It is therefore sufficient to deduce the inequalities

$$\Sigma_1 T(m) \cong \Sigma_1 T^*(m) \qquad (m = 1, \ldots, g).$$

It follows from the definition of the e-transformation, that $A_{l,h}^* = A_{l,h}$ for each $h \le n_l - 1$, only one value h = q excepted. I write

$$\Sigma_1 T = \Sigma_4 T + \Sigma_5 T + \Sigma_6 T;$$

The summation Σ_4 is extended over the sets T, involving neither $A_{l,q}$ nor A_{l,n_l} ; the summation Σ_5 over the sets T, involving one and only one of the two sets $A_{l,q}$ and A_{l,n_l} ; finally Σ_6 is extended over the sets T involving both $A_{l,q}$ and A_{l,n_l} .

For the sets T, occurring in Σ_4 , we have $T = T^*$, hence $\Sigma_4 T(m) = \Sigma_4 T^*(m)$. Each set T, occurring in Σ_6 , is a sumset containing both sets $A_{l,q}$ and A_{l,n_l} ; by convention, made at the beginning of this section, each of these two sets is counted only once, hence

$$T = A_{l,q} + A_{l,n_l} + U$$
 and $T^* = A_{l,q}^* + A_{l,n_l}^* + U$.

By lemma 3 (§ 1) $A_{l,q} + A_{l,n_l}$ contains each element $\leq g$ of $A_{l,q}^* + A_{l,n_l}^*$, so that

$$T(m) \ge T^*(m)$$
, hence $\Sigma_6 T(m) \ge \Sigma_6 T^*(m)$.

The sum $\Sigma_5 T(m)$, which is symmetrical in $A_{l,q}$ and A_{l,n_l} can be written as a sum of terms of the form $(U + A_{l,q})(m) + (U + A_{l,n_l})(m)$, and lemma 4 (§ 2) gives for m = 1, ..., g

$$(U + A_{l,q})(m) + (U + A_{l,n_l})(m) \ge (U + A_{l,q}^*)(m) + (U + A_{l,n_l}^*)(m),$$

hence

$$\Sigma_5 T(m) \geq \Sigma_5 T^*(m).$$

This completes the proof.