Mathematics. - On sets of integers. (Third communication.) By J. G. van der Corput.
(Communicated at the meeting of April 26, 1947.)
§ 4. Theorems on more than two sets.
The "sumset" $A_{1}+\ldots+A_{n}$ of n sets A_{1}, \ldots, A_{n}, each consisting of integers $\geqq 0$, is defined as the set of all integers of the form $a_{1}+\ldots+a_{n}$, where, for each value of h, the integer a_{h} is a term of A_{h}.

By $A(m)$ I denote again the number of positive elements $\leqq m$ of A.
In order to deduce a general result, I consider l systems $s_{1}, \ldots, s_{l}(l \geqq 1)$, where s_{h}, for each value of h, is formed by n_{h} sets $A_{h k}\left(k=1, \ldots, n_{h}\right)$, each consisting of integers $\geqq 0$, each containing zero and satisfying the inequality

$$
\begin{equation*}
A_{h, 1}(m)+\ldots+A_{h, n_{h}}(m) \geqq \gamma_{h} m \quad(m=1, \ldots g), . \tag{46}
\end{equation*}
$$

where $\gamma_{1}+\ldots+\gamma_{l} \leqq 1$. Further I consider a sum of the form $\Sigma_{1} T(m)$, extended over a finite number of sets T with the property, that any of these sets T is the sumset of a number of systems $A_{h k}$. I suppose that in any T each system $A_{h k}$ is counted at most once, so that for instance T may have the form A_{11} or $A_{12}+A_{13}$ or $A_{12}+A_{41}+A_{52}$, but not $A_{11}+A_{11}$. In connection with the fact that the given inequalities (46) are symmetrical in the sets $A_{1 h}$ belonging to s_{1}, I will assume that $\Sigma_{1} T(m)$ is symmetrical in these sets, also symmetrical in the sets belonging to s_{2}, \ldots, finally symmetrical in the sets, belonging to $s l$. Then it is possible to deduce for $m=1, \ldots, g$ a convenient lower bound for the sum $\Sigma_{1} T(m)$, namely

Theorem 8. Under these conditions we have for $m=1, \ldots, g$

$$
\Sigma_{1} T(m) \geqq m \Sigma_{1} \tau(T),
$$

if

$$
\tau(T)=\frac{\lambda_{1} \gamma_{1}}{n_{1}}+\ldots+\frac{\lambda_{l} \gamma_{l}}{n_{l}},
$$

where λ_{h} denotes, for each value of h, the number of terms $A_{h k}$, occurring in T.

As corollaries of the special case $l=1$ we obtain the theorems 9 and 10 , found by F. J. Dyson:

Theorem 9. If each system A_{1}, \ldots, A_{n} contains zero and

$$
A_{1}(m)+\ldots+A_{n}(m) \geqq \gamma m \quad(m=1, \ldots, g)
$$

where $\gamma \leqq 1$, then

$$
\left(A_{1}+\ldots+A_{n}\right)(m) \geqq \gamma m \quad(m=1, \ldots, g)
$$

In fact, the left hand side is symmetrical in A_{1}, \ldots, A_{n} and is the sum of n terms $T(m)$, where $\tau(T)=\frac{\gamma}{n}$

Theorem 10. If the conditions of the preceding proposition are satisfied, we have for every natural number $r \leqq n$ and for $m=1, \ldots, g$

$$
\Sigma_{2}\left(A_{t_{1}}+\ldots+A_{t_{r}}\right)(m) \geqq\binom{ n-1}{r-1} \gamma m,
$$

where Σ_{2} is extended over the $\binom{n}{r}$ systems of natural numbers t_{1}, \ldots, t_{r} with $t_{1}<t_{2}<\ldots<t_{r} \leqq n$.

In fact, the left hand side is symmetrical in A_{1}, \ldots, A_{n} and is the sum Σ_{1} of $\binom{n}{r}$ terms $T(m)$, where $\tau(T)=\frac{r \gamma}{n}$, so that

$$
\Sigma_{1} \tau(T)=\binom{n}{r} \cdot \frac{r \gamma}{n}=\binom{n-1}{r-1} \gamma
$$

Another example of theorem 8: If each of the systems A, B, C and D contains zero,

$$
A(m)+B(m) \geqq \gamma m \text { and } C(m)+D(m) \geqq \delta m \quad(m=1, \ldots, g)
$$

where $\gamma+\delta \leqq 1$, then we obtain for $m=1, \ldots, g$

$$
(A+C)(m)+(A+D)(m)+(B+C)(m)+(B+D)(m) \geqq 2(\gamma+\delta) m .
$$

In fact, the left hand side is symmetrical in A and B, also in C and D and is the sum of four terms $T(m)$, where $\tau(T)=\frac{1}{2}(\gamma+\delta)$.

We have treated the last problem already in § 2.
I propose not only to prove theorem 8, but simultaneously the following proposition, involving positive weights $f(m)$. These weights satisfy the inequalities
$f(m+1) \geqq f(m)(m=1, \ldots, g-1)$ and $\left.f^{2}(m+1) \geqq f(m) f(m+2)\right\}$

$$
\begin{equation*}
(m=1, \ldots, g-2), \tag{29}
\end{equation*}
$$

whereas $A(m)$ denotes the sum $\sum_{a \leqq m} f(a)$, extended over all positive elements $a \leqq m$ of A.

Theorem 11. If the positive numbers $f(m)(m=1, \ldots, g)$ satisfy the inequalities (29), if the sets A_{1}, \ldots, A_{n} consist of integers $\geqq 0$, if each of these sets contains zero and if

$$
A_{1}(m)+\ldots+A_{n}(m) \geqq \gamma \sum_{h=1}^{m} f(h) \quad(m=1, \ldots, g)
$$

where $\gamma \leqq 1$, then for these values of m

$$
\left(A_{1}+\ldots+A_{n}\right)(m) \geqq \gamma \sum_{h=1}^{m} f(h) \quad(m=1, \ldots, g)
$$

To prove these theorems I make use of two lemmas. In these lemmas $A(m)$ denotes the sum of the weigths of the positive elements $\leqq m$ of A, where for $m>g$ the weight $f(m)$ is defined such that

$$
f(m+1) \supseteqq f(m) \text { and } f^{2}(m+1) \supseteqq f(m) f(m+2) \quad(m=1, \ldots, g) .
$$

Let us consider $n(n \geq 2)$ systems A_{1}, \ldots, A_{n} each of which consists of integers ≥ 0 and $\leqq g$ and contains the number zero, whereas A_{n} contains moreover at least one positive integer. Be e the smallest integer $\geqq 0$, such that a natural number $q \leqq n-1$ can be found with the property that e is an element of A_{q} and that A_{n} contains at least one positive element b, such that $e+b$ is not contained in A_{q}. Such an element e exists, since the greatest element a of A_{1} and any positive element b of A have the property that $a+b$ does not belong to A_{1}. After having fixed e and q, I cancel in A_{n} a positive element b, such that $e+b$ does not belong to A_{q}, and I add to A_{q} this integer $e+b$, if it is $\leqq g$. If A_{q} and A_{n} are transformed in this manner into A_{q}^{\prime} and A_{n}^{\prime} and if further $A_{h}^{\prime}=A_{h}$ for $h \neq q$ and $\neq n$, I say that the system A_{1}, \ldots, A_{n} is transformed by an elementary transformation into $A_{1}^{\prime}, \ldots, A_{n}^{\prime}$. Thus A_{n}^{\prime} is the set of elements $\neq b$ of A_{n}; if $e+b>g$, then $A_{q}^{\prime}=A_{q}$, and if $e+b \leqq g$, then A_{q}^{\prime} is the set formed by $\mathrm{e}+b$ and the elements of A_{q}.
Lemma 8. If each of the systems $A_{1}, \ldots, A_{n}(n \geqq 2)$ contains zero, if A_{n} contains moreover at least one positive integer $\leqq g$, and if

$$
\begin{equation*}
A_{1}(m)+\ldots+A_{n}(m) \geqq \gamma \sum_{h=1}^{m} f(h) \quad(m=1, \ldots, g) . . \tag{47}
\end{equation*}
$$

where $\gamma \leqq 1$, then each elementary transformation transforms A_{1}, \ldots, A_{n} into a system $A_{1}^{\prime}, \ldots, A_{n}^{\prime}$, with

$$
A_{1}^{\prime}(m)+\ldots+A_{n}^{\prime}(m) \supseteqq \gamma \sum_{h=1}^{m} f(h) \quad(m=1, \ldots, g) .
$$

We obtain even for any integer $r \geqq 0$

$$
\underset{a_{1}^{\prime} \leqq m}{\sum^{\prime}} f\left(a_{1}^{\prime}+r\right)+\ldots+\sum_{a_{n}^{\prime} \leqq m} f\left(a_{n}^{\prime}+r\right) \geqq \gamma \sum_{h=1}^{m} f(h+r) \quad(m=1, \ldots, g),(48)
$$

if $\underset{a_{h}^{\prime} \leqq m}{ }$ is extended, for each value of h, over the positive elements $a_{h}^{\prime} \leqq m$ of A_{h}^{\prime},
Let us suppose that this assertion is not true. $\mathrm{Be} k$ the smallest positive integer $\leqq g$, for which the lemma is not valid, more precisely: the positive integer $k \leqq g$ possesses the following properties:

1. It is possible to find a system A_{1}, \ldots, A_{n}, such that each set A_{n} contains zero, that A_{n} contains at least one positive element $\leqq g$, that the inequalities (47) are true for $m=1, \ldots, k$ and that a suitably chosen
elementary transformation transforms the system A_{1}, \ldots, A_{n} into a system $\boldsymbol{A}_{1}^{\prime}, \ldots, A_{n}^{\prime}$, for which at least one of the inequalities
${\underset{a}{1} \leqq}_{\sum_{\leqq}} f\left(a_{1}^{\prime}+r\right)+\ldots+\underset{a_{n}^{\prime} \leqq m}{\sum} f\left(a_{n}^{\prime}+r\right) \geqq \gamma \sum_{h=1}^{m} f(h+r) \quad(m=1, \ldots, k)$,
where r denotes a convenient integer $\geqq 0$, is not true.
2. Be l an arbitrary positive integer $<k$. If each of the systems C_{1}, \ldots, C_{n} contains zero, if moreover C_{n} contains at least one positive integer $\leqq g$ and if finally

$$
C_{1}(m)+\ldots+C_{n}(m) \geqq \gamma \sum_{n=1}^{m} f(h) \quad(m=1, \ldots, l)
$$

then each elementary transformation transforms C_{1}, \ldots, C_{n} into $C_{1}^{\prime}, \ldots, C_{n}^{\prime}$, such that

$$
\begin{equation*}
\sum_{c_{1}^{\prime} \leqq m} f\left(c_{1}^{\prime}+t\right)+\ldots+\underset{c_{n}^{\prime} \leqq m}{ } f\left(c_{n}^{\prime}+t\right) \supseteqq \gamma \sum_{h=1}^{m} f(h+t) \quad(m=1, \ldots, l) \tag{50}
\end{equation*}
$$

for each integer $t \geqq 0$.

The special case $l=k-1, t=r, C_{h}=A_{h}$ gives, that the inequalities (49) are true for $m=1, \ldots, k-1$. Consequently (49) is not valid for $m=k$, that is

$$
\begin{equation*}
\sum_{a_{1}^{\prime} \leqq m} f\left(a_{1}^{\prime}+t\right)+\ldots+\underset{a_{n}^{\prime} \leqq m}{ } f\left(a_{n}^{\prime}+\tau\right)<\gamma \sum_{h=1}^{m} f(h+\tau) \tag{51}
\end{equation*}
$$

From (47) and lemma 5 we conclude for $m=1, \ldots, k$

$$
\begin{equation*}
\sum_{a_{1} \leqq m}^{\sum} f\left(a_{1}+r\right)+\ldots+a_{a_{n} \leqq m}^{\sum} f\left(a_{n}+r\right) \geqq \gamma \sum_{h=1}^{m} f(h+r) . \tag{52}
\end{equation*}
$$

Just as in the proof of lemma 6 (§3) we show, that the number b, cancelled in A_{n}, is $\leqq k$ and that the number $\mathrm{e}+b$, possibly added to A_{q}, is $>k$.

From the definition of e it follows that each element $a<e$ of each set $A_{h}(h=1, \ldots, n-1)$ has the property, that $a+b$ belongs to A_{h}; in particular b belongs to each of the sets A_{1}, \ldots, A_{n-1}. The system $A_{h}(h<n)$ contains $1+A_{h}(k-b)$ elements $a \leqq k-b<e$ and each of these elements furnishes an element $a+b$ of A_{h}, which is $\geqq b$ and $\leqq k$, so that we find for $h=1, \ldots, n-1$

$$
\begin{equation*}
\sum_{a_{h} \leqq k} f\left(a_{h}+r\right)-\sum_{a_{h} \leqq b-1} f\left(a_{h}+r\right) \geqq f(b+r)+\sum_{a_{h} \leqq k-b} f\left(a_{h}+r+b\right) . \tag{53}
\end{equation*}
$$

The inequality

$$
\begin{equation*}
\sum_{a_{1} \leqq b-1} f\left(a_{1}+r\right)+\ldots+\sum_{a_{n} \leqq b-1} f\left(a_{n}+r\right) \geqq \gamma \sum_{h=1}^{b-1} f(h+r) . \tag{54}
\end{equation*}
$$

is obvious for $b=1$ and follows for $b>1$ from (52). For $h=1, \ldots$, $n-1$ the sets A_{h} and A_{h}^{\prime} contain the same integers $\leqq k$; the two
sets A_{n} and A_{n}^{\prime} contain the same integers $\leqq b-1$, so that we obtain for $h=1, \ldots, n-1$ from (53)

$$
\begin{equation*}
\underset{a_{h}^{\prime} \leqq k}{\sum} f\left(a_{h}^{\prime}+r\right) \geqq f(b+r)+\sum_{a_{h}^{\prime} \leqq b-1} f\left(a_{h}^{\prime}+r\right)+\sum_{a_{h} \leqq k-b} f\left(a_{h}+r+b\right) \tag{55}
\end{equation*}
$$

and further from (54)

$$
\begin{equation*}
\underset{a_{1}^{\prime} \leqq b-1}{\sum} f\left(a_{1}^{\prime}+r\right)+\ldots+\sum_{a_{n}^{\prime} \leqq b-1} f\left(a_{n}^{\prime}+r\right) \geqq \gamma \sum_{h=1}^{b-1} f(h+r) \tag{56}
\end{equation*}
$$

The proof is established if we show
$\sum_{a_{1} \leqq k-b} f\left(a_{1}+r+b\right)+\ldots+\sum_{a_{n-1} \leqq k-b} f\left(a_{n-1}+r+b\right) \geqq \gamma \sum_{h=1}^{k-b} f(h+r+b)$,
for then we may replace in this inequality a_{1}, \ldots, a_{n-1} by $a_{1}^{\prime}, \ldots, a_{n-1}^{\prime}$, hence by (55) and (56)

$$
\begin{aligned}
& \sum_{a_{1}^{\prime} \leqq k} f\left(a_{1}^{\prime}+r\right)+\ldots+\underset{a_{n}^{\prime} \leqq k}{\sum} f\left(a_{n}^{\prime}+r\right) \\
& \quad \geqq \sum_{a_{1}^{\prime} \leqq k} f\left(a_{1}^{\prime}+r\right)+\ldots+{ }_{a_{n-1}^{\prime} \leqq k} f\left(a_{n-1}^{\prime}+r\right)+\sum_{a_{n}^{\prime} \leqq b-1} f\left(a_{n}^{\prime}+r\right) \\
& \quad \geqq(n-1) f(b+r)+\gamma \sum_{h=1}^{b-1} f(h+r)+\gamma \sum_{h=1}^{k-b} f(h+r+b) \\
& \quad \geqq \gamma \sum_{h=1}^{k} f(h+r)
\end{aligned}
$$

(in virtue of $n-1 \geqq 1 \geqq \gamma$), contrary to (51).
The proof of (57) runs precisely as that of (6) in lemma 1 (§1). Thus we find the assertion of our lemma.

Let us again consider $n(n \geqq 2)$ systems A_{1}, \ldots, A_{n}, each of which consists of integers $\geqq 0$ and $\leqq g$ and contains the number zero, whereas A_{n} contains moreover at least one positive integer. Be e again the smallest integer $\geqq 0$ such that a natural number $q \leqq n-1$ can be found with the property that e is an element of A_{q} and that A_{n} contains at least one positive element b, such that $\mathrm{e}+b$ is not contained in A_{q}. I cancel in A_{n} all these elements b and I add $e+b$ to A_{q}, as far as they are $\leqq g$. In this manner A_{n} and A_{q} are transformed into the sets A_{n}^{*} and $A_{q}^{*} ; \mathrm{I}$ put $A_{h}^{*}=\boldsymbol{A}_{h}$ for $h \neq q$ and $\neq n$. I say that the system A_{1}, \ldots, A_{n} is transformed into the system $A_{1}^{*}, \ldots, A_{n}^{*}$ by an e-transformation. Since this transformation can be decomposed into a finite number of elementary transformations, the preceding lemma gives:

Lemma 9. Suppose that each of the $n(n \geqq 2)$ systems A_{1}, \ldots, A_{n} consists of integers $\geqq 0$ and $\leqq g$, and contains the number zero, whereas moreover A_{n} contains at least one positive integer. If the inequalities (47) are true, where $\gamma \leqq 1$, we have also

$$
\begin{equation*}
A_{1}^{*}(m)+\ldots+A_{n}^{*}(m) \geqq \gamma \sum_{h=1}^{m} f(h) \quad(m=1, \ldots, g) . . \tag{58}
\end{equation*}
$$

The proof of theorem 11 can now be given in a few lines. The assertion of this theorem is obvious if $n=1$, so that I may suppose $n>1$ and I may assume that the theorem is true for every value of n less than the actual value. Consequently the theorem holds, if A_{n} consists only of the number zero. I may therefore suppose, that A_{n} contains at least one positive element $\leqq g$ and that the theorem is true with the actual value of n, whenever the value of $A_{n}(g)$ is less than its actual value. I transform the system A_{1}, \ldots, A_{n} by an e-transformation into a system $A_{1}^{*}, \ldots, A_{n}^{*}$. Then $A_{n}^{*}(g)<A_{n}(g)$ and the preceding lemma gives the inequalities (58), so that it follows from the inductive hypothesis

$$
\left(A_{i}^{*}+\ldots+A_{n}^{*}\right)(m) \geqq \gamma \sum_{h=1}^{m} f(h) \quad(m=1, \ldots, g) .
$$

We have $A_{h}^{*}=A_{h}$ for each value $h \leqq n-1$, with the exception of one value $h=q$ and by lemma 3 (§1) $A_{q}+A_{n}$ contains each element $\leqq g$ of $A_{q}^{*}+A_{n}^{*}$, hence

$$
\left(A_{1}+\ldots+A_{n}\right)(m) \supseteqq\left(A_{i}^{*}+\ldots+A_{n}^{*}\right)(m) .
$$

This proves theorem 11 .
Now the proof of theorem 8. I put $n_{1}+\ldots+n_{l}=p$. If $p=1$, then $l=1$ and $n_{1}=1$, so that each set T, occurring in the sum Σ_{1}, denotes the set A_{11} with $\tau(T)=\gamma_{1}$, hence for $m=1, \ldots, g$

$$
T(m)=A_{11}(m) \geqq \gamma_{1} m=m \tau(T) .
$$

Consequently I may suppose $p>1$ and assume that the theorem is true for any value of p less than the actual value. If one of the p sets $A_{h k}$ consists only of the number zero, each set T, occurring in the sum Σ_{1}, is the sumset of $p-1$ systems $A_{h k}$, so that the assertion of theorem 8 follows from the inductive hypothesis. Consequently I may suppose, that each set $A_{h k}$ contains at least one positive integer and I may assume that the theorem holds with the actual value of p, whenever the value of $A_{l, n_{l}}(g)$ is less than its actual value. I distinguish two cases:

1. If $n_{1}=\ldots=n_{l}=1$, then by (46)

$$
A_{h, 1}(m) \geqq \gamma_{h} m
$$

and T is the sumset $\Sigma_{3} A_{h, 1}$ of a number of sets $A_{h, 1}$. In virtue of $\gamma_{1}+\ldots+\gamma_{l} \leqq 1$ and $n_{h}=1$ it follows from the theorem of Mann

$$
T(m) \geqq m \Sigma_{3} \gamma_{h}=m\left(\lambda_{1} \gamma_{1}+\ldots+\lambda_{l \gamma_{l}}\right)=m \tau(T),
$$

consequently

$$
\Sigma_{1} T(m) \geqq m \Sigma_{1} \tau(T)
$$

2. In the remaining case at least one of the integers n_{1}, \ldots, n_{l} is greater than 1. Without loss of generality I may assume $n_{l}>1$. I transform the system $A_{l, 1}, \ldots, A_{l, n_{l}}$ by an e-transformation into a system $A_{l, 1}^{*}, \ldots, A_{l, n_{l}}^{*}$. Then $A_{l, n_{l}}^{*}(g)<A_{l, n_{l}}(g)$. By the preceding lemma, applied with $f(m)=1$,
the inequalities (46) remain true, if $A_{l, h}\left(1 \leqq h \leqq n_{l}\right)$ is replaced by $A_{i, h}{ }^{\prime}$. Consequently we deduce from the inductive hypothesis for $m=1, \ldots, g$

$$
\Sigma_{1} T^{*}(m) \geqq m \Sigma_{1} \tau\left(T^{*}\right)=m \Sigma_{1} \tau(T) ;
$$

here T^{*} denotes the set into which T is transformed, if $A_{l, h}\left(1 \leqq h \leqq n_{l}\right)$ is replaced by $A_{l, h}^{*}$. It is therefore sufficient to deduce the inequalities

$$
\Sigma_{1} T(m) \geqq \Sigma_{1} T^{*}(m) \quad(m=1, \ldots, g)
$$

It follows from the definition of the e-transformation, that $A_{l, h}^{*}=A_{l, h}$ for each $h \leqq n_{l}-1$, only one value $h=q$ excepted. I write

$$
\Sigma_{1} T=\Sigma_{4} T+\Sigma_{5} T+\Sigma_{6} T
$$

The summation Σ_{4} is extended over the sets T, involving neither $A_{l, q}$ nor $A_{l, n}$; the summation Σ_{5} over the sets T, involving one and only one of the two sets $A_{l, q}$ and $A_{l, n_{l}}$; finally Σ_{6} is extended over the sets T involving both $A_{l, q}$ and $A_{l, n_{l}}$.

For the sets T, occurring in Σ_{4}, we have $T=T^{*}$, hence $\Sigma_{4} T(m)=$ $\Sigma_{4} T^{*}(m)$. Each set T, occurring in Σ_{6}, is a sumset containing both sets $A_{l, q}$ and $A_{l, n_{l}}$; by convention, made at the beginning of this section, each of these two sets is counted only once, hence

$$
T=A_{l, q}+A_{l, n_{l}}+U \text { and } T^{*}=A_{l, q}^{*}+A_{l, n_{l}}^{*}+U
$$

By lemma 3 (§1) $A_{l, q}+A_{l, n_{l}}$ contains each element $\leqq g$ of $A_{l, q}^{*}+A_{l, n_{l}}^{*}$. so that

$$
T(m) \geqq T^{*}(m), \text { hence } \Sigma_{6} T(m) \geqq \Sigma_{6} T^{*}(m)
$$

The sum $\Sigma_{5} T(m)$, which is symmetrical in $A_{l, q}$ and $A_{l, n_{l}}$ can be written as a sum of terms of the form $\left(U+A_{l, q}\right)(m)+\left(U+A_{l, n_{l}}\right)(m)$, and lemma 4 (§2) gives for $m=1, \ldots, g$

$$
\left(U+A_{l, q}\right)(m)+\left(U+A_{l, n_{l}}\right)(m) \geqq\left(U+A_{i, q}\right)(m)+\left(U+A_{i, n_{l}}^{*}\right)(m)
$$

hence

$$
\Sigma_{5} T(m) \geqq \Sigma_{5} T^{*}(m)
$$

This completes the proof.

