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(Communicated at the meeting of April 26. 1947.) 

The problem of treating the local properties of geometrical figures 
metrically. i.e. of developing a differential geometry without the use of 
coordinates. has recently received the attention of some mathematicians. 
The local properties of curves and surfaces have been studied in differential 
geometry almost entirely by means of analytic methods. which make it 
necessary to impose some conditions (e.g. conditions concerning differen~ 
tiability) upon the entities involved. In a metrical theory the differential 
geometry can be freed from many of these restrictions. which are of ten 
geometrically unessential and serve merely to make the application of 
differential calculus possible 1) . 

In this paper we are concerned with a metric treatment of the local pro~ 
perty of curvature for arcs in abstract metric spaces. A metric definition 
of curvature has been given by MENGER 2). A somewhat more general 
notion of curvature is due to ALT 3). Both definitions impose. however. a 
euclidean notion of curvature upon general metric spaces (See § 2 and 
§ 3). In the following a definition is given. which is free from this aesthetic 
imperfection. This definition of curvature proves to be more general than 
the notion of Menger curvature. though it can be shown th at both 
definitions are equivalent for arcs in euclidean planes. 

§ 1. The abstract metrie space. 

A metric space M is a set of abstract elements. called points. such that 
to each pair of elements p. q is attached a non~negative real number pq. 
called the distance of pand q. satisfying the conditions: 

1. pq = 0 if and only if p = q. 
2. pq + qr :> pr (triangle inequality). 
An infinite sequence of points {p~} is said to have the limit p if and 

only if lim p~p = O. From the triangle inequality follows the continuity 
~~co 

of the metric. which means that if {qv} ~ q and {p.} ~ p lim p~q" = pq. 
A neighbourhood U (p. d) of the point p is defined as the set of points q 

for which pq < d. 

1) See L. M. BLUMENTHAL. Distance Geometries. A study of the development of 
abstract metrics. The University of Missouri studies. Vol. 13. nr 2 (1938). 

2) K. MENGER. Untersuchungen über allgemeine Metrik. Vierte Untersuchung. Zur 
Metrik der Kurven. Math. Annalen 103. 466---501 (1930). Referred to as: Menger IV. 

3) F. ALT. Ueber eine metrische Definition der Krümmung einer Kurve. Vienna 
Dissertation (1931). 
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§ 2. The Mengel' curvature. 

Because of the triangle inequality each set of three pairwise distinct 
points q. r. s in M is congruent with three points q'. r'. s' of the euclidean 
plane. The inverse of the radius of the circumscrihed circle of the triangle 
with vertices q'. r'. s' can he expressed in terms of the distances of the 
points q'. r'. s'. which equal the distances of the points q. r. s in M. This 
expression is according to a formula of elementary geometry 

K(q.r.s) = -y(qr+ l'S + sq) (qr+ rs-sq) (qr-rs + sq) (-qr+ l'S + sq) (1) 
qr. l'S. sq 

and is called the curvature of q. r. s. Let K he a suh~set of M. Then MENGER 
defines the curvature at an accumulation point p of K as follows 4 ) 

Definition. The set K has. at an accumulation point p. a curvature 
K(p) ~ 0 provided that. corresponding to each E> 0 there is a 15 > O. such 
that I K (p) - K (q. r. s) I < E for every triple q. r. s in the neighbourhood 
U(p.15). 

This curvature is called the Mengel' curvature; throughout this paper it 
will he denoted hy KM. The re1ation of KM with the classical curvature is 
expressed in 5) 

Theorem 1. If a curve in a euclidean plane has a Mengel' curvature 
KM at a point p. then the classical curvature exists at pand is equal to KM. 
The converse is not true. 

The second part of this theorem follows from the fact that the Menger 
curvature is a continuous function of p. which is not necessarily the case 
for the classical curvature. 

PAUC 6) answered the question which continua possess Menger curvature 
hy proving 

Theorem 2. I f a metric continuum K has a Mengel' curvature at one of 
its points p. then K is. in a neighbourhood of p. a rectifiable curve. 

§ 3. The Alt curvature. 

The existence of a Menger curvature at p requires that K (q. r. s) has a 
limit as the points q. r. s independently approach to p. ALT takes p as one 
of these points. This leads to the following 

Definition 7). The set K has. at an accumulation point p. a curvature 
K (p) ~ 0 provided that corresponding to each E > 0 there is a 15 > 0 such 
that IK (p) - K (p. r. s) I < E for every pair of points r. s in the neigh~ 
bourhood U (p. 15). 

This curvature is called the Alt curvature and is denoted hy KA' It can 
he shown 

4) MENGER IV. p. 480. 
5) O. HAUPT and F. ALT. Zum Krütnmungsbegriff. Ergebnisse eines mathematischen 

Kolloquiums (Wien) Heft 3 (1932). 4-5. 
6) C. PAUC. Courbure dans les espaces métriques. Atti Acad. di Lincei. Serie 6. 24 

(1936) 109-115. 
7) F. ALT. I.c. 3). 
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Theorem 3. For euclidean plane curves the exisfence of classical 
curvature implies the existence of Alt curvature and the two are equal. The 
converse is not true, at least when the classica I cu rva tu re of the curve 
y = [(x) is defined by the expression ["(1 + ['2)-1'18) 

PAUC showed (see 6» 
Theorem 04. A metric continuum K that has an Alt curvature at one of 

its points p is, in a neighbourhood of p, either the sum of finitely many 
rectifiable arcs, which have pairwise only the end~point p in common, or 
the sum of a denumerable infinity of such arcs, the diameters of which 
converge to zero. 

We see that both definitions impose a euclidean notion upon general 
metric spaces. This can however be avoided as will be shown in the next 
paragraph. where a third definition of curvature is given. This definition 
applies only to rectifiable arcs. though an ex ten sion to other sub~sets could 
be given. But for continua theorems 2 and 4 show that for Menger curva~ 
ture and Alt curvature too we may confine ourselves to rectifiable arcs. 

§ 4. The curvature K. 

Let B be a rectifiable arc (topological image of a segment) in a metric 
space M. Then to each pair of points q. sof Bare attached two numbers: 
the distance d = 'qs and the length I of the arc qs. part of the arc B. 

Definition. The arc B has at a point p a finite curvature K(p) ~ 0, 
provided that, corresponding to eaeh E > ° th ere is a b > 0, sueh that 

(2) 

for every pair of points q, s of B in the neighbourhood U (p. b). 
In this paper this curvature will be denoted by K. It is natural to ask 

how this curvature. applied to arcs of spaces where a classical curvature 
can be defined (Riemannian spaces ) compares with the classical curvature. 
The answer is given in 

Theorem 5. For reetifiable ares in Riemannian spaees, which defining 
equations are differentiable to a suffieiently high order, the classical 
eurvature is equal to K. 

In order io prove this theorem we introduce in the n~dimensional 
Riemannian space V n polar coordinates with the point P (one of the points 
of the given arc) as pole. The coordinates of a point Q are determined 
by the geodesic distance z to P together with the unit vector i" at P. which 
is tangent to the geodesic PQ. The polar coordinates of Q are defined as 9) 

8) See K. MENG ER. La géométrie des distances et ses relations avec les autres 
branches mathématiques. L'Enseignement Mathématique. Nos 5----(i, 348-372 (1936). 

9) J. A. SCHOUTEN. Einfiihrung in die neueren Methoden der Differentialgeometrie J. 
Noordhoff. Groningen 1935. p. 101. 
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In a neighbourhood of P the arc is given by 

~h _ h + 1 h 2 + 1 h l + 
i" - al 5 2/ a2 $ 3/ a3 $ ••• 

where s is the arc length. The classical curvature e is defined as the leng th 
of the vector 

d 2 ~h h d ~i d ~j 
ds2 + rij d$ . ds 

at P. As a result of the vanishing of r~j at P (see SCHOUTEN p. 103) this 
vector is a ~. The distance z to P is given by 

::2 = (9hi)P Eh ~i = S2 + (al a2) s3 + I t (al a,) + t (a2 a2) I s1 + . . . (3) 

where (uv) stands for (ghi)P IlhVI• Now 

d ~h _ h + h + 1 h 3 + d$ - al a2 5 2/ a3 s •.. 

is a unit vector. Using the formula (SCHOUTEN p. 138) 

9hi = (9hi)P + t ~k ~j Kkijh 

it follows 

(al a2) = 0: (al a3) + (a2 a2) = o. 
So equation (3) gets the form 

Z2 = s2-fi e'2 51 + ... 
from which we have - in harmony with (2) -

s-z e2 = 41 lim -­
s-+ 0 .s' 

We will not investigate here which curves in Riemannian spaces possess 
a curvature K. Theorem 5 has only been proved to show that the classical 
curvature in Riemannian spaces is connected in the same way with the 
same limit as Kis: therefore. in Riemannian spaces our definition of 
curvature cannot lead to paradoxical results. 

Theorem 6. Thc curvature K is a continuous function of p wherever it 
exists. 

Let us denote the expres sion 4 ! (1- d) 1-3 for the pair of points q. r by 
K2 (q. r). According to the definition of curvature th ere corresponds to 
each e a ~ such th at 

IK(p)-K(r.s)1 < ~ for r.5 C U(p, 2 ~) .• (4) 

Let q be a point of the arc B contained in U (p. ~). There exists a neig h~ 
bourhood U(q. ~d such th at for each pair of arc points r. s contained in 
this neighbourhood we have 

E 
IK(q)-K(r.s)1 < 2. (5) 
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The intersection of U(q. bd and U(p.2<5) eontains an infinity of arc 
points. q being an accumulation point of B. For two of these points both 
the inequalities (4) and (5) hold. from which it follows 

IK(P)-K(q)l<e for qcU(p.<5). 

This means however that K(p) is a continuous funetion. 
It is natural to investigate how the eurvature K eompares with the 

eurvatures KA and KM. One of the results is given by the following 
theorem: 

Theorem 7. ff both KA (or KM) and K exist, these curvatures are 
equal. 

Consider three points p. q. r of the arc. for whieh pq = qr = d. The 
points q and rare supposed to lie on the same si de of the fixed point p. 
IE the distanee pr is denoted by a the following expression for the eurvature 
KA (or KM) at p is obtained from (1) 

K 2-1' (2d+a)a2(2d-a)_I' 2d+a 2d-a_ l. 4 (1 a2
) 

A - lm di 2 - lm d . d3 - lm d2 - A d2 
d-+O a d-+O d-+O"'I 

It follows that a ~ 2d as d tends to zero and therefore 

2 • 2d-a 
K A =4hm d3 • 

d-+O 
. (6) 

Let the lengths of the ares pq and qr be denoted by 11 and 12 respeetively. 
Aeeording to the assumption that the eurvature K exists at p. we have 

. I,-d . 12-d . 1,+12-a K2 
hm -13 - = hm -13 - = hm (I + I )3 = ~/' 
d-+O, d-+O 2 d-+O, 2 "'I 

• (7) 

Now 

1,+12 -a I,-d I~ 12 -d I~ 2d-a d 3 

(1, + 12)3 = ~ . ~+ 12)3 + zr- . (I, + 12P + d 3 • u;-+ 12)3' (8) 

IE it is taken into eonsideration that ll/d ~ 1 and 12/d ~ 1 as d ~ 0 it is 
seen from (7) and (8) 

1 K2 I' 2d-a 
4" = lm d3 • 

d-+O 

whieh gives for K exactly the same expression as (6) gives for KA. 50 
K and KA (or KM) if both existing are equal. 

Further investigation to the relations existing between the curvatures 
KM. KA and K leads to the following theorem: 

Theorem 8. ff the curvature KA of the arc at p exists, it equals 
lim K(p. q). 

q+-p 

It is easily seen th at the preceding theorem 7 is an immediate conse~ 
quence of theorem 8. In order to prove this latter theorem we consider the 
triangle in the euclidean plane corresponding to the arc points p. q. r. i.e. 
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the triangle with the sides pq, qr and pro Let e(p, q, r) stand for the sum 
of the smallest two angles of this triangle. PAve 10) has shown that if KA 
exists at p the quantity e(p, q, r) ~ 0 as both q and rapproach the point p. 
Thus th ere is a neighbourhood U(p, <5d such that for each pair q, r 

:n 
contained in this neighbourhood e(p, q, r) <"2 whieh means that the 

triangle is obtuse-angled. If at the same time two of the sides are equal 

(b), the length of the third side will exceed b {Z (property P). By means 
of this property it can be shown that the distance d of the arc points 
q (q C U(p, <5 1 ) to P will increase steadily if q traverses the arc B starting 
from the point p. For d is a continuous function of q and thus of the 
parameter on the arc. Suppose this function is not monotonie. Then it has 
relative maxima or minima and it is possible to find two different points 
whieh have the same di stance to p but a smaller mutual distance, contrary 
to property P. Hence this cannot occur. It is equally impossible that d 
remains constant for a while, so d will increase. 

Another consequence of the existence of KA at p follows immediately 
from the definition. There is a <5 2 > 0 such that for each pair of arc points 
q, r in U(p, <5 2 ) 

Kl (1 - 1]) < K2 (p. q. r) < Kl (1 + 1]). • (9) 

Consider a point q of Bin the neighbourhood U(p, <5), where <5 < <51 and 
<5 < <5 2 , From the proof of theorem 4 it follows that the arc pq (part of B) 
is rectifiable. Let I be its length and d the distance of the end points. A 
finite subset (P1, ... , PN) of the arc pq (B') is called an e-subset provided 
that each pair of two consecutive points has the distance e and PP1 <: e 

and PNq <: e. It has been proved by MENOER 11) that corresponding to 
each positive 1; th ere is a positive number eo such that for every e-subset 
(e <: EO) 

1;::: P PI + ... + PN-I PN > 1-C. . (10) 

The number N depends of course on e. 
Let rand s be two points of B' such that in traversing B' from P to q 

°the point r is encountered first. Then as we have seen ps> pro Suppose 
pr :> rs. Putting for shortness ps = a, pr = b, rs = c, K(p, r, s) = R-1 
we obtain from some formulae of elementary geometry 

1/ c2 1/ b2 

a = b r 1 - 4 R2 + cri - 4 R2 . 
By using the first of the following inequalities 

Yl-a~l-ia. 

10) See footnote 6). 

Yl-a;::: I-i a-a2 for a < i 
Yl-a;::: I-a 

11) MENGER IV, p. 469. 

• (11) 

(12) 

(13) 

(14) 
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it is readily seen from (11) 

a<b+e- 8k2eb2 ....... (15) 

whereas the second inequality (13) leads to 

a> b + e- 8 k2 (be2 + eb2) - 8k4 eb4
• • • • • (16) 

This it is true is only right if band care small enough but we may choose 
~ smaller than KA (1 + '1) and then it is correct. Yet another inequality 
will be used. It is obtained from (11) and (14) and runs as follows 

a> (b + c) ( 1 - id~2).' . . . . . . (17) 

for band c are smaller than d, d being thc distance pq. 
The inequalities (15), (16) and (17) are now applied succesively to 

the sets ppiPi+l (i = I, .... N -1) where the subset pi is supposed to 
be an E~subset (with PPI = E) satisfying (10). Let us start with the third 
inequality. It will be proved that 

ppj>jEll-t(j+l)K~(1+t})dEI • •.•• (18) 

This is true for j = 1. Suppose it is true for j = mand let us prove it for 
j = m + 1. From (17) it follows 

PPm+1 > (PPm + E) 11-i d E K~ (1 + t}) I 
> (m + 1) E l1-t m t d K~ (1 + t}) lil-i- E d K~ (1 + '1) I 
>(m+ I)EII-t(m+2)EdK1(1 +'1)1 

which is exactly the inequality (18) for j = m + 1. 
In a similar way it can be proved from (15) 

2 m-I 4 
PPm=:::;mE-tE3KA(1-'1) .2,,2+-hKA(1 +'1)2dE4f(m). (19) 

v==l 

with f(m) = im4 - tm3 - tm2 + tm. 
For we know it is true for m = 1. Suppose it holds for m. Then it 

follows from (15) under consideration of the inequality (18) 
2 m-I 4 

ppm+1 < (m + 1) E-t E3 KA (1-1J) .2 ,,2 + ti KA (1 + '1)2 d E4 f(m) 
~=I 

- t Kl (1- '1) E
3 m2 11-t (m + 1) Kl (1 + t}) dE 12 

2 m 4 < (m + 1) E-t E3 KA (1-'1) ~,,2 + ti KA (1 + '1)2 d E4 f(m + 1) 
'-=1 

since 

f(m + 1) = f(m) + 2 m2 (m + 1). 

Application of the inequality (16) to the sets PPipi +1 leads in much the 
same way to 

m-I m-I 
PPm;;: m E-t Kl (1 + '1) E3 .2 (,,2 + ,,)-t Kl (1 + t})2 ES .2,,4 (20) 

.=1 ~=I 



503 

Again it is true for m = 1. If it is true for m we have as aresuit from 
(16) 

m-\ m-\ 
ppm+\ ;::: (m + 1) a-i- Kl (1 + ']) e' E ()Ol + ")-i- Kl (1 + '])2 eS E ". + 

.=\ .=\ 

-i Kl (1 + ']) (el m + e3 m2)-t Kl (1 + '])2 aS mt 

since 

PPm~me 
according to the triangle inequality. But this shows that (20) holds still 
if m is replaced by m + 1. 

We turn back to (19). Putting m = N it gives 

PPN~Ne--hKl (1-']) (Nep ~ 1- 2 ~ + 2 ~2~ + 

+ 2-7 Kl (1 + '])2 d (N e)t ~ 1 - 3
2
N - ~2 + 3 ~l ~ 

So we have in connection with (10) 

d~PPN + a ~ a + 1--hKl (1-']) (I-C)3 ~ 1- /N + 2 ~2~ + 
t ~ 2 lil + 2-7 KA (1 + '])2 d It ~ 1 - 3 N - N2 + 3 N3 ~ 

Now af ter fixing the point q. the quantities 1; and e can be chosen arbitrarily 
smalI. Thus we have 

d~ 1-;"4 Kl (1-']) P + 2-7 Kl (1 + '])2 dl· 

from which it follows 

• (21) 

Another inequality is obtained from (20) by putting m = N. Since 
N-\ 
I ,,·<N5 and PPN~d 

.=\ 

we have again in connection with (10) 

d ~ I-'-fe Kl (1 + ']) P (1- ~2) -i- Kl (1 + '])215 

which leads to 

or 

K2 (p. q) ~ Kl (J + ']) + 3 Kl (1 + '])2 12. . • • • (22) 

From (21) and (22) together it follows th at IK2(p.q) -Kli is smaller 
than an arbitrarily given e' provided that pq is sufficiently small (d < b'). 
in other words 

KA = lim K(p. q). • • • . • • , (23) 

which proves theorem 8. 
q-+p 
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So the existence of the Alt curvature implies the existence of the limit 
(23). The existence of a curvature K at a point p requires however that 
the function K (q. r) has a limit as the two points q. r independently 
approach the point p. This is more than the existence of the limit (23). 
A curve may possess Alt curvature at a point p without having a curvature 
K. For according to theorem (6) the curvature K(p) is a continuous 
function. which is not the case for the Alt curvature. E.g. the plane curve 

(y = x 4 sin!. x ~ 0; y = O. x = 0) in the euclidean plane has an Alt 
x 

curvature. but not a curvature K at the origin. 
If however the Menger curvature exists at p the inequalities (9) are not 

only true for K2 (p. q. r) but even for K2 (q. r. s). providing that the triple 
q. r. s is contained in U (p. c5 2 ). As a consequence of this the inequalities 
(21) and (22) are true not only for the pair p. q. but for every pair of 
points q. r contained in U (p. Ó). So we see that the limit of K (q. r) exists 
if q and rapproach p. which means that the curvature K exists and 

KM = lim K (q. r) = K. 
q-+ P 
r-+ p 

Hence we have the theorem 

• {24} 

Theorem 9. The existence of the Menger curvature of an arc implies 
the existence of the curvature K and the two are equal. 

§ 5. Further investigations as to how the curvature K compares with KM. 
In § 4 it has been shown that the existence of KM implies the existence 

of the curvature K so far as arcs in metric spaces are concerned. 
The converse of this theorem is not necessarily true. A curve may possess 

a curvature K at a point without having a Menger curvature or even an 
Alt curvature. We give an example. 

Consider a space M formed by the points of the interval 0:;;; x :;;; 1. 
where the distance xy of two points x. y is defined by 

1 1 1 . 
x y = t - - (3 + - t4 sin - = f{t) 3/ 4/ t - t=lx-yl· • {25} 

The first thing to show is that M is indeed a metric space. thus that the 
triangle inequality is satisfied. Let x. y. z be three points of Mand 
y - x = u. z - y = t. z - x = u + t (u > O. t > 0) . 

Since 

d f (t) _ 1 1 tl + 1 t3 . 1 1 t2 1 > 1 1 1 1 > 0 -- - -Y 1r sm - -Y- cos - -Y-1r-Y4 d t t 4 t 

the distance will increase with t. So xz > xy and xz> yz and it is sufficient 
to show that xy + yz ::> xz. According to (25) 

1 1 
xy + yz-xz=tut{u + t}--4'!CP (u + t)-cp{u)-cp{t)l; cp{u) = u4 sin - (26) 

. u 
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Suppose u -< t (this may be supposed because the expression is symmetrical 
in u and t). Then 

I rp (u + t) - rp (t) - rp (u) I = I U rp' (t + 8 u) - rp (u) I 
< 4 u (u + t)3 + u (u + t)2 + Ui < (8 + 2 + 1) u t (u + t) 

from which it follows that the expression (26) is positive. 
The metric of M is topologically equivalent to the euclidean metric, 

hence M is an arc. 
Next it will be shown that the arc is rectifiable. Let E' (Po = x , 

PI' ... , P N = y) be a fini te subset of the arc with end points x and y and 

Ipl+! -pi I = I; = tiN, t = I x-y I. Then 

, (E') - ~ - (1 1 2 + 1 3 • 1 ) " =i~IPi-IPi-t -3/ E 4/1; Sin; 

which expression converges to t if e ~ O. Now the length l(x, y) of the 
arc is defined as the least upper bound of the numbers À(E) if Edescribes 
all fini te subsets of the arc. So we see l(x, y) :> t for À(E/ ) ~ t, but from 
(25) it is clear that for any fini te subset E the number À(E) < t. Hence 

l(x,y)=t. 

IE d denotes the distance of x and y, we have therefore 

K 2 ( ) - A /1- d _ A • 1 x. y ="'I ----p- - "'I-t Sin t . 
Hence 

IK(x,y)-21<1J for Ix-yl<21J. 

So the curvature K exists at every point of the arc and is equal to 2. The 
arc has constant curvature. 

In order to show that the Alt curvature does not exist we consider again 
the points x , y andz(y-x=u, z-y=t, z-x=u+t) and study 
the function K(x, y, z) as x and zapproach the fixed point y. According 
to (1) 

K 2 ( ) _ (d + dl + d 2) (d-d, + d 2) (d + dl -d2) (dl + d 2 -d) 
X. y. Z - 2 2 

d2 dl d2 
where 

Put 

P 

q 

d+dl +d2 

u+t 

d-d l +d2 

t 

d+d,-d2 r =-'-~--" 
u 

dl = f (u), d2 = f (t). d = f (u + t). 

2 _2- ~(U+t)2+~ + ~~ +~~rp(u+t)+rp(u)+rp(t)~ 
31( u+t u+t~ 4/~ u+t ~ 

1 1\, , I 1 ~ 
2 - 3/12 t2 + 3 u (u + t) 1+ 4! ; t3 

Sin t + rp (u + 8 1 t) ~ 

2- ;/12u2 +3t(u + t) I + ~/~ u3 sin~ + rp' (t+82 u) ~ 
~_ ~ ~ rp(u+t)-rp(u)- rp(t) ~_1 _2- ( t) 
2 4/ ~ u t(u + t) ~ - 1" 4! 1p u, . 
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It is easily seen th at 
lim p = lim q = lim r = 2 

as x and z independently approach to y. Thus the Alt curvature will exist 
if and only if lim s exists. 

For u = t 

m (2 u) - 2 m (u) . 1 . 1 
'Ijl (u. u) = T T = 8 U SlO - - U SlO -

2 u3 2u u 

which expres sion goes to zero if u --+ O. For u-1 = 2nn, t- 1 = 2n3n however 

(u + tP. 2 n n (n 2 + 1)3. 2 n n 
'Ijl (u, t) = - u t SlO n2 + 1 = - 2 n nS SlO n2 + 1 

and the limit of the expression for n --+ co is - I. Hence the limit of 
'Ijl (u, t) as u and t independently approach zero does not exist from which 
it follows that the arc has no Alt curvature. The Menger curvature does 
not exist either because the existence of the Menger curvature implies the 
existence of the Alt curvature. 

This example shows that the notion of curvature K is more general 
than the notion of Menger curvature. It may of course be possible that for 
certain metric spaces the definitions are equivalent. Without giving a set 
of necessary and sufficient conditions for such spa ces it is shown in the 
following that for arcs in a euclidean plane both definitions are equivalent. 
Because of theorem (9) it will be sufficient to prove that in this space the 
existence of the curvature K implies the existence of the Menger curvature. 
As a first result the following theorem will be proved. 

Theorem 10. An arc in a euclidean space with a curvature K at a 
point p has a tangent in a neighbourhood of this point. 

Let q and r be two arc points lying on the same si de of p such that the 
arcs pq, qr and pr have the lengths 1,11 and 1 + 11 respectively. Suppose 
further that q and r lie in a neighbourhood U (p, J) with the property that 
for each pair of arc points s, t in U (p, J) 

I K2 (r. s) - K21 < 4/ e • • (27) 

wh ere e is an arbitrarily chosen number. Putting pq = c, qr = a, pr = b, 
we have from (27) 

c=l-a[3+'YJIP' 

a=/l-al:+'YJ2 /: 

b = I + I1 - a (1 + 11)3 7- 'YJ3 (1 + 11)3 

with I 'YJi I < e. Let a denote the angle qpr. Then 

A • 21 (b+a-c)(c+a-b) 
"'ISlO Ta= be 

Suppose 11 -< 1. In this case 

b + a-c<21+ IOd3, 

c + a - b < (6a + 10 e) 13. 

• (28) 

• • (29) 
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Hence 

. 21 (6 a + 10 t) (2 + 10 t 12) P. 
4 SIn Ta < (I-a [2-t 12) (1-80' [2-8 t [2)' 

• (30) 

As the angle la is acute 

n 
ta <"2 sin t a 

From this inequality and (30) it is seen th at if 1 is sufficiently small 
(l <.1.) 

a<AI. • (31) 

wh ere A is a fixed number. Consider the points ql (qo = q) on the arc pq 
for which the lengths of the arcs pqi are equal to 2- il. If the angle qi p ql_l 
is denoted by ai we have from (31) 

at < A 12-1 

as a result of which the angle qipq (=!pi) satisfies the inequality 

!PI ::S; al + a2 + ... + al < A [ ( t + t + ... + ~/) < A I. 

Let s be an arbitrarily chosen point on the arc pq. Then s lies on one of 
the arcs qiqi+1 and so we have 

L $ P q ::S; tpi + L S P ql < A [ ( t + ... + ~I + ~I) = A I. 

Thus corresponding to each ~ > 0 th ere is a e > 0 such that for every pair 
of points q. s of the arc on the same side of p for which each of the 
distances pq and ps is less than e. the angle spq is smaller than ~. In a 
similar way it can be shown that the angle spq ~ 2:n: if s and q approach p 
from different sides. Hence the tangent at p exists. but not only at p for 
in the above account we may replace p by any other point in the neigh~ 
bourhood U(p. 15). which completes the proof of theorem 10. 

In the following we con fine ourselves to arcs in a euclidean plane and it 
will be proved 

(31) 

It is sufficient to prove that !P2 = al + a2' As will be shown later in this 
paper a2 < al' So there are only two possibilities !P2 = al + a2 and 
!P2 = al - a2' Suppose !P2 = al - a2' If a point r travers es the arc from 
q to ql' the angle r p q is a continuous function of the parameter and this 
function runs from 0 to al' So it passes the value !P2 = al - a2' (The 
angle cannot pass :n: because it is acute if Z is small enough). Let r be the 

point on the arc q ql for which Lr p q = !P2' Then the points Plq2 and r 

lie on a straight line and we have 

(Pq2 + q2 r -pr) (Pq2 -q2 r + pr) (-pq2 + q2r + pr) = 0.. (32) 

Let u be the arc length of pq2 and t the leng th of the arc q2r. Thus 
u = -!- z. t 1 < t < Zand 

pq2 + q2r-pr > 3 a ut(u + t)-e I u3 + t3 + (u + tP I 
> 18 a u3 -190 t u3 > 0 34 
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if E has been chosen small enough. It is equally impossible th at one of the 
other factors in (32) vanish. So qJ2 = al - a 2 cannot occur and there 
remains only the other possibility qJ2 = al + a2. 

By substituting the value of a. band c for 11 = 1 given in (28) into the 
formula (29) it is seen that corresponding to a E' th ere is a cl such that 

I ~: - 6 a I < E' for 1 < d' 

Hence 

2-; l-V6 a-E' < al < 2-; l-V6 a + E' 

from which it follows firstly that (again if E' is small enough) ai+1 < ai 

(already used for proving (31)) and secondly that the angle qJ between pq 
and the tangent at p satisfies the inequalities 

(33) 

The same is true however for the angle between rs and the tangent at r 
providing that rand s are contained in U (p. 15) and the leng th of the 
arc rs is smaller than 15'. Let q. r. s be three points in a neighbourhood 
U (p. d) where d is chosen smaller than 15 and so that the length of the 
arc between two arc points in U (p. d) is smaller than 15'. The lengths of 
the arcs qr. rs and qs denoting by 11 • 1 and 1 + 11 respectively it follows 
from (33) that the angle rqs ({3) satisfies the inequalities 

, I I ,1 ' -V2 E' P < (l + I,) r 6 a + E' -11 l6 a - E' < I r 6 a + E + I, ,I-

-=------;, -V2 E' P> I-V6a-E -11 , 1-· 
r6 a 

r 6 a 

Now suppose 11 <: 1 (For 11 :> 1 one proceeds in the same way with the 
angle rsq). 

The inverse of the radius of the circumscribed circ1e of the triangle with 
vertices q. r. s is given by 

K(q. r. s) = 2 sin P = ~in {3 • ~ 
r sIr s 

(34) 

Since (J > sin {3 > {3 - ~:. K = 2 -V 60 (see (28)) it is seen from (34) that 

lim K(q. r . s) = K 

as q. rand s independently approach p. So the Menger curvature exists 
and equals K. The result is 

Theorem 11. For aces in a euclidean plane the notion of eurvature K 
is equivalent with the notion of Menger eurvature. 

It should be observed that this proof is only valid for a euc1idean plane. 
not for euc1idean spaces of higher dimension. though it is natural to 
conjecture that theorem 11 will be true for every euc1idean space. whatever 
its dimension may beo 


