
Crystallography. - Calculation of the stereographic pole figure of the 
cubic lattice for any given direction [H KL]. I. By W. MAY. (Com~ 
municated by Prof. J. M. BURGERS.) 

(Communicated at the meeting of March 29. 1947.) 

1. Introduction. 

The method of SCHIEBOLD and SACHS 1) is of ten used wh en the orien~ 
tation of a single crystal must be determined. A transmission LAUE 
photograph of the single crystal is taken and from this (generally asym~ 
metric) photograph a stereographic pole figure is prepared. By means of 
a stereographic net the pole figure is rotated till an important zone lies 
on the reference circle; this operation brings the projection of the cor~ 
responding zone axis in the centre of th is circle. By preparing beforehand 
stereographic pole figures for the more important crystallographic directions 
of the crystal lattice (standard projections ). it is possible to find a cor~ 
respondence between the rotated projection and one of the standard 
projections. Indices can then be assigned to every LAUE spot and the axes 
can be plotted. 

On a LAUE photograph nearly always more than one zone can be 
observed. but it complicates the process too much if for every zone axis 
a standard projection is prepared. SCHIEBOLD and SACHS. who worked out 
the methad for the cubic face~centered lattice. have limited themselves to 
5 standard projections. viz. for the directions [110]. [001]. [112]. 
[1 3 0] • [1 1 1]; one of the corresponding zones is practically always 
present in the LAUE pattern. The above sequence of crystallographic 
directions is that of decreasing packing density. Our experience with a 
large nu mb er of LAUE photographs of aluminium single crystals confirms 
this limitation; the various projections were used according to the following 
percentage scale: [110] 60%. [001] 21 %. [112] 11 %. [130] 7%. 
[111] 1 %. 

In order to obtain precise results, it is necessary to construct these 
standard projections. as reproduction of those given by SCHIEBOLD and 
SACHS is rather inaccurate (for a radius of 7 cm the error is about 2°). 
especially when an enlargement is required. The construction can be made 
in several ways: 

a. construction with the aid of a stereographic net. by laying oH the 
calculated angles between the direction of the standard projection and the 
poles of the planes. It is quite probable that SCHIEBOLD and SACHS have 

1) E. SCHIEBOLD und G. SACHS. Z. Krist. 63 (1926) 34. 
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constructed their projections in this way 2). It is dear that this method is 
not very accurate either. as the accuracy of a stereographic net with a 
radius of 10 cm is about !a. As the net is also used for the orien~ation 
determination. the possible error is doubled and comes to 1 a. 

b. construction with the aid of descriptive geometry. This method has 
clearly the drawback that this construction becomes very complicated and 
that errors will occur frequently. The accuracy will be slightly bet ter 
than method a. 

c. calculation of the coordinates of the projection. With this method 
any desired degree of accuracy can be obtained so th at the precision of the 
standard projection is only limited by the plotting of the calculated 
distances and does not exceed a few tenths of a degree. In the following 
sections this calculation is given in detail. 

2. General course of the calculation. 

In fig. 1 the axes X and Y are mutually perpendicular and lie in the 
plane of projection. In their point of intersection 0 a perpendicular Z is 
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Fig. 1. 

erected so that OXYZ is a three~dimensional set of rectangular axes. The 
cubic lattice is represented by the three axes [1 00]. [0 1 0] and [00 1 ] 
and forms a second set. Let the direction [HKL] of the cubic lattice 

2) We have not been able to find another method published; see for example: 
Internationale Tabellen zur Bestimmung von Kristallstrukturen, Berlin 1935. Il, 687. 
R. GL20CKER. Materialprufung mit Röntgenstrahlen. 2. Aufl., Berlin 1936, 364. 
F. HALLA und H. MARK. Röntgenographische Untersuchung von Kristallen. Leipzig 

1937, 199. 
C. S. BARRETT. Structure of Metals. New-York. 1943, 33. 
A. TAYLOR. An Introduction to X-Ray Metallography, London 1945, 251. 
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coincide with the Z axis. [HKL] being the direction for which the standard 
projection must be calculated. This involves that the pole (HKL) lies in 
the centre of the projection and therefore the poles of the corresponding 
zone planes lie on the reference circle. It is further supposed th at [0 0 1] 
lies in the OYZ~plane; then the X axis lies in the plane 0 - [100]
[0 1 0] 3). In this way the pole (0 0 1) is always situated on the positive 
si de of the Y axis of the projection. as is also the case in the standard 
projections of SCHIEBOLD and SACHS. 

In the cubic lattice the direction [hkl] (that is the line connecting the 
origin with the point hkl) is perpendicular to the plane (hkl). so th at 
one may say that plane (hkl) is represented by point hkl. Let Q in fig. 1 
represent the point hkl; then first the coordinates X. Y and Z of Q must 
be calculated. Then the point of intersection of the direction [hkl] with 
the reference sphere (centre 0) is stereographically projected upon the 
plane OXY and the coordinates x and y of the projection are calculated 
from X. Y. Z. 

3. X. Y. Z as a function of H. K. L. h. k. I. 

The problem of the calculation of the coordinates of a point in a second 
set of rectangular axes when the coordinates in the first set are given. the 
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Fig. 2. 

TABLE I. 

U V W 

U' 81 bi Cl 

V' 82 b2 C2 

W' 83 bl Cl 

sets having the same origin and a given mutual position. is solved in 
elementary analytical geometry. If in table I al. bi and Cl (i = 1. 2. 3) 
represent the cosines of the angles between the two sets OUVW and 

3) This can be easily proved as follows: OX 1. plane OYZ and therefore OX 1. 
[001]; now [100] and [010] are both 1. [001] and therefore OX. [tOO] and [OtO]lie in 
the same plane. perpendicular to [001]. 
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OU'V'W' (fig. 2). then the transformation equations for the coordinates 
are: 

v=b l u'+b2v'+b3 w' ....... (1) 
u = al u' + a, v' + a3 w' l 
W = Cl u' + C2 v' + C3 W' 

Let the set OUVW of fig. 2 be set OXYZ of fig.land set OU'V'W' the 
cubic lattice. then we have: 

u =- Y: v =-X: W =+z~ . • • • • (2) 
u'=+k: v'=+h: w'= + I. 

The cosines are related to each other by six independent equations: 

a7 + b7 + ct = 1 (i = 1. 2. 3) a/aj + bib j + CiCj = 0 (i = 1. 2. 3; 

i = 1. 2. 3; i #= j) . 
From this and the location of the cubic lattice (section 2) they can be 
calculated (see table 11): 

TABLE 11. 

KL . H K 
al = + i(H2+K2). ~ H2: bi = - iH2 + K2: Cl = + i Z H2 

HL K H 
a2 = + i (H2 + K2) . Z H2: b2 = + y H2 + K2: C2 = + i ~ H2 

• (3) 

w+~ L 
aJ=- i ZH2 : b3= 0 ; C3=+ i ~H2 

Putting (2) and (3) in (1) gives: 

X- Hk-Kh . y_H(Hl-Lh)+K(KI-Lk). Z=Hh+Kk+LI (4) 
-iH2+K2' - Y(H2+K2)·~H2' i ZH2 

where I H2= H2 + K2 + L2. 

4. x and y as a function of H. K, L. h. k. I. 

The point of intersection of the line OQ with the reference sphere 
(centre O. radius R) is now projected stereographically in the plane of 
projection OXY. It will be deal' that this is whally equivalent ta projecting 
the plane (hkl). 

In fig. 3a is drawn the plane through the Z axis and point Q and the 
intersection of this plane with the reference sp here. In fig. 3b the pro~ 
jection plane is given. It is easy to see that: 

I Vl-coSLMQO l/OQ-MQ 
OS=RtanyL.ROV=R l+cosL.MQO=R V OQ+MQ' 
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where ~ h2 = h2 + k2 + [2. 

z 

Fig. 3a. 

Fig. 3b shows that: 

os OS 
x = ,/ X and y = l' Y. ,X2+ y2 X2 + y2 

Yr 

Fig.3b. 
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With equations (4) this gives: 

x - (Hk-Kh)· f"Yfi2 R' 
- (fIH2 • Ih 2 + Hh +Kk + Ll)· fH2+K2 ' 

• (5) 
- H~-~+K~-~ R 

y - (fIH2. Ih2+ Hh +Kk+ Ll)· fH2+K2 . 

With these equations it is possible to calculate the coordinates of the 
stereographic projection of every plane in the cubic lattice for any given 
direction [HKL]. 

It is possible to extend this method to other symmetry systems, but the 
difficulties in handling the more and more complicated equations win 
grow rapidly. 


