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sibility during the first 3 cleavages the eggs show an alternation of phases
of increased and lessened sensibility corresponding to definite phases of
cleavage.

5. It is evident that the pattern of determination of the organs of the
head has not yet been laid down irrevocably at the 24-cell stage in Limnaea.
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Physics, — Recovery and recrystallization viewed as processes of disso-~
lution and movement of dislocations. II. By W. G. BURGERS,
(Laboratorium voor Physische Scheikunde der Technische Hooge-~
school, Delft.) (Communicated by Prof. J. M. BURGERS.)

(Communicated at the meeting of March 29, 1947.)

Il Block-structure of the crystalline state.

Starting from the assumption [LENNARD JONES (13)] that an “ideal”
lattice represents the condition of minimal free energy for a crystal, we
must conclude that even in the case of a pure element or compound, every
crystalline testpiece, independently of its being uni- or polycrystalline, un-
deformed or coldworked, represents a “‘metastable” state of thermodyna-
mical equilibrium. The structural differences between these states are
merely gradual and not essential. In what follows we shall consider this
point somewhat more in detail,

11, 1. Single crystal.

According to numerous cobservations, every “real” crystal, apart from
“macroscopic’ irregularities | “lineage structure’” of BUERGER (14) 5)], has
a certain “mosaic” structure, consisting of ideally regular lattice blocks [or
lamellae, according to GRAF (16) ] with dimensions of the order of magni~
tude of 0.1—1 micron, the blocks, however, including angles varying from
perhaps seconds to minutes of arc. Their presence follows partly from
measurements of the intensity of diffracted X-rays [DARWIN (17); EWALD
and RENNINGER (18); DEHLINGER and GISEN (19) ], partly from microscopic
observations of the natural or etched surface of crystals [see in particular
GraAF (16)]. Also the “structure-sensitive’’ character of many physical
and mechanical properties [SMEKAL (20)] leads to the same conclusion.
Finally the often considerable influence of minute quantities of
foreign atoms on the properties of pure metals seems to find a plausible
explanation on the assumption that such atoms are preferably “adsorbed”
at the boundaries of the lattice blocks and in some way or other exert here
their remarkable influence [BraGG (21)].

As to the “structure” of the block-boundaries, suggestions have been
made by various authors [J. M. BURGERS (22): BrRAGG (23)]. It is now
generally assumed that the deviations of the atoms from their normal
positions in these transition layers, which necessarily must occur with
regard to the positions of the atoms in both adjoining blocks, are as small
as possible. Fig. 4 shows a schematic picture given by J. M, BURGERS (22):
here the “fit" between two blocks which include a small angle a, is brought
about by a succession of “edge-dislocations” (TAYLOR-dislocations), all of
the same sign, lying at equal distances h, determined by tg o = 4y/h, where

5) In this connpection recent observations by LACOMBE and BEAUJARD (15) of
corrosion patterns on aluminium crystals, prepared by recrystallisation, are of great interest,

@
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%, is the lattice constant. [It may be remembered that, by removing the
atoms over a certain area of a lattice plane, as indicated in fig. 3 (which is
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Fig. 3. Lattice region (supposed to extend to infinity in the direction of the z-axis,

perpendicular to the plane of the drawing) with two edge-dislocations (TAYLOR

dislocations), one positive (above) and one negative (below). The dislocations are

obtained by removing the atoms over @ certain area of the lattice perpendicular

to the x-axis. The dislocation lines extend at -+ and — parallel to the z-axis
(after J. M. BURGERS (22)).

supposed to extend to infinity in a direction perpendicular to the plane of
the drawing), two edge~ or TavLOR-dislocations are created, one of which
(indicated by +) is called positive, the other (—) negative] 6).

It is, of course, a most important question whether for a definite sub-~
stance, a pure metal for example, its crystals are always characterized by
a definite mosaic structure. This question is closely related to the not yet
solved problem of crystal growth, On the one hand it is certain that the
degree of imperfection of crystals can be largely influenced by conditions
of growth, at least as to their (semi~) macroscopic faults. Moreover it fol-
lows from measurements of RENNINGER (18) with rocksalt that also the
“gize” of the blockstructure, which governs the intensity of reflected
X-rays, varies for artificial and natural crystals. ApDINK (18a), from
measurements of the specific gravity, concludes that crystals of the alkali-

6) 1In the case, shown in fig. 4, the two blocks are rotated with regard to each other
about an axis lying in the plane of their common boundary (perpendicular to the plane
of the drawing). As is indicated in J. M. BURGERS' paper, the boundary between two
blocks, which are rotated with regard to each other about an axis pez'pendz’cular to this
boundary, can be realized by a succession of dislocations of a different type (so-called
“screw-dislocations”).
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chlorides, prepared by melting, are “incomplete” compared with those from
a solution. With regard to our subject, it is in this connection of special

0

Iljxg. 4, Schfematic picture af a transition surface between two lattice domains, formed
y a set of parellel dislocation lines of edge type, all situated in the plane x =10
(after J, M. BURGERS (22)).

interest that measurements by DEHLINGER and GISEN (19) with aluminium
have established that crystals formed by recrystallization have a‘ more
gronounced mosaic (viz. smaller blocks and probably larger angular degvié~
tions between them) than crystals obtained from the melt.

On the other hand according to GRAF (16) all crystals, independent]
of their way of preparation, possess a structure composed ;)f lamellae thz
thick1.1ess of which varies between narrow limits. In this connection“dRA;
mrentlons two papers by HERLINGER (24), according to which at the surface
of a growing lattice~-block “dislocated” atoms can only be stabilized so lon
as the block is smaller than a minimum size; whereas for largcﬁ~ l;locks t}g
probability of assuming irregular positions increases to such extent. t‘q‘;;
f.uther growth becomes less probable than formation of a new block ”i;'he
lm.nting size is estimated as approximately 0.1 micron. A similar procéss of
this nature might lead to a block~ or lamellar structure with a size of biocks
(Iar?ellae), determined by the lattice forces and thus characteristic fér
a given lattice. According to M. BORN (24a) a perfect single crystal
owing to the asymmetry of the vibrations of atoms, could not be larger thﬁr’
about a thousand repeat distances in any direction, since at dist'arcf;;
g.reater than this the vibrating atoms would get completely out of steDc 'i’he
figure of 1000 is obtained as a rough mean value of the reciprocal ‘o’f the

#
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DEBYE temperature multiplied by the thermal expansion coefficient for
many substances 7).

I, 2. Polycrystal (crystal aggregate).

In an annealed polycrystalline test-piece the “block-system’” is somewhat
more complicated in character. Here, superimposed as it were on the mosaic
structure inside the individual crystallites, is a system of intercrystalline
boundaries, where much larger angular deviations between the lattices of
adjacent blocks have to be bridged. Also these “true” grain boundaries
most probably are not “amorphous”, but possess a definite structure, depen-~
dent on the relative orientation of adjacent grains. This conception finds
experimental support in experiments by CHALMERS (28) on the strength of
double-crystals of tin; by SNOEK (29) on the intercrystalline oxydation of
polycrystalline nickeliron, with~ and without preferential orientation of the
crystallites; and by LACOMBE and BEAUJARD (30) on the corrosion of high-~
purity aluminium. In these latter experiments, the chemical reagent
(HNO; + HCl + HF), applied after electropolishing, produced, apart
from corrosion figures inside the individual crystallites, boundary lines
between neighbouring crystallites which were clearer developed the larger
their difference in lattice orientation.

On the basis of such experimental evidence it seems justified to assume
[J. M. BURGERS (22); W. L. BrAGG (23); LENNARD JONES (13)] that also

Fig. 5. Schematic picture of a transition layer (“grain boundary’) between two lattice

blocks, including a large angle. The layer is built up of fwo sets of dislocation lines of the
edge type (compare fig. 4) {after J. M. BURGERS).

7y As'is well known, ZWICKY (25) has postulated the existence of a stable mosaic~
structure on epergetic grounds. Later criticism of his cenceptions by OROWAN (26) and
BUERGER (27) have shown that his conclusions cannot be maintained.
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the grain boundary constitutes the best possible fit between adjacent grains,
affecting a minimal number of lattice planes in the transition region. As
pointed out in (22), a transition surface between lattice blocks including
an arbitrary angle might be built up in an analogous way, as is shown in
fig. 4, now, however, introducing a double set of dislocation lines 8). Fig. 5
for which I am indebted to J. M. BURGERS, shows this schematically. ’

The conception of a grain boundary, built up of dislocations, is further-
more illustrated in a very striking way by BRAGG's experiments with soap
bubbles (31), as fig. 6 may show.

Fig. 6. “Intercrystalline boundary”, as shown by floating soap bubbles
(after W. L. BRAGG (31)).

iI, 3. Cold-worked state.

The experimental fact, first observed by VAN ARKEL (32) and by
DAVEY (33), that the DEBYE-SCHERRER pattern of a cold-worked metal
differs from that of the annealed state at most by a slight broadening or
a decreased intensity of the interference lines ¢), is proof that even here by
far the major part of the atoms form still coherent lattice regions (lattice
blocks). So once more, according to the current view [ DEHLINGER (3); KORN~
FELD (2); BragG (21); (1), §§ 52—54] the resulting structure, even in the
most severely worked condition, is conceived as consisting of lattice-blocks
held together by systems of dislocated atoms. The main difference betweez;
the cold-worked and the annealed state consists in the circumstance that
cold-working, as a consequence of alternation and mutual hindrance o£

8 " . . . .

). As remarked in (22), in this case a certain relation must be fulfilled between the
spraungs o.f the two sets and the angle of inclination of the transition plane, in order that
at great distances from this plane the lattices shall be frec from stress.

9 . B
) We do not consider here the changes due to the formation of preferential
orientations of the crystallites. B




600

various active glide-combinations, has caused a slight elastic stressing and
bending of the blocks, as is evident from the above-mentioned changes in
line-width and intensity of the DEBYE-SCHERRER lines 10). Simultaneously
the essential characteristic feature of the annealed polycrystalline state,
namely the presence of groups of nearly parallel lattice blocks inside the
original grains, which, taken together, include much larger angles with
adjoining groups (grains), is more or less effaced.

As Woob (35) pointed out, an estimate of the minimum size of the blocks
may be obtained by assuming that the broadening of the DEBYE-SCHERRER
lines is wholly due to their smallness. In this way sizes of the order of
0.1 u are calculated for most metals (in aluminium, where the broadening is
very slight, this figure comes out as approx. 1 ). DEHLINGER and
KOCHENDORFER (36), taking into account that part of the line-broadening
is due to the stressed state of the blocks [VAN ARKEL and BURGERS (37);
MEeGaw, LIPSON and STOKES (38) ], give the size of mosaic-blocks in rolled

copper as 0.4 u. :
In fig. 7 we give a schematic picture of the deformed state, in which the

Fig. 7. Schematic representation of the cold-worked state: elastically stressed and bent
“mosaic-blocks” connected by transition layers of dislocated atoms (taken from (1)).

stressed and bent state of the blocks is largely exaggerated. The transition
layers have only been indicated by dots, We may consider them as built up
of a complicated system of various types of dislocations. To give a more

10 The exceptional case of aluminium, where line-broadening after cold~-work is
practically absent or in any case much less pronounced then with most other metals, might
be understood if an alternation of the active glide-planes were more easily brought about
in this metal than in the others [DEHLINGER (3) p. 755; see also references in (1), § 41,
§47]. Experiments with sheared aluminium crystals ‘support. this view [BURGERS and

LEBBINK (34)].

Y
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detailed picture is, considering all the different possibilities [see for example
the cases treated in (22)], not well possible,

11, 4. “Twodimensional” block-structure.

For the case however, that we limit ourselves to a “‘twodimensional”
aggregate 11) and take into account only the presence of dislocations of
the edge type, as shown in fig. 4, we can say for certain that the “structure”
of the layer is essentially dependent on the angle of misfit between adjoin-~
ing blocks: there, where large angles have to be bridged, a concentration
of dislocations of the same sign (see fig. 3) is unavoidable (fig. 4 and 5).
The “density” of the concentration of either positive or negative disloca~
tions increases generally speaking with this angle 12).

It must not be left out of sight that also lattice blocks which are in
parallel or nearly parallel positions can be separated by systems of dislo-
cations; when this is the case these systems must contain an equal {or
nearly equal) number of dislocations of both signs. These may alternate
either “individually” or in groups. Some arrangements, which can be
envisaged, have been indicated in a purely schematic way in fig. 8 13).

The conception of the cold-worked state as built up of elastically stressed
lattice~blocks, connected by transition layers of dislocated atoms, is, for the
“two-dimensional” structure considered here, to some extent confirmed by
the amount of energy taken up in the course of the deformation process.
As pointed out in (1) (8§ 55, 56), and by BRAGG (40) and others, the
elastic energy in the blocks is only a small fraction (of the order of 1 %)
of the total energy of cold-work. This latter is, according to the measure~
ments. of TAYLOR and QUINNEY (41) for copper maximally about 10 calories
(~4.108 erg) per cm3, If we put the energy of a dislocation line (as
defined in fig. 3) at about 108 electron volt (~ 10-% erg) per cm [SEITZ
and READ (42); KOEHLER (43)], then the number of dislocation-lines per
cm? is of the order 1012, If all these were arranged along lines 0.2 micron
(2.10-5 cm) apart (that is, at the sides of mosaic blocks of this width),
this number would amount to 2.107 dislocation lines per ¢m, or about 1 dis~
location line per 5A9: this comes near to one dislocation line per every two
and a half atomic plane, This is, as BRAGG (40) remarks, equivalent to

11} “T'wo-dimensional” is here taken in this sense that the pattern extends without
change of structure in a direction perpendicular to the plane considered in the drawings.

12) At least up to a certain extent: in the cubic system for example, due to symmetry
relations, the angle 45° — o may be equivalent. to 45° -+ a,

13} One might, of course, introduce the assumption of dislocations inside the blocks:
In a stressed block, which, taken as a whole, is nof bent, we could have an equal number
of positive and negative dislocations; and an excess of either positive -or negative in an
elastically bent part. In how far this is justified depends to some extent on what one
considers as a “block” [compare our fig, 11; also KOCHENDORFER (39) pp. 119 ff].
In any case we do not think this additional assumption could affect our reasoning in the
following paragraphs in an essential way.,
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an interface between two-dimensional closed packed arrangements, meeting
at 30°, which is the largest angle at which they can meet (since 60° is

Fig. 8. Schematic representation of transition layers between neighbouring lattice blocks,
built up of systems of dislocations of edge-type (TAYLOR-dislocations), Here and in

+
figures 10 and 11 such dislocations have been indicated by | (positive dislocation) and |

(negative dislocation): the | represents the “direction” of the layer of atoms removed from
the lattice (compare fig. 3). The direction of “easy mobility” of the dislocations lies in
the plane of the drawing perpendicular to the direction of the removed layer.

a, b: adjoining blocks non-parallel: surplus of dislocations of same sign.
c. d: adjoining blocks parallel: equal aumbers of -~ and — dislocations.

equivalent to 0° owing to symmetry). In this simplified picture, this actually
represents the maximum of crowding of dislocations, in agreement with the
maximal degree of cold-work of the metal 14),

11, 5. Stability of the block structure.

In the preceding considerations we have left aside the guestion in how
far a deformed block-structure of the type we have in mind will be stable
(or, rather, metastable). With regard to this problem only a few indications
can be found in the current literature. It may be useful to recapitulate the
basic conceptions which should be kept in mind in discussing this subject.
The cohesive forces in the lattice are derived from the electric and other
short range forces which neighbouring atoms exert upon each other.

14) In (40), this conclusien is reached in a somewhat different way.
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Leaving aside the normal thermal vibration, every atom is in equilibrium
under the forces acting upon it; in other words the forces upon every atom
must have zero resultant. In a perfectly regular lattice the system of forces
-exhibits exact periodicity. Hence when we imagine a cut to be made in the
lattice by an element of surface extending over a whole number of periods,
the forces exerted by the atoms lying on one side of this element upon the
atoms lying on the other side, will be zero, provided the system is not
acted upon by exterior forces. In that case we say that the lattice is un~
stressed. Bvery misfit, however, produces some irregularity, which will
have its influence both upon the positions of neighbouring atoms and upon
the forces experienced by them. This influence theoretically can extend
.over infinite distances, although in most cases the presence of irregularities
.of more or less opposite character has a compensating effect, which mate-
rially reduces the action radius of a single irregularity. When we now again
imagine a cut to be made in the lattice by means of a small element of
surface, extending over a whole number of periods, the forces exerted by
‘the atoms lying on one side of the element upon the atoms lying on the
other side, may differ from zero, so that we can say that there are stresses
‘in the lattice.

When the lattice irregularities are of a well defined character, as is the
case with dislocations, we may consider those dislocations as the seats of
forces, producing the observed stresses in the lattice. Some authors, like
KORNFELD (2), therefore use the expression that a system of elast;cally
stressed blocks is kept in equilibrium by forces which have their seat in
‘the transition layers (where the dislocations are to be found). In the same
«connection BRAGG (21) speaks of a “dynamic stability by the boundaries”
.and compares the cold-worked state to a foamstructure [compare also
BENEDICKS (44)].

:fleg. 9. Pair of dislocations, one positive (at the left) and one negative (at the right),

ormed as the result of a local glide jump {after OROWAN (45). In the “abridged” way of

irepresentation, described in fig. 8, such a pair of dislocations (“Verhakung” as callec;,by
DEHLINGER) is indicated with <~ | .

4 40
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Now the concept of stability enters into the picture when we see the
possibility that a number of atoms in the neighbourhood of a dislocation
may be able to find more than one position of equilibrium without being
obliged to pass through a high energy barrier. In such a case a shift from
one position of equilibrium to a neighbouring one may initiate a displace~
ment of the irregularity, and in particular the displacement of a dislocation
line. As soon as such possibilities are taken in view a degree of stability
can be defined, depending upon the energy which must be communicated
to certain atoms in order to initiate a change in the configuration of the
system of dislocations.

DEHLINGER (3) has been the first to attack this question in a quantitative
way. His considerations are limited to a series of “Verhakungen”, a “Ver-
hakung’’ being approximately equivalent to the combination of a positive
and a negative TAYLOR-dislocation, as can be formed in a perfect lattice
by a so-called glide jump, in the way indicated in figure 9, due to
OROWAN (45).

In what follows we shall schematize a TavLOR-dislocation by means of
a plus or minus sign, accompanied by a vertical dash,

+ or |

| —
the dash indicating the ‘removed” lattice plane (compare fig. 3). As
is well known, the direction of easy mobility of such a dislocation lies
perpendicular to the removed lattice plane, thus in the case indicated
in the horizontal direction, in the plane of the paper. A “Verhakung” will be

indicated by + | .
I —

According to DEHLINGER's calculation 15) an isolated “Verhakung" is
unstable: there is a strong tendency for the occurrence of such shifts that
the two dislocations of opposite sign move towards each other and mutually
“neutralize’” as soon as they have come together. Following TAYLOR (46)
we may consider this as a consequence of a certain “‘attraction” between
dislocations of opposite sign. Now the important feature pointed out by
DEHLINGER is that in the case of a large aumber of ‘“Verhakungen” lying in
a single row 16), the system will become stable when the density (that is,

l | | |
+ - + - + —
l l I I
the number of “Verhakungen” per unit length) surpasses a certain value.
By stability is meant that a positive threshold energy must be introduced

15) I am indebted to Mr. F. R. N. NABARRO (Bristol) for a closer elucidation of

DEHLINGER's conclusions.
16)  Such series may be created if a large number of glide jumps of the type shown in

fig. 9 all took place at different points along the same glide plane [cf. KOCHENDORFER:

(39), loc. cit.].
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into the system, before dislocations can be dissolved, whereas in the case
of a single “Verhakung” (one pair of dislocations only) the thermal energ
of the atoms is sufficient to bring about mutual approach and neutralizatioz
of the two dislocations,

The “critical” density of the series depends upon the elastic constants of
the metal; for a common metal as copper or silver DEHLINGER estimates it
to be reached for one “Verhakung” per every 5 or 10 atoms. For larger
densities the threshold energy (“activation energy for dissolution’) g1'jn~
creases, which means that the system of dislocations becomes more difficult
to dissolve and thus is more stable,

Wo do not know of similar calculations for more complicated sets of
dislocations. For example the question has not been considered whether
an arrangement as indicated in fig. 10a, where every horizontal row carries
an alternating system of positive and negative dislocations, which thus
could neutralize each other, is stable in DEHLINGER's sense, ’

In the calculations referred to it has been assumed that the lattice is not
affected by exterior forces, We can, however, also put the questio nof
stability for a lattice which is stressed by the application of exte(iior fon :
Such cases have been treated by TAYLOR (46), who has consideredrctisq
stability of certain two-dimensional arrangements, likewise containin .
equal number of positive and negative dislocations of edge-type 1'ng t;;lxre1

- T -+ = 4
P I,
- 4I. - .i, _I. 4
A
Jlf 4|— T + o+ 4

[

Fig. -di i

digoclot._ Tw;hdlmcfnsmnal arrangements of alternating positive and negative TAYLOR
ations, e direction of “easy mobility” (“directi ip”) i “eun

: v (“direction of slip”)

1 . ) . . p”) is supposed to run

alorlzon.t'fally in the figure; the dislocations can be formed by slip parallel to this direction

b. pOSftfve and negative dislocations alternate along the same “direction of slip” .

. positive and negative dislocations lie on alternating '‘directions of slip” '
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case when an exterior shearing stress acts in a direction parallel to the
direction of easy mobility. An example of such an arrangement is shown
in fig. 105, which differs from that depicted in fig. 10a, by the fact that in
fig. 100 dislocations of opposite sign lic on alternating rows., TAYLOR has
shown that in the absence of exterior stress the system of fig. 100 is stable.
1f, however, an external shear stress acts parallel to the glide plane, a dis~
placement of all the positive with regard to all the negative dislocations is
brought about. Starting from the arrangement of fig. 10D, every value of
the shear stress which lies below a certain maximum value, gives a new
stable equilibrium with a definite displacement of the positive with regard to
the negative dislocations. As soon as the stress surpasses a certain value,
the two sets of opposite sign migrate steadily in opposite directions (until
they are stopped by some obstacle, for example a transition layer between
two mosaic blocks). The magnitude of this critical stress increases with the
“density’ of the dislocation lines per unit surface,

Finally BRAGG (23) has considered the mobility of a series of dislocation
lines of the same sign which form the boundary between two mosaic blocks
as shown in fig. 4 (also in fig. 8a and 8b). Such a series can be moved by
a relatively small force acting in a direction perpendicular to itself (thus
horizontal in the figure), which is the direction of “‘easy~mobility”’ of each
dislocation separately. In this process the individual atoms in the transition
layer suffer only slight displacements. The resultant effect is equivalent to
the growth of one block at the cost of the other, the disappearing block
suffering as it where a rotation about an axis perpendicular to the plane
of the drawing, so that its orientation gradually coincides with that of the

growing blocks 17 ).
(To be continued.)

17} In (13) LENNARD JONES considers the movement of two adjoining lattice blocks,
arranged in a similar way as shown in fig. 4, in'a direction parallel to the transition plane
{vertical direction in the drawing).

Mathematics. — Eine Bemerkung iiber das Mass in Strukturen. By J.
RIDDER. (Communicated by Prof. W, vaAN DER WOUDE.)

(Communicated at the meeting of May 31, 1947.)

Die Bemerkung, um welche es sich hier handelt, ist die Konstatierung
dass die in den Theoremen A und B enthaltene Bedingung notwendig und:
hinreichend ist fiir die Messbarkeit der abgeschlossenen Somen sowohl
beim beschrankt- wie beim total-additiven Mass.

I. Beschrdnkt additives Mass.

§ 11). Eine Struktur S sei aufgebaut aus Elementen, Somen genannt
die im folgenden mit kleinen Buchstaben angedeutet werden, und der;
folgenden Axiomen geniigen: f

Azxiom 1°: a) a ¢ a; f) ausac bund b ¢ ¢ folgt a C c.

Definition. a=—= 0, fallsac bund b C a.

f Ill)efinition. Ein Soma ab wird Produkt des Somenpaares a, b genannt
alls: '

a) .abc a; ) abc b; y) aus cc a und ¢ ¢ b immer folgt ¢ C ab

Axm‘)m 2°;  Fiir jedes Somenpaar a, b gibt es ein Produkt ab .

Definiticn, Ein Soma a -+ b wird Summe der Somen a, b gena;lnt falls:
a) ac at+b;fybc atby)ausac cundb Ccimmer folgta*l*'bc '

AX{om 3°: Fiir jedes Somenpaar a, b gibt es eine Summe a + b -

ﬁxTom :Z. Es gil};t ein Soma 0 mit 0 C a fiir jedes Soma a € S. ‘

xiom 5°: Es gibt ei ni iir j
Axiom 6°: ac +g bct = (ioj—lab;cr.mt ? < 1linjedes Somaa ¢ 51,
Definition.

Ist a ¢ b, so wird durch b—a j
, — a angedeut
das den Bedingungen geniigt: gedeutet jedes Soma =

ax—=20, a+x=—»>n.
Axiom 7°:
Soma b — a.

Eine derartige Struktur ist eine BooLEsche Algebra.

Zu jedem Paar von Somen a, b, mit a C b, gibt es ein

§ 2 1). F“ . . . .
o) deﬁni:rrt‘]edes Soma x € S sei eine (reellwertige) Massfunktion

Def;mtxon‘ Ein Soma a heisse m°{x)-messbar oder messbar in bezug
auf m°(x), wenn fiir jedes Soma w, mit m®(w) endlich,

. m®(w) = m°(wa) 4 m°(w — wa)

1) Siehe J. RIDDER, Acta math, 73 (1941), S, 131—173,

1a)  Auch ohne Annahme di i i A
ihre Gt nnahme dieses Axioms behalten die nachfolgenden Satze und Theoreme

@






