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sibility during the first 3 cleavages the e9gs show an alternation of phascs 
of increased and lessened sensibility corresponding to definite phases of 

cleavage. 
5. It is evident that the pattern of determination of the organs of thc 

head has not yet been laid down irrevocably at the 24~ce11 stage in Limnaea. 
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Physks. - Recovery and recrystallization viewed as processes of disso~ 
lution and movement of dislacatians. n. By w. G. BURGERS. 
(Laboratorium voor Physische Scheikunde der Technische Hooge~ 
school, Delft.) (Communicated by Prof. J. M. BURGERS.) 

(Communicated at the meeting of March 29, 1947.) 

II Black~structure of the crystalline state. 

Starting from the assumption [LENNARD JONES (13)] that an "ideal" 
lattice represents the condition of mini mal free energy for a crystal, we 
must conclude that even in the case of a pure element or compound, every 
crysta1line testpiece, independently of its being uni~ or polycrystalline, un~ 
deformed or coldworked, represents a "metastabIe" state of thermodyna~ 
mica 1 equilibrium. The structural differences between these states are 
merely gradual and not essentiaI. In what follows we shall consider this 
point somewhat more in detail. 

II, 1. Single crgste.!. 

According to numerous observations, every "reai" crystal, apart from 
"macroscopie" irregularities ["lineage structure" of BUERGER (14) 5)], has 
a certain "mosaie" structure, consisting of ideal1y regular lattice blocks [or 
lamellae, according to GRAF (16)] with dimensions of the order of magni~ 
tude of 0.1-1 micron, the blocks, however, incIuding angles varying fr om 
perhaps seconds to minutes of arc. Their presence follows partly from 
measurements of the intensity of diffracted X~rays [DARWIN (17); EWALD 
and RENNINGER (18); DEHLlNGER and GISEN (19)], partly from microscopie 
observations of the naturalor etched surface of crystals [see in particular 
GRAF (16)]. Also the "structure~sensitive" character of many physical 
and mechanica! properties [SMEKAL (20)] leads to the same conclusion. 
Finally the aften considerable influence of minute quantities of 
foreign atoms on the properties of pure metals seems to find a plausible 
explanation on the assumption that such atoms are preferably "adsorbed" 
at the boundaries of the lattice blocks and in same way or other exert here 
their remarkable influence [BRAGG (21)]. 

As to the "structure" of the block~boundaries, suggestions have been 
made by various authors [J. M. BUHOEHS (22); BRAGG (23)]. It is now 
generally assumed that the deviations of the atorus hom their normal 
positions in these transitioll layers, which necessarily must occur with 
re gard to the pOSitiOllS of the atoms in both adjoining blocks, are as small 
as possible . .f:1'ig. 4 shows a schema tic pieture given by J. M. BURGERS (22): 
here the "fit" between two blocks which include a sma11 angle a, is brought 
about by a succes sion of "edge~dislocations" (TAYLOR~dislocations), all of 
the same sign, lying at equal distances h, determined by tg a = Ào/h, where 

5) In this connection recent observations by LACOMBE and BEAUjARD (15) of 
corrosion patterns on aluminium crystals, prepared by recrystallisation, are of great interest. 
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;'0 is the lattiee constant. [1t may be remembered that, by removing the 
:ltoms over a certain area of a lattice plane, as indieated in fig. 3 (whieh is 
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Fig. 3. Lattice region (supposed to extend to infinity in the direction of the z~axis, 
perpendicular to the plane of the drawing) with two edge~disloeaNons (TAYVOR' 
dislocations), one positive (above) anel one negative (bclow). Thc dislocations are 
obtained by removing the atoms o~er a certain area or the lattice perpenelicular 
to the x~axis. The dislocation lines extenel at + anel -, paral1.d to the z~axi8 

(af ter J. M. BURGERS (22)). 

supposed to extend to infinity in a direction perpendicular to the plane of 
the drawing). two edge~ or TAYLOR~dislocations are created, one of whieh 
(indicated by +) is called positive, the other (-) neg ative] 6). 

It is, of course, a most important question whether for a definite sub~ 
stance, a pure metal forexample, its crystals are always characterized by 
a deflnite mosaic structure. This question is c10sely related to the not yet 
solved problem of crystal growth. On the one hand it is certain that the 
degree of imperfection of crystals can be large1y influenced by conditions 
of gl'owth, at least as to their (semH macroscopie faults. MOl'eovel' it fol~ 
lows from measurements of RENNINGER (18) with rocksalt that also the 
"size" of the blockstructure, which governs the intensity of reflected 
X~rays, varies for artificial and natura! crystals. ADDINK (18a), from 
measurements of the specific gravity, concludes that crystals of the alkali~ 

C) In the case, shewn in fig. 4, thc two bloeks are rotateel with l'egard to each ether 
about an axis lying in the plane of their commen bounelary (perpendicular to the plane 
of the drawing). As is indicateel in J. M. BURGER'" paper, the boundary between two 
bloeks, which are rotateel with regard to each other about an axis pel'pendiC!llar to this 
bOl1ndary, can be realized by a sl1ccession of dislocations af a different type (so-called 

"screw-dislocati'ons") • 
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chlorides, prepared by melting, are "incomplete" compared with those Erom 
a solution. With regard to our subject, it is in this connection of special 

o'----x 
Fig. 4. Schematic picture af a transition surface between two lattice domains, formed 
by a set of parel!el dislocation lines of eelge type, all situateel in the plane x = 0 

(af ter J., M. BURGERS (22)). 

interest that meaSUl'ements by DElILINGEH and GISEN (19) with aluminium 
have established that crystals formed by recrystallization have a more 
p.ronounced mosaic (viz. smaller blocks and probably larger angular devia~ 
tIons between them) than crystals obtained from the meIt. 

On .the other hand according to GRAF (16) all crystals, independently 
of. thelr way of preparation, possess a structure composed of lamellae, the 
thlckness of which varies between narrow limits. In this connection GRAF 
mentions two papers by HERLINGER (24), according to which at the surface 
of a growing .lattice~block "dislocated" atoms can only be stabilized sa long 
as the ~~ock IS smaller than a minimum size; whereas for larger blocks the 
probablhty of assuming irregular positions increases to su eh extent that 
f.urther growth becomes less probable than formation of a new bloek. The 
111~iting size is estimated as approximate1y 0.1 micron. A similar process of 
tbs nature might lead to a block:~ or lamellar structure with a si ze of blocks 
(lamellae), detennined by the lattice forces and thus characteristic for 
a ~iven lattice. According to M. BORN (21a) a perfect single crystaL 
owmg to the asymmetry of the vibrations of atoms, could not be larger than 
about a thousand repeat distances in any direction, since at distances 
greater than this the vibrating atoms would get complete1y out of step. The 
figure of 1000 is obtained as a rough mean value of the reciprocal 'of the 
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DEBYE temperature multiplied by the thermal expansion coefficient for 

many substances 7). 

II, 2. Polycrystal (crystal aggregate). 
In an annealed polycrystalline test~piece the "block~system" is somewhat 

more complicated in character. Here, superimposed as it were on the mosaic 
structure inside the individual crystallites, is a system of intercrystalline 
boundaries, where much larger angular deviations between the lattices of 
adjacent blocks have to be bridged. Also these "true" grain boundaries 
most probably are not "amorphous", but possess a definite structure, depen~ 
dent on the relative orientation of adjacent grains. This conception finds 
experimental support in experiments by CHALl\lERS (28) on the strength of 
double~crystals of tin; by SNOEK (29) on the intercrystalline oxydation of 
polycrystalline nickeliron, with~ and without preferential orientation of the 
crystallites; and by LACOMBE and BEAUJARD (30) on the corrosion of high~ 
purity aluminium. In these latter experiments, the chemical reagent 
(HN0

3 
+ HCI + HF). applied aftel' electropolishing, produced, apart 

from corrosion figures inside the individual crystallites, boundary Hnes 
between neighbouring crystallites which wel'e cIearer developed the larger 

their difference in lattice orientation. 
On the basis of such experimental evidence it seems justified to assume 

[J. M. BURGERS (22); W. L. BRAGG (23); LENNARD JONES (13)] that also 

7) As is weU known, ZWICKY (25) has postulated the existence of a stabIe mosaic­
structure on energetic grounds. Later criticism of his conceptions by OROWAN (26) and 
BUERGER (27) have shown that his conclusions cannot be maintained. 
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the grain boundary COJ1stitutes the best possible fit between adjacent grains, 
affecting a minima! number of lattice planes in the transition region. As 
pointed out in (22), a transition surface between lattice blocks including 
an arbitrary angle might be built up in a11 analogous way, as is shown in 
fig. 4, now, however, introducing a double set of dislocation lines 8). Fig. 5, 
for which I am indebted to J. M. BURGEHS, shows this schematically. 

The conception of a grain boundary, built up of dislocations, is further~ 
more illustrated in a very striking way by BRAGG's experiments with soap 

bubbles (31). as fig. 6 may show. 

Fig. 6. "Intercrystalline boundary". as shown by floating soap bubbles 
(af ter W. L. BRAGG (31)). 

II, 3. Cold~worked state. 

The experimental fact, first observed by VAN ARKEL (32) and by 
DAVEY (33), that the DEBYE-SCHERRER pattern of a cold~worked metal 
differs from that of the annealed state at most by a slight broadening or 
a decreased intensity of the interference l1nes 9). is proof that ,even here by 
far the major part of the atoms form still coherent lattice regions (laWce 
blocks). So on ce more, according to the current view [DEHLINGER (3); KORN~ 
FELD (2); BRAGG (21); (1), §§ 52-54] the res1.1lting structure, even in the 
most severely worked condition, is conceivecl as consisting of lattice~blocks, 
held together by systems of dislocated atoms. The main difference between 
the cold~worked and the annealed state consisrs in the circumstance that 
cold~working, as a consequcnce of alternation and mutual hindrance of 

8) As remarked in (22), in this case a ccrtain relation mlist be fulfilled between the 
spacings of the two sets and the angle of inclination of the transition plane, in order th at 
at great clistances from this plane the lattices shall be frec hom stress. 

9) We do not consider here the changes c1l1e to thc formation of prcferential 
orientations or the crystallites. 
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various active glide~combinations, has caused a slight elastic stressing and 
bending of the blocks, as is evident from the above~mentioned changes in 
line~width and intensity of the DEBYE-SCHERRER lines 10). Simultaneously 
the essential characteristic feature of the annealed polycrystalline state, 
namely the presence of groups of nearly parallel lattice blocks inside the 
original grains, which, taken together, incIude much larger angles with 
adjoining groups (grains), is more or less eHaced. 

As WOOD (35) pointed out, an es ti mate of the minimum size of the blocks 
may be obtained by assuming that the broadening of the DEBYE-SCHERRER 
Bnes is wholly due to their smallness. In this way sizes of the order of 
0.1 ft are calculated for most metals (in aluminium, where the broadening is 
very slight, this figure comes out as approx. 1 ft). DEHLlNOER and 
KOCHENDÖRFER (36), taking into account that part of the line~broadening 
is due to the stressed state of the bloeks [VAN ARKEL and BURGERS (37); 
MEOAW, LIPSON and STOKES (38)], give the size of mosaic~blocks in rolled 

copper as 0.4 ft. 
In fig. 7 we give a schematic picture of the deformed state, in which the 

Fig. 7. Schematic representation of the cold-worked state: elastically stressed and bent 
"mosaic-blocks" connected by transition layers of dislocated atoms (taken from (1)). 

stressed and bent state of the blocks is largely exaggerated. The transition 
layers have only been indicated by dots. We may consider them as built up 
of a complicated system of various types of dislocations. To give a more 

1.0) The exceptional case of aluminium, wh ere line-broadening aftel' coid-vlOrk is 
praetically absent Ol' in any case much less pronouneed then with most other metals, might 
be understood if an alternation of the active glide-planes were more easily brought about 
in this metal than in the others [DEHLlNGER (3) p. 755; see also referenees in (1), § 41, 
§ 47]. Experiments with sheared aluminium erystals support this view [BURGERS and 

LEBBINK (34)]. 
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detailed picture is, cOl1sidering all the different possibilities [see for example 
the cases treated in (22)], not weIl possible. 

II, 4. "Twodimensional" bloclc~structufe. 

For the case however, that we limit ourselves to a "twodimensiol1al" 
aggregate 11) and take into account only the presenee of dislocations of 
the edge type, as shown in fig. 4, we can say for certain that the "structure" 
of the Iayer is cssentially dependent on the angle of misfit between ad join~ 

• ing blocks: there, where large angles have to be bridged, a concentration 
of dislocations of the same sign (see fig. 3) is unavoidable (fig. 4 and 5). 
The "density" of the con centra ti on of ei th er positive or negative disloca~ 
tions increases generally speaking with this angle 12). 

It must not be Ieft out of sight that also lattice blocks which are in 
parallel or nearly parallel positions ean be separated by systems of dislo~ 
cations; when th is is the case these systems must contain an equal (or 
nearly equal) number of dislocations of both signs. These may alternate 
either "individually" or in groups. Some arrangements, which can be 
ellvisaged, have been indicated in a purely schematic way in fig. 8 13) • 

The conception of the cold~worked state as built up of elastically stressed 
lattice~blocks, connected by transition layers of dislocated atoms, is, for the 
"two-dimensional" structure considered here, to some ex tent confirmed by 
the amount of energy taken up in the course of the deformation process. 
As pointed out in (1) (§ § 55, 56), and by BRAGG (40) and others, the 
elastic energy in the blocks is only a small fraction (of the order of 1 %) 
of the tota! energy of cold~work. This latter is, according to the measure~ 
ments of TAYLOR and QUINNEY (41) for copper maximally about 10 calories 
("" 4.1 08 erg) per cm 3. If we put the energy of a dislocation line (as 
defined in fig. 3) at about 108 electron volt (""'" 10--4 erg) per cm [SEITZ 
and RE AD (42); KOEHLER (43)], then the l1umber of dislocation~lines per 
cm 2 is of the order 1012• If all these were arranged along lines 0.2 micron 
(2.1 0- 5 cm) apart (that is, at the sides of mosaic blocks of this width), 
this number would amount to 2.1 07 dislocation lines per cm, or about 1 dis~ 
locatiol1 line per 5A 0: this comes near to one dislocation line per every two 
and a half atomic plane. This is, as BRAOO (40) remarks, equivalent ta 

11) "Two-dimensional" is here taken in this sense that the pattern extends without 
change of structure in a direction perpendicular to the plane considered in the drawings. 

12) At least up to a eertain extent: in the cubic system for exampJe, due to symmetry 
relations, the angle 45° - a may be equivalent to 45° + a. 

13) One might, of course, introduce the assumption of disloeations inside the bloeks: 
in a stressed bloek, whieh, taken as a whole, is not bent, we eould have an equal number 
of positive and negative disloeations; and an exeess of either positive or negative in an 
elastically bent part. In how far th is is justified depends ta some extel1t on what ane 
considers as a "bloek" [compare aul' fig. 11; also KOCHENDÖRFER (39) pp. 119 H.]. 
In any case we do not think this additional assumption eould affeet ou!' reasoning in the 
following para\Jl'aphs in an essentiaJ way. 
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an interface between two~dimensional closed packed arrangements, meeting 
at 30°, which is the largest angle at which they can meet (since 60° is 
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Fig. 8. Schematic representation of transition layers between neighbouring lattice block.s, 
built up of systems of dislocations of edge-type (T AYIJOR-diislocations). Here and 10 

+ 
figures 10 and 11 such dislocations have been indicated by I (positive dislocation) and I 

(negative dis!ocation): the I represents the "direction" of the layer of atoms removed from 
the lattice (compare fig. 3). The direction of "easy mobility" of the dislocations lies in 

the pllane of the drawing perpendicular to the direction of the removed layer. 
a, b: adjoining blocks non-parallel: surplus of dislocations of same sign. 
c. cl: adjoining blocks parallel: equal numbers of + and - dislocations. 

equivalent to 0° owing to symmetry). In this simplified picture, this actually 
represents the maximum of crowding of dislocations, in agreement with the 

maxima! degree of cold~work of the metal 1'1 ) • 

U, 5. Stability of the bloek strllcture. 

In the preceding considerations we have left aside the question in how 
far a deformed block~structure of the type we have in mind will be stabIe 
(or, rather, metastable). With regard to this problem only a few indicatians 
can be found in the current literature. It may be useful ta recapitulate the 
basic conceptions which should be kept in mind in cliscussing this subject. 
The cohesive forces in the lattice are derived hom the electric and other 
short range .forces which neighbouring atams exert upan each ather. 

H) In (40), this conclusion is reaehed in a somewhat different way. 
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Leaving aside the narmal thermal vibration, every atom is in equilibrium 
under the farces acting upon it; in other words the forces up on every atom 
must have zero resultant. In a perfectly regular lattice the system of forces 
,exhibits exact periodicity. Hence when we imagine a cut to be made in the 
Jattice by an element of surface extending over a whole number of periods, 
the forces exerted by the atoms lying on one side of this element up on the 
.atoms lying on the other side, wilI be zero, provided the system is not 
acted up on by exterior forces. In that case we say that the lattice is un· 
stressed. Every misfit, however, produces some irregularity, which wiU 
have its influence both up on the positions of neighbauring atoms and up on 
the forces experienced by them. This influence theoretically can extend 
.over infinite distances, although in most cases the presence of irregularities 
;of more or less opposite character has a compensating effect, which mate~ 
rially reduces the action radius of a single irregularity. When we now again 
imagine a cut to be made in the lattice by means of a small element of 
.surface, extending over a whole numbel' of periods, the forces exerted by 
the atoms lying on one side of the element upon the atoms lying on the 
,other side, may differ from zero, so that we can say that there are stress es 
in the lattice. 

When the lattice irregularities are of a weIl defined character, as is the 
,case with dislocations, we may consider those dislocations as the seats of 
forces, producing the observed stresses in the lattice. Some authors, like 
KORNFELD (2), therefore use thc expressian that a system of elastically 
,stressed blocks is kept in equilibrium by forces which have their seat in 
the transition layers (where the dislocations are to be found). In thc same 
·connection BRAGG (21) speaks of a "dynamic stability by the boundaries" 
.and compares the cold~worked state to a faamstructure [compare also 
BENEDICKS (44)]. 
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·Fig. 9. Pair of dislocations, one positive (at the left) and one negative (at the right), 
'formed as the result of alocal glide jump (af ter OROWAN (45). In the "abridged" way of 
:,representation, described in fig. 8, su eh a pair of dislocations ("Verhakung" as called by 

DEHUNGER) is indicated with + I . 
1-

40 
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Now the concept of stability enters into the picture wh en we see thc 
possibility that a number of atoms in the neighbourhood of a dislocat~on 
may be able to find more than one position of equilibrium witho~t bemg 
obliged to pass through a high energy barrier. In such a case a shIft from 
one position of equilibrium to a neighbouring one may initiate a displace~ 
ment of the irregularity, and in particular the displacement of a dislocation 
line. As soon as such possibilities are taken in view a degree of stability 
can be defined, depending upon the energy which must be communicated 
to certain atoms in order to initiate a change in the configuration of the 

system of dislocations. . . 
DEHLlNGER (3) has been the first to attack this question in a quantltatlve 

way. His considerations are limited to a series of "Verhakungen", a "':' ~r~ 
hakung" being approximate1y equivalent to the combination of a poslt1ve 
and a negative TAYLOR~dislocation, as can be formed in a perfect lattice 
by a so~called glide jump, in the way indicated in figure 9, due to 

OROWAN (45). . 
In what follows we sha11 schematize a TAYLOR~dislocation by means of 

a plus or minus sign, accompanied by a vertical dash, 

+ or I 
I 

the dash indicating the "removed" lattice plane (compare fig. 3). As 
is weIl known, the direction of easy mobility of such a dislocation lies 
perpendicular to the removed lattice plane, thus in the case indicated 
in the horizontal direction, in the plane of the paper. A "Verhakung" will be 

indicated by + I . 
I - 1 d"V h k ... 

According to DEHLlNGER's calculation 15) an iso ate er a ung IS 

unstable: there is astrong tendency for the occurrence of such shifts that 
the two dislocations of opposite sign move towards each other and mutually 
"neutralize" as soon as they have come together. Following TAYLOR (46) 
we may consider this as a consequence of a certain "attraction" between 
dislocations of opposite sign. Now the important feature pointed out by 
DEHLlNGER is that in the case of a large number of "Verhakungen" lying in 
a single row 16), the system will become stabie when the density (that is, 

I 
+ 
I 

+ 
I 

+ 
I + 

I 
the number of "Verhakungen" per unit length) surpasses a certain value .. 
By stability is meant that a positive threshold energy must be introduced 

1.5) I am indebted to Mr. F. R. N. NABARRO (Bristol) for a closer eIucidation of 

DEHÜNOER's conclusions. 
16) Sueh series may be ereated H a large number of gllde jumps of the type sh~~n in 

fig. 9 all took plaee at different points along the same glide plane [d. KOCHENDORFER: 

(39), loc. cit.]. 
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into thc system, before dislocations can be dissolved, whereas in the case 
of a single "Verhakung" (one pair of dislocations only) the thermal energy 
of the atoms is sufficient to bring about mutual approach and neutralization 
of the two disIocations. 

The "criticaI" density of the series depends upon the eIastic constants of 
the metal; for a common metal as copper or silver DEHLlNGER estimates it 
to be reached for one "Verhakung" per every 5 or 10 atoms. For Iarger 
densities the threshoId energy ("activation energy for dissoIution") in~ 

creases, which means that the system of dislocations becomes more difficult 
to dissolve and thus is more stabIe. 

Wo do not know of similar calculations for more complicated sets of 
disIocations. For example the question has not been considered wh ether 
an arrangement as indicated in fig. 10a, where every horizontal row carries 
an aIternating system of positive and negative disIocations, which thus 
couId neutralize each other, is stabie in DEHLlNGER's sense. 

In the calculations referred to it has been assumed that the Iattice is not 
affec.ted by exterior forces. We can, however, also put the question of 
stability for a lattice which is stressed by the application of exterior forces. 
Such cases have been treated by TAYLOR (46). who has considered the 
stability of certain two~dimensional arrangements, likewise containing an 
equal number of positive and negative dislocations of edge~type, in the 

.. I 
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Fig. 10. Two-dimensional arrangements of alternating positive and negative TAYLOR~ 
dislocations. The direetion of "easy mobility" ("direction of slip") is supposed to run 
hori2:ontally in the figure; the disloeations ean be formed by slip paraI,lel to this direetion. 
a. positive and negative disloeations alternate along the same "direction of slip". 
b. positive and negative dislocations !ie on alternating "direetions of slip". 
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case when an exterior shearing stress acts in a direction parallel to the 
direction of easy mobility. An example of such an arrangement is shown 
in fig. lOb, which differs from that depicted in fig. 10a, by the fact that in 
fig. lOb dislocations of opposite sign lie on alternating rows. TAYLOR has 
shown that in the absence of exterior stress the system of fig. lOb is stabie. 
If, however, an external shear stress acts parallel to the glide plane, a dis~ 
placement of all the positive with regard to all the negative dislocations is 
brought about. Starting from the arrangement of fig. lOb, every value of 
the shear stress which lies below a certain maximum value, gives a new 
stabie equilibrium with a definite displacement of the positive with regard to 
the negative dislocations. As soon as the stress surpasses a certain value, 
the two sets of opposite sign migrate steadily in opposite directions (until 
they are stopped by some obstacle, for example a transition layer between 
two mosaic bloeks). The magnitude of th is critical stress increases with the 

"density" of the dislocation Bnes per unit surface. 
Finally BRAGG (23) has considered the mability of a series of dislacatian 

lines of the same sign which form the boundary between twa mosaic bloeks 
as shown in fig. 4 (a1so in fig. 8a and 8b). Such a series can be maved by 
a relatively sm all force acting in a direction perpendicular ta itself (thus 
harizantal in the figure), which is the directian af :' easy~mability" af each 
dislaeation separately. In this proeess the individual atams in the transitian 
layer suffer only slight displacements. The resultant effect is equivalent ta 
the growth af ane bloek at the cost af the ather, the disappearing blaek 
suffering as it where a rotation abaut an axis perpendicular to the plane 
of the drawing, so that its arientatian gradually eaincides with that af the 

'growing bloeks 17). 
(Ta be continued.) 

--17) In (13) LENNARD JONES eensiders the movement of two adjoining lattice bleeks. 
arranged in a similar way as shown in fig. 4. in a direction parallel to the transition plane 

(vertical direction in the drawing). 

Mathernatics. - Eine Bemerkung über das Mass in Strukturen. By J. 
RIDDER. (Cornmunicated by Prof. W. VAN DER WOUDE.) 

(Communicated at the meeting of May 31, 1947.) 

Die Bemerkung, urn welche es sich hier handelt, ist die Konstatierung, 
dass die in den Theoremen A und Benthaltene Bedingung notwendig und 
hinreichend ist für die Messbarkeit der abgesehlassenen Samen sowohl 
beim besehränkt~ wie beim total~additiven Mass. 

I. Beschränkt additives Mass. 

§ 1 1). Eine Struktur S sei aufgebaut aus Elementen, Samen genannt, 
die im folgenden mit kleinen Buchstaben angedeutet werden, und den 
folgenden Axiomen genügen: 

Axiorn 1°: a) a C a; p) aus a C b und b C e folgt ace. 
Definition. a = b, falls a C b und b C a. 
Definition. Ein Soma ab wird Produkt des Somenpaares a, b genannt, 

faIls: 
a) . ab C a; p) ab C b; y) aus e C a und c C b immer foIgt e Cab. 
AXlO111 2°: Für jedes Somenpaar a, b gibt es ein Produkt ab. 
Definition. Ein Soma a + b wird Summe der Somen a, b genannt, falls: 

a) a c:= a + b; p) bc a + b; y) aus ace und b cc immer folgt a + bc e. 
AXI0111 3°: Für jedes Somenpaar a, b gibt es eine Summe a + b. 
Axio111 4°: Es gibt ein Soma 0 mit 0 C a für jedes Soma a € S. 
AX~0111 5°: Es gibt ein Soma 1 mit a C 1 für jedes Soma a € Sla). 
AX10111 6°: ae + be = (a + b)e. 
Definition. Ist a eb, so wird dureh b - a angedeutet jedes Soma x, 

das den Bedingungen genügt: 

ax = 0, a + x = b. 

Axio111 7°,' Z . d P S u Je em aar von omen a, b, mit a C b, gibt es ein 
Soma b-a. 

Eine derartige Struktur ist eine BOoLEsche Algebra. 

§ 2 1 ). Für jedes Soma x € S sei eine (reellwertige) Massfun!ctian 
m ° (x) definiert. 

Ddinition. Ein Soma a heisse mO (x) ~messbar ader messbar in bezug 
auf mO(x). wenn für jedes Soma w, mit mO(w) endlich, 

mO(w) = mO(wa) + mO(w- wa) 
ist. 

1) Siehe J. RtDDER, Acta math. 73 (1941), S. 131-173. 
. la) Auch ohne Annahme dieses Axioms behalten die nachfolgenden Sätze und Theoreme 
lhre GÜlügkeit. 




