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§ 4. The system with iterated kernel.

Defining the linear transformations B, in [L;]* by B, = A,
By=AHBy: (p=23... .). it is not difficult to see that the iterated
transformations K? and K? are given by K?=B,H and Kr=H'"B,H",
while moreover HB,H=H B}, H for p=1, 2,.... These transformations
stand therefore in the same relation to each other as the original trans-
formations K and K. Since K? has the sequence 4; (k=1,2,...) of
characteristic values 7 0 with the orthonormal sequence § Wt = H' {pi}

of characteristic elements, it follows that K? has also the sequence AL
of characteristic values 70 with the H.orthonormal sequence {yk} of

characteristic elements, Defining the matrix-kernels || K E"}) (x. p)|l (p=1) by

Kij (x, y) = Kij (. ),

K (5. )= Zies [ Kig e ) K )
fay

the Theorems 2—10 hold therefore for the system of integral equations

with matrix-kernel || Ki7(x, )|, replacing everywhere i by . In

particular

Zj=i f KB (. 5) £ (9) dy o S M ar vk () + qlp () (=1..00n),

A

where H {qp}=1{0}, and
K2 (vg)—af) ) o DBk ) 2f ) Gj=1.oomh

where 37_1 hir(x) g} (x,y) =0.
We shall show now that, for p>>2, all functions gl (%) and qff)(*.y)

vanish (For the proof that this is not necessarily true for p==1, even in
the simple case that n =1, we refer to III § 3).

Theorem 11. For p =2, we have

Z’L,II(}’}) (e, y) 7 (y) dy o» 2 Kk ax v (%) (i=1,...,n), (13)

KD (g Shvk) @  Gi=L..on . (14
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Proof., The first part of the theorem follows from I, Theorem 15.
To prove the second part, we observe that, by SCHWARZ's inequality,

Kqj (2, y) —pas (2 ) o Skl wi (2) 1] ()
(cf. (8)) implies

Zg:foiq (x,2) Kq5 (2, 1) dz‘“'gc;:lfKiq (x,2) pgj (2 y) dz »
Y S

2 @ (B [ Kig s v ) ),
pay
or, since by (10)

ZgzlfKiq (x,2) pgj (2 y) d2 =g r=1 | Air(x, 2) heq(2) pgj (2, y) dz =0,
JaN

N
K (x, y) o Sk 2 wi (%) 21 ()
The proof for p > 2 follows easily by induction.

Theorem 12, For p > 2 we have
A

Proof. Denoting the matrix-kernel, corresponding with the trans-
formation By, by || BY)(x,y)|l, we have
Sl Kif) (w, %)= 37 j=1 BY (%, ) byt (x) =
S0, e B () BY (6, 2) 1P () = 2720 K7 (%, ),
hence (cf. VII, Theorem 14)

Z,-":fo}{” (x, x)dx= Z}ﬂzxfl?i(f) (%, x)dx =\ 2%.
AN FaN

§ 5. The case that all A;;(x,y) are continuous in mean and all h;;(x)
are continuous.,

We shall suppose now that A;;j{x,y) (i,j=1,...,n) is continuous in
mean in AXA, that is, [{}Aij(x,y)|2dy is finite for every xe€ A,

AflAij (x.y) > dx is finite for every y € A\, and

limxz-»X1f|Aij (22, )= Aij (%, y) |2 dy =
Fay

limyﬁylfl A y)— Ay (x y) P dx =0,
A
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We observe that these conditions imply that £|A,~j(x,y) |°dy is a
continuous function of x in A, and fo | Asj(x y)[?dx a continuous function

of y in A. Furthermore we shall suppose that hyj(x) (i,j= 1,...,n) is

) . .
continuous in A\, so that, by Lemma 1, 3°, ) (b j=1,...,n) is
also continuous in A. It is not difficult to see that, under these conditions,

Kij(x.y) (,j=1,...,n) and ﬁij(x.y) (i,j=1,...,n) are also continuous

in mean in AXA. Finally we observe that for every {f} €[L.]* the |

functions g'(x)= Z}lzlz{K[j (x,y) fi(y)dy (i=1,...,n) are continuous

in /\, since

f Kuj (e ) £ () dy— f Ki (o1 9) £ () dy ] <

( [ )= Kis el dy)l’z .

As a consequence, all characteristic functionsets yi (x) (i=1, ...,n) consist
of continuous functions.

Theorem 13 (Expansion Theorem). If
ar=({f}, Uk%):Zﬁ]Aff"(x) i (x) dox
for an arbitrary {f} € [L,]" then

ij!zlfl(,j(x, y)ff(y)dy:Z’klkakw};(x)“i—fl;"(x) (i=1...,n) (15)
A

uniformly in A, where §;§ = 2;‘ (x),...,;”(x)i consists of continuous
functions, and satisfies
Sfer hij () p! (x) =0
for every x€ A. .
Proof. First of all we prove that i |ax|* converges. This follows
from

ae = ({F} ted) = (LF} B W) = (H £ ),

hence, since the system { ¥} is orthonormal, by BESSEL’s inequality,

SelaP < H®{AIP=H{A AL <IH] - [
Furthermore, we see that the matrix-kernel || Dj;(x, y)|l, corresponding
with the transformation D=A H', is also continuous in mean, s0 that

f|D,-,-(x,y)|2 dy is a continuous function of x in A for i,j=1,...,n.
A I3
Since, consequently, for i==1,....1, and for every x€ A,

{di} ={di(y)....di(y)}, where di (y) = Dij(x.y).
belongs to [L,]", the inequality (11) holds now for every x€ A\, which shows
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¢hat there exists a constant M, such that S 4% lpk(x)P<M (i=1,...,n).
Hence, if ¢ >0 is given, for k; and k, sufficiently large,

|28 el ()] < (3 2 ()2 (5 L <o
for every x€ /. The series 24 ax wi(x) of continuous functions

converges, therefore, uniformly in A, to a continuous sumfunction. Since,
by what we have already remarked, 3P [Kij(xy) f(g)dy is also
A

continuous, the same holds for the difference ’;"(x). But ;"(x) is, as
follows from (5), almost everywhere in A equal to the function pi(x)

occurring in that formula, hence Xj-1 hij (x);f (x)==0 almost everywhere
in A. The functions h;;(x) (i,j=1,...,n) and p/(x) (j=1,...,n) being

however continuous, we have 37— hij(x) p/(x) =0 for every x€ A.

Theorem 14 (Expansion Theorem for the iterated kernels). For p==2
we have

K y)=Z Mok ) d @ Gi=1....n)
uniformly in AXA.

Proof. The Hermitian matrix-kernel HI?,-;(x,y)H is continuous in
mean in AX/\; hence. by the Remark in VII, § 4,

Ko =2 22 ¥ x) Y g) (@r=1....n)

uniformly in AXA. Then also, for i,j=1,...,n,

=k rk x) 2k (),
uniformly in AXA. This shows in particular that, for i=1,...,n,

the series 3k 42 | 75 (x)[? converges uniformly in A.
In the proof of Theorem 13 we have already seen that

Sl k@S M (=1,....n),
where M does not depend on x; hence, if ¢ >0 is given,

Sieen [k wk () 7 () | < M (Sean 7 | 24 () 1 < o

for sufficiently large N. The series 2% 2% w;; (x) xf;(y) of continuous
functions converges, therefore, uniformly in A XA, to a continuous
sumfunction, which is, by (14), equal to K (x,y) almost everywhere in
AXA. Since however, as may easily be seen, K/ (x,y) is, for p=2,
continuous in A XA, equality holds everywhere in A XA,

The proof for p > 2 follows immediately by induction.
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§ 6. Comparison with the results of J. E. WILKINS.

In this paragraph we shall compare our results with those of WILKINS,
As we have already remarked in § 1, our hypotheses a. and c. on
hij{x) and A;j(x,y) are weaker than the corresponding hypotheses in
WILKINS' paper. It is only in our § 5, where all h;;(x) are continuous
and all A;j(x,y) continuous in mean, that our and WILKINS' hypotheses
are comparable.

We shall first consider some of WILKINS' results which are proved
by us under the weaker hypotheses a. and ¢. WILKINS' Theorem 2.2
is the first part of our Theorem 2. WILKINS" Theorem 2.3, stating that
if x1,...,7x are linearly independent solutions of Ky=—AHy=1y,
then Hy,...,Hyx are linearly independent solutions of K*yw =21y, is
contained in the first part of the proof of I, Theorem 12, where the same
is proved for general symmetrisable transformations T (not necessarily
of the form T=AH), if only Hf=0 implies Tf=0. WILKINS'
Theorem 2.5 states that if ar=({f}, {x!})=HI{f}, {yvr})=0 for
k=1,2,..., then (H{f}, {g})=0 for every {gi{=K {g,;}, where
{g1}=1{g!(x),....g7(x)} consists of continuous functions. This continuity
is a superfluous condition, and the theorem in question is the latter part
of our Corollary to Theorem 5.

We do not find WILKINS' Theorem 3.1 about the zero's of the
FREDHOLM determinant D(4) in the present paper.

In his paper WILKINS considers a class of functionsets called by him
the class L. This class consists of all functionsets {f} = K{g{, where
fgl=1{g"(x),....g"(x)} consists of continuous functions. The first part
of his Theorem 5.1 is our formula (6), but his hypothesis that {f} e L
is superfluous. The second part of his Theorem 5.1, stating that if
{fieL, then (H{f}, {f1)=2k|ax|’ where ar==({f}, {xx}). is an easy
consequence of (6). Here it is necessary that {f} =K {g}{, but not that
fg} consists of continuous functions. WILKINS' Theorem 5.2 and
Theorem 5.3 together form essentially our Theorem 6. Here again it
is not necessary that {f}€ L.

We shall next compare WILKINS' expansion theorems with ours in § 5.
We recall that the hypotheses about h;;(x) and A;j(x,y) are now
equivalent. WILKINS' Theorem 4.1 is our Theorem 13 and his Theorem
4.2 is an immediate consequence. In his Theorem 4.1 it is necessary
that {f}=K{g{, and in his Theorem 4.2 that {f}=K?{g}, but in
both cases it is not necessary that {g} consists of continuous functions.

Finally we shall say a few words about WILKINS' Theorem 7.1.
In the terminology of HILBERT space, this theorem runs as follows:

Let H be a bounded, self-adjoint transformation of positive fype,
‘and let the self-adjoint transformation M be such that M?=H. Let,
furthermore, the linear, completely continuous transformation A satisfy
MAM=MA"M. Denoting the characteristic values #0 of K=AH

by A and a corresponding H-orthonormal system of characteristic
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elements by wi (k=1,2,...), we have for every element f of the
HILBERT space ,

g =AM f= 2 (Hg, vi) yx + p,
where Mp =20.

This theorem may easily be proved by the methods of our paper I,
using the following facts:

A (Hgwi)=HAMF ) = (MAMFE Mvyy) = (fF MAH y)) =
= M (f M)

B. The self-adjoint transformation MA M has the same sequence
k of characteristic values 7#0 as K=AH with the corresponding
orthonormal sequence My of characteristic elements (Proof as in I,
Theorem 18). Hence, by a well-known theorem about self-adjoint,
completely continuous transformations, (h, Mwy;)=0 (k=1,2,...) implies

MAMhA=0.

Starting now with
=3 (f, Mwi) Myy + h,
where f is arbitrary and (h, Myg) =0 (k=1,2,...), we find by A.
g=AMf=2 i (f, Myi) v + AMh =3 (Hg, vi) v« + AMHh,

so that only MAMh=0 remains to be proved. This however is a
consequence of (h, My} =0 (k=1,2,...) and B.





