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_Biology. - Mathematics of pollen diagrams. II. Ey J. WESTENBERO. 

(Communicated by Prof. M. W. WOERDEMAN.) 

(Communicated at the meeting of March 29, 1947.) 

The lower extremities of the tail error lines are determined by the 

,conditions: n < N - n; n - 6 = ° and P n; n, N = tail error value. By 
graphical interpolation between several values of P n; n, N we find 

N == 150 r'ö% n == 1,9 
t% 3,7 
1 % 3,2 
2% 2,7 
3% 2,4 
1% 2,2 
5% 2,1 

Similarly we Eind for the upper extremities (N - n < n; N - n - 6 = 0) 

r'1f% n = 145.1 
t % 146,3 
1 % 146,8 
2 % 147.3 
3 % 147,6 
1 % 147,8 
5% 147,9 

In testing the significance of the differencc of two countings of the same 
species in two different strata, we have to plot these countings on the same 
horizontal axis in the pollen diagram (a and b), and insert their mean 
value in the middle between them ( c) (fig. 5). Then we place the 
transparant graph over the pollen diagram, its sides covering the sides of 
the pollen diagram. Next we shift thc graph upward or downward until 
the mean of the countings (c) is covered by the oblique line. IE the position 
of the two counting marks (a and b) is outside the two tail error lines, we 
are led to conc1ude th at it is likely, th at the difference d (= 2 6) of the 
two countings considered, should have been significant, because the pro~ 
bability th at a difference so great or greater should have arisen through 
random sampling is even less than the chosen tail error value. 

In order to examine how the re1iability of the method depènds on thc 
amount of work, we compute similar data for other values of N, viz. 10, 

20, 50, 100, 300 and 450. 

N=lO Tail n= I":, n==3 n=4 
error N -n == I":, n=7 n==6 n=5 

l(J 0/0 3,6 3,7 3,8 

}% 3,0 3,3 3,4 

1% 2,7 2,8 3,0 3.1 

2% 2,3 2,6 2,7 2,7 

3% 2,1 2,1 2,5 2,5 

4% 2,0 2,3 2,1 2,1 

5% 1.9 2,2 2,3 2,3 

N=20 

N=50 
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Tail n= I":, n=5 n=8 
error N-n = I":, n = 15 n = 12 n = 10 

lIJ 010 1,3 4,5 5,2 5,3 
~% 3,4 3,9 4,5 4,6 
1% 3,0 3,6 4,1 4,2 
2% 2,6 3,2 3,6 3,7 
3% 2,4 3,0 3,3 3,4 
4% 2,2 2,8 3,1 3,2 
5% 2,0 2,7 3,0 3,1 

,v~, 

Fig. 5. Tail error line superposed on pollen diagram. 

Tail Tl = I":, Tl=5 Tl = 10 Tl = 15 Tl = 20 
error N-n = I":, n = 15 n = 10 n = 35 n = 30 Tl = 25 

1-(5% 1,6 4,8 6,5 75 8,0 8,1 
t% 3,6 1,2 5,6 6,3 6,7 6,9 
1% 3,2 3,9 5,1 5,8 6,1 6,3 
2% 2,8 3,5 4,5 5.1 5,4 5,6 
3% 2,5 3,3 1,2 4,8 5,1 5,2 
1% 2,3 3,1 4,0 4,5 4,7 4,9 
5% 2,1 3,0 3,8 4,2 4,5 4,6 
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N = 100 Tail 11=5 11 = 10 11 = 20 11 = 30 11 = 10 ---, 
11 = 70 11 = 6e 11 = 50 

11 = !'::, 
error N - 11 = !'::, 11 = 95 11 = 90 11 = 80 

la <j~ 4,8 
~"% 3,8 
1 % 3,3 
2% 2,8 
3% 2,5 
4% 2,3 
5% 2,1 

4,9 6,8 9,1 10,1 11, 1 11,4 

4,3 5,8 7,7 8,8 9,3 9,5 

4,0 5,4 7,0 8,0 8,4 8,7 

3,5 4,8 6,2 7,1 7,6 7,7 

3,3 4,5 5,8 6,6 7,0 7,1 

3,1 4,2 5,4 6,1 6,6 6,7 

3,0 1,0 5,1 5,8 6,2 6,3 

N=150 Tail n=!'::, 11= 5 11= 10 11= :40 11= 30 11= 40 11= 50 11==60 
11=100 11=90 11==75 

error N-I1=!'::, 

"0 % 4,9 
+% 3,7 
1% 3,2 
2% 2,7 
3% 2,4 
4% 2,2 
5% 2,1 

N=300Tail 11=!'::, 
errOr N-I1=!'::, 

lw 0/0 4,9 

N=450 

~% 3,7 
1% 3,2 
2% 2,8 

30/0 2,5 

4% 2,3 
5% 2,1 

Tail 11= !'::, 
error N-I1=1':::. 

lö·O/o 
+% 
1% 
2% 
3% 
4% 
5% 

4,9 
3,8 
3,3 
2,8 
2,5 
2,3 
2,1 

11=145 11=140 11= 130 11= 120 11= 110 

4,9 6,9 9,1 11.1 12,2 13,0 13,5 13,8 

4,3 5,9 8,1 9,3 10,3 11,0 11,4 11,6 

4,0 5,4 7,3 8,5 9,3 10,0 10,4 10.5 

3,6 4,9 6,5 7,6 8,3 8,9 9,2 9,4 

3,3 4,5 6,0 7,0 7,7 8,2 8,4 8,6 

3,1 4,3 5,6 6,6 7,2 7,6 7,9 8,1 

3,0 4,0 5,3 6,2 6,8 7,2 7,5 7,6 

11= 10 11= 20 11= 40 11= 60 11= 80 11= 100 11= 125 
11=290 11=280 11=260 11==24011=220 11=200 11=175 11=150 

7,0 9,8 13,3 15,5 17,2 18,2 19,1 19,4 
6,0 8,3 11,2 13,1 14,4 15,8 16,0 16,2 
5,5 7,6 10,1 11,9 13,1 13,9 14,5 14,7 
5,0 6,7 9,0 10,5 11,6 12,4 12,9 13,1 
4,6 6,2 8,3 9,7 10,7 11,4 11,8 12,0 
4,3 5,8 7,8 9,1 10,0 10,6 11.1 11,2 
4.1 5,5 7,3 8,6 9,4 10.0 10,4 10,5 

11= 15 11= 30 11= 60 11= 90 11= 120 11= 150 11= 180 
11=435 11=420 11=390 11=36011=330 11=300 11=270 11=225 

8,6 11,9 16,2 19,0 20,9 22,3 23,2 23,7 
7,3 10,1 13,5 15,9 17,6 18,7 19,4 19,8 
6,7 9,1 12,3 14,4 15,9 16,9 17,5 17,9 
6,0 8,1 10,9 12,8 14,1 15,0 15,5 15,9 
5,5 7,5 10,1 11,8 12,9 13,8 14,3 14,6 
5,2 7,0 9,4 10,9 12,1 12,8 13,1 13,6 
4,9 6,6 8,9 10,3 11,4 12,1 12,6 12,8 

The above tables all ow the construction of tail error diagrams, as 
described in preceding lines: in our illustrations the values of 6 pertain 
to a (unilateral) ~ail error value of t %. If we draw these diagrams just 
as braad as th at one for N = 150, the significant difference d (= 26) 

150 
will appear in these diagrams as 0 = d N' 

As a measure for the precision of the methad we choose 0 for 11 = N-Tt. 
Next we unite these diagrams into one three dimensional graph, platting 

N along the third axis, as shown in fig. 6. The tail error lines are con~ 
nected by a pair of smooth surfaces, the so~cal1ed tail error surfaces. The 
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construction is then completed by connecting the horizontal axes for 
Tt = N - Tt by a plane 1) . 

Fig. 6. Three dimensional arrangement of tai! error diagrsms pertaining to increasing 
va lues of N. 

Thc section lines of this plane and the tail error surfaces demonstrate 
the decrease of 0 with increasing N. This is depicted separate1y in fig. 7, 
the plane being extended to N = 450. Fram this figure we see, that 0 
decreases rapidly up to N = 50, still appreciably up to N = 150. On 
from N = 150, the decrease becomes very slight, sa that we may con~ 
clude, that pollen analysts did weIl to choose N = 150. 

Sometimes, however, the pollen analyst might need more precision in 
order to reach a conc1usion. This might be the case when a series of 
successive strata yields samples, th at suggest a slight increase or decrease 
of a certain species, but do not allow any decision of the kind by comparing 
the countings of single strata. Then the difficulty might be surmounted, 

1) In order to avoid a confusing compJexity, fig. 6 has been simplified: the taH error 
surfaces have been drawn only near 11 = N - 11. 
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by pooling the countings of two or three successive samples and c~~pari.ng 
these with the pooled countings of another set of two or three succeSSlve 

L-----i-+--f------INa '50 

f--.------t- __ -l ______ !.'/.JOO 

Fig. 7. Decrease of .3 with increase of N. 

samples. For this purpose we have to make use of the tables for N = 300 
or N = 450. 
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As has been mentioned befare, the extra pollen requires a different 
treatment. In the comparison of two extra pollen countings n + 6. and 
n - 6., the total numbers of pollen grains wiII amount to N 1 + n -+ 6. and 
N 2 + n-6., when we keep to N 1 and N 2 for the marker species. 

Hence the probability of n + 6 is: 

P* _(NI +n+.6)/. *n+.6'(l_ *)N
l n+L,- (n+.6)IN

I
I p p 

Similarly 

P* - (Nz + n - .6)!. *n-L,. (1- *)N, 
n-L,- (n-.6)1 N

z
! p p 

The probability of the simultaneous occurrence of these two events will 
therefore be 

P* - (NI + n + .6)1 (Nz -+- n- .6)/, .2n. (1- *)NI+N, 
L,:n,NI,N"p. - (n + .6) 1 (n-.6) 1 NII N

2
! P P 

Since p* is not known, this probability can not be computed. In this 
farmuIa, the pawers of p' are independent of 6., and therefare the unknown 
factor 

p*21! . (1 ._ p*)NI + N, 

is the same for all possibilities with fixed va lues of n, N 10 N 2 and p", 
If these values are kept constant, the prabability of any value of 6. 
occurring, is proportional to 

P*_ (NI {- n + . .6)!(N2 + 11_-.6)/ 
- (n + .6)1 (n-.6)1 Nll N

2
1 

The tota! probability of all possible values of 6., with fixed values of 
n, Nl' N 2 and p* is represented by 

1.' P* - ~Nl + !2 + .6)! (Nz + n - .6)!. .2n, (1- 'p*)NI +N, 
b. b.:n,N"N"p*- (n+.6)/(n-.6)/N

l
fN

2
/ p 

which mayalso be written as 

ZP'2-,.:N"N"p.=p·2n. (l_p*)NI+N,. ZP". 
b. L, 

In this summation 161 <: n and <: N
1 

and <: N
2

• 

The probability of a certain 6., the values of n, N 1, N 2 
given by 

P* _ P';,,; n,NI,N"p* _ F* 
b.;n,N"N,- ,.,p.,----_ _ ~* 

k.J f:::..jn,N1,N2,p* ,.t;,; 
L, b. 

being fixed, is 

Whatever the value of p* might beo 

In order to carry out the summatioll of .2 F*, we use thc following 
method, which was again suggested by VAN DANTZIG (private Com

N munication) . 
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By the binomial series of NEWTON we have: 

~ (NI + k)! . xk = (1 _ x)-(N1+1) 

;...;., NI Ik! -
o 

Muitiplication yie1ds 

Equating the coefficients of Xh, (h = k + l)gives: 

~ (NI + k2!(!'!L+ h~})! _ (NI + N 2 + 1 + h)!. 
i.! -NI! N 2 ! k! (h-k)! -- h! (NI + N 2 + 1)1 

o 
Putting h = mI + m2' k = ml + L. and h-k = 1n2-L. we find 

~ (NI + mI + L)/(N2 + m2-.6)! _ (NI + N 2 + mI + m2 + I)! 
k; NI! N;IC;;;I + E)! (m2=-Lc,)! - (mI + m2)! (NI + N z + I)!' 
-Inl 

Por ml = m2 = n, we arrive at: 

Finally we may write 
(NI + n + .6)/ (N2 + n-.6)! 

(n + 6)!(n-6)! N ITN2T 
(NI + N 2 + 2n+ I)! 
(2n)!(N;-+ N 2 +1)! 

For equal values of N, we arrive at the simplified farm 

(N + n + .6)! (N + n - .6) / 
~~V~&rcf.rjr 

P~;n,N= (2N +2n + 1)/ 

(2 n)! (2 Nl~l)! 

In order to make the methad fit for use, we have to compute the values 
of P~. n N for a certain value of n and N = 150, varying L. only. Next we 
calcul~t~ the cumulative chances of L., and by means of graphical inter~ 
polation we Eind the values of L., belonging to (uniIaterai ) tail error 
values of 0,001. 0,005, 0,01 &c. The same is done for other values of n. 

By graphical interpolation we also find, for which values of n, P*n; n,N 
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will eorrespond to the chosen tail error values. Thus we arrive at the 

following tabie: 

Tail error n= D n=5 n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 

iö 0/0 5,1 7,3 10,6 13,4 15,8 18,1 20,2 

~% 3,9 4,4 6,2 9,0 11,3 13,3 15,3 17,1 

1% 3,4 4,1 5,7 8,2 10,2 12,1 13,8 15,4 

2% 2,9 3,7 5,1 7,3 9,1 10,8 12,3 13,7 

3% 2,6 3,4 4,8 6,8 8,4 9,9 11,3 12,6 

4% 2,3 3,2 4,4 6,3 7,9 9,3 10,5 11,8 

5% 2,2 3,1 4,2 6,0 7,4 8,7 10,0 11,1 

n = 75 n = 90 n = 110 n = 150 n = 200 n = 300 

23,4 26,3 30,4 38,0 47,2 65,4 

19,7 22,2 25,5 31,8 39,5 54,8 

17,8 20,1 23,0 28,8 35,8 49,5 

15,8 17,9 20,5 25,5 31,7 43,8 

14,6 16,3 18,8 23,5 29,1 40,2 

13,6 15,3 17,5 21,9 27,1 37,4 

12,8 14,4 16,5 20,6 25,5 35,3 

Prom this table we ean proeeed to the eonstr1..1etion of a tail error 
diagram, to be used as previo1..1sly deseribed. 

Since the extra pollen species are considered as such, because of their 
great val:iability in ab1..1ndance, the pollen analyst is not likely to need more 
precision for the interpretation of extra pollen countings. For this reason 
we refrain from computing tables for the treatment of pooled extra pollen 

data. 
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Summary. 
In stating the significance of the difference between two frequency 

distributions, we have ta test our samples by means of statistical methods 
imposing certain praperties on the frequency curves of the populations. 
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In a vast majority of cases the normal law is assumed, including two 
parameters, i.e. the mean of the population, and the standard deviation. 
In the classical treatment of data, we have to substitute the parameters by 
so~called statistics, these being their estimates as computed from the 
samples. This is tolerabIe as long as large samples are considered. In the 
case of small samples, this procedure will appreciably affect the reliability 
of our conclusions. In later years, this difficuIty has been surmounted by 
designing the so~called t~test. Sin ce no unknown parameters appear in the 
formula, th is test enables us to get exact information on the significanee of 
the difference between two small samples, taken from normal populations. 
The application of this method, however, is still limited by the assumption 
of the normal law. In many cases of counting work, as in pollen analysis, 
the data may be supposed to foIlow the binomial !aw. Sin ce the standard 
deviation, or the initial probabilities do not appear in the formula for the 
distribution of the mean of two samples, we have no need for computing 
their estimates. A suitable treatment is then carried out by applying R. A. 
FISHER's binomial test, which is exact, even for small samples. The 
derivation of its mathematica! basis is given in fuIl, in order to attract the 
attention of biological workers. The test is tabulated as far as needed for 
pollen analytical research. The practice of the method resolves itself into 
a graphical application, as is exemplified with a pollen diagram. The custom 
of counting 150 pollen grains is justified on theoretica! grounds. The 
current theory does not hold for extra pollen countings. In order to meet 
the needs, a special method is developed for a similar treatment of extra 
pollen data. 
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Geology. - Some data on the Muriah volcano (Java), and its leucite~ 
bearing rocks. By L. BOOMGAART. (Communicated by Prof. J. H. F. 
UMBGROVE.) 

(Communicated at the meeting of May 31, 1947.) 

The Muriah volcano complex, East of Semarang on the North~coast of 
Java, protrudes into the Java~Sea. It comprises the Muriah volcano (in~ 

active), 1602 m, and North of it the small ashvolcano Genuk, 717 m 
(formerly called Tjilering). East of this Genuk volcano we find some 
small isolated hills; from North ta South the Bako, 157 m, the Ragas, 
122 mand the Tempur, 49 m. 

During an investigation of the northern sector by the present author 
83 rocksamples have been collected (60 of solid rocks, 23 of boulders) and 
a microscopical study made, especially of the leucite~bearing rocks. Of 
67 samples the content of K20 and Na20 were chemically determined by 
the Laboratory of the Geological Survey at Bandung. 

I. T heM u r i a h vol c a n o. 

The whole of the northern aspect of the mountain is controlled by the 
imposing triangular peak of the Sutorenggo, 1604 m, which stands out on 
the Southside of the Tempur~cauldron. This northern crater is surrounded 
by steep walls from 1100-1600 m, through which the Gelis~river forces 
an outlet to the North. The villa ge of T,empur, situated in the crater, lies 
at an alti tu de of 600 m. 

The northern part of the Muriah is mainly built up by breccias. Flows 
of basalto~andesitic rocks and of leucite~bearing rocktypes !ie upon the 
breccias, or are found as intercalations in breccias. Some tufflayers have 
been observed also. No definite sequence of deposition could be recon~ 
structed. 

Leucite~bearing l'ocks. 
This type of rock has been found as flows, as boulders in superficiaI 

block~fields, in one case as a dike (Tempur~cauldron), as constituent of 
breccias and as boulders in tuff. The following leucite-bearing rocktypes 
can be distinguished. 

1. Leucite~tephrites without orthoclase (sanidine), except a little 
groundmass~orthoclase. 

2. Leucite~tephrites with orthoclase (sanidine) as phenocrysts. The 
leucite is mostly altered. All these samples are from the crater~area. 

3. Leucite~tephrites with nephelite. Only one sample. 
4. Leucite~basanites (characterized by olivine). Plagioclase as pheno~ 

cryst is present in 46 % of the examined rocks. In the other specimen 
plagioclase is generally sporadically present. 




