
Physics. - The intensities of direct and scattered X~radiation in a 
horizontal water sheet exposed to a cylindriform beam of soft 
vertical X~rays. By R. H. DE WAARD. (X~ray department of the 
Medical University Clinic, Utrecht.) (Communicated by Prof. H. 
R. KRUYT.) 

(Communicated at the meeting of May 31, 1947.) 

1. Introduction. 

Various illnesses are, nowadays, treated with X~rays. In a simpIe 
treatment some definite part of the skin is exposed to a beam of X~radia~ 
tion, and it is important to know what, in such a case, the distribution of 
direct and scattered radiation will be in the patients body. 

Distributions of this sort have of ten been investigated by measurements 
on waterphantoms. In this paper it will be shown that in several cases 
these distributions can also be approximated theoretically. 

2. Statement of the problem and its mathematical expression by an 
integral equation. 

The theoretica! developments to be given in this paper refer to the 
arrangement represented in fig. 1. On the surface of a horizontal water 
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Fig. 1. Cylindriform beam of vertical X-rays falling on a horizontal watersheet of 
thickness h. R.: radius of a horizontal cross-section of the beam. 

sheet falIs a cylindriform beam of vertical X~rays having all the same 
wavelength A, the thickness of the sheet being denoted by hand the radius 
of the beam by R. 

Now the intensities of direct and scattered X~radiation in the water 
sheet can be approximately calculated by a method given by the au thor in 
a preceding paper 1). It was assumed in this paper that in any given level 

1) The intensity of scattered X-radiation in medica! radiography. Proc. Kon. Ned. 
Akad. v. Wetenseh .. , Amsterdam, 49, 955-966 and 1016-1024 (1946). 
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the intensity of scattered radiation is constant throughout the original beam 
and zero beyond it. In the present paper we will denote by Sx and Dx the 
intensities of scattered and direct radiation in a level at distance x under 
the water surface: Do is_ then the intensity of the incident radiation and 

we have 
(1) 

where 

fl- = 2.5 ,1,3 + 0.18 (2) 

is the coefficient of enfeeblement of the X~radiation in question wh en 
propagating in water. When, moreover, we as su me that the distributio,n 
of scattered radiation over various directions is given by J. J. THOMSON s 
wel1~known formula 2) Sx will satisfy the integral equation 

x 

Sx JIDo e-I'Y + Syl WP.R Ifl- (x-y) I dy + 
o (3) 

h 

+ JIDoe-'uy+Sy! WI'RIfl-(y-x)ldy 

x 
where 

WI'R (u) =t X 0.18 [(1 + (
2

2
)Jooe-

z 
dz + u

2
2 

1-z e-zJz=u ____ • 
Z Z z=Vu'+(I'Rr' 

o 

This integral equation is not essentially different from the one treated in 
the preceding paper mentioned, and an approximate solution ean be 
obtained in very much the same way. 

3. Approximate solution of the integral equation. 

It was found in the paper mentioned th at the function Wf'R (u) ean be 
eonveniently approximated by an expres sion of the form 

lJf!-'R (u) = kj e-Y1U + 1e2 e-y,ll . (4) 

wh ere k l = 0.200 and Yl = 10 whilst the constants k 2 and Y2 are different 
for different values of fl-R and can be derived from the graphs of fig. 2. 
Now, when in the integral equation (3) we replace I}j!-'R (u) by the 
expression for IJ' I'R (u) we arrive at an integral equation which can be 
solved by elementary methods. The solution is 

Sx = Do (-~. e-!-'X + gil e-;-~x + gl2 é x + g21 e-'1
X + g22 e'1 x) (5) 

l-m 

where the constants m, ~, 'Yj are given by theformulae 

m - 2 led!:! Yl) + 21e2 (f-!- Y2) (6) 
- (fl- YI)2_fl-2 (f1- Y2)2_f-!-2 

2) See M. et L. DE BROGUE, Introduction à la Physique des Rayons X et Gamma, 

Paris 1928, pp. 131-138. 
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. Fig. 2. Graphs showing the dependenee of k2 and 1'2 on flR. 

whilst the values of the quantities g can be derived from the equations 

1 + .fll.! + gil + [12\ + gZ2 - 0 
(l-m) el al a3 bi b3 -

__ 1 __ + gil + gl2 + g21 + gn = 0 
(l-m) e2 a2 a" b2 b4 

• (8) 

where 

CI=f-lYI-f-l 

e2=f-lY2 - f-l 

C3 = f-lYI + f-l 
e4 = f-lY2 + f-l 
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al =f-lYI - ~ 

a2 = f-lY2 - ~ 

a3 =f-lYI + ~ 
ai=f-lY2+~ 

4. Discussion of the case of thick watersheets. 

The most important case is that where the watersheet is rather thick. 
In this case the necessary calculations are comparatively simpIe. We can 
obtain the total intensity J x in levels at some distance from the bottom by 
putting h = co in the equations (8) and substituting the resulting values 
of the quantities g in (10). N ow by doing sa we find from the last two 
equations (8) th at 

gI2=gn=0; 

the first two equations then give 

_ a2 (1 _ el bI) 
e2 Cl b2 

gil = (1-m)(l-~ bi) 
al b2 

and 

and so, as a2 X bbl and e2 X bbl appear to be small quantities, the formula 
al 2 el 2 

for J x may be written 

( 
e-~x ) 

lx=Do l-m +Pe-;x+Qe-'1 X 
•••• (11) 

wh ere 

and . . (12) 

Q= -=-l..(b l _ bi a2) (1 + a2 bi) 
1 - m Cl ez al al b2 

This formula will now be applied in some special cases. 

Case Ia. f-l = 0.30, R = 10 cm. 
Formula (2) gives the corresponding wavelength }, to 0.363 A. Prom the 

curves of fig. 2 we can derive k 2 = 0.1066, Y2 =1 .55 whilst k 1 = 0.200, 
Y1 = 10.0. Substituting these numbers in (6) and (7) and then applying 
(9) and (11) we find 

Ix = Do (15.533 e- O.3x - 14.095 e- O.315x - 0.103 e- 2 •80x). . (13) 
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The relation between J x and x given by this formula is graphically repre~ 
sented by the upper curve of fig. 3. In this curve is slightly indicated that 
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Fig. 3. Full curves: calculated values ol Jx at various depths in the watersheet. 
Do 

Upper curve: fl = 0.3 (Á = 0.363 A). R = 10 cm. 
Lower curve: fl = 0.3 (Á = 0.363A), R = 2.5 cm. 

Dotted curve: relative values Dx of the intensi~y of direct radiation. 
Do 

the total X~ray intensity J x has a maximum at some distance under the 
water surface. A tendency to the formation of such a maximum is also 
found in the lower full curve, but here is not actually present. The latter 
curve refers to 

Case Ib. IJ = 0.30, R = 2.5 cm. 
Here we have k2 = 0.085, Y2 = 2.12 (see fig. 2), and the resulting 

formula for J x is 

Ix = Do (1.917 e-O.3x - 0.614 e-O.528X - 0.094 e-2.80X). (14) 
The dotted curve in fig. 3 gives the contribution to J x which is due to direct 
radiation, and so the figure clearly shows the importance of the process 
of scattering. 

A comparison of the full curves shows us the influence of the size of 
the incident beam. The influence of the wavelength becomes apparent 
when we compare these curves with the full curve of fig. 4 which cor~ 
responds to either of the following two cases: 

Case Ua. IJ = 0.60, R = 10 cm. 
o 

À=0.552 A k2 = 0.108 Y2 = 1.53 
Ix = Do (1.916 e-O.6x - 0.750 e-O.794X - 0.042 e- 5.80X). • (15) 

Case lIb. IJ = 0.60, R = 2.5 cm. 
o 

À=0.552 A k2 = 0.101 
Ix = Do (1.607 e-cO.6x - 0,453 e-O•894x - 0.042 e- 5.80X). • (16) 
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In these cases the influence of scattering is not so important as in the 
cases Ia and Ib. 
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Fig. 4. Full curve: calculated relation between L~ and x for 

Do 
fl = 0.6 (Á = 0552 A), R = 2.5 cm. 

This curve is not sensibly different from that for 
fl = 0.6 (Á = 0552A), R = 10 cm. 

Dotted curve: relation between Dx and x. 
Do 

5. Watersheets of moderate thickness. 

The formulae (11) and (12) obtained in the preceding section for the 
total X~ray intensity J x refer to the limit case of infinitely thick water~ 
sheets. In the present section we will derive formulae applying to the case 
of watersheets of moderate thickness. 

It is obvious th at we can obtain general formulae for the coefficients g 

figuring in (10) by solving the set of linear equations (8) . We have for 
instanee: 

a3 ~I 11:3 ~I I 
e(--ft+rJ)h - e(h~)h + 4 other terms 

I ~4 ~2 :4;2 e2 bz 1 ~ b2 

gll = -'---~--'Ia-:-\' ~31- b
3 

~rl;3 i
l

2 
-"------. ) 

(l-m) 2 + e(-~+'l)h + 3 other terms \ 
1 1 11 1 1 

a2 a1 b4 b2 a4 bz 

We will now contine ourselves to the consideration of cases where the 
watersheet in question is more than 4 cm thick. Numerical ca1culations 
show .that several of the terms figuring in the expression for gl1 may then 
be neglected and th at the expres sion can be reduced to 
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In a similar way can be obtained the following expressions for the other 
quantities g: 

(
_ a2 + 82 bI) (1 + a2 bI) e-t<h + 82 82 ~ 1 + bI (2 a2 _ e2 _ a 4 ) l e- gh 

ei b2 e3 81 bz e2 8 1 ? bz 81 el 83 ~ 
g12= e-~h 

(l-m) ~ 1- (::r e-2;h~ 

We will now apply these formulae to some cases where h = 5 cm, 10 cm 
and 20 cm, and compare the results with those obtained in section 4 for 
watersheets of infinite thickness. 

Case Ia. ft = 0.30, R = 10 cm. 
The coefficients figuring in the right hand member of (10) are given 

by the formulae 

~ = 0.315 1]:= 2.80 

0.567 e-O.6l5h - 14.102 
gll = -- 1-0.036 e- O.63h 

1 
-1- = 15.533 
-m 

-3.042 e-O.3h + 2.710 e-O.3l5h 
gl2 = --1"::-'-0.036 e O.63h e-O.3151t 

-0.103-0.122 e- O•63h 

g21 = 1 - 0.036 e·- O•63/! 

_ -0.730 e- O•31t + 0.663 e-O.3l51t -2.801t 
g22 - 1-0.036 e- O.63h e 

From the latter four of these formulae can be derived the values of the 
quantities g corresponding to different water~thicknesses h. The values 
for h = co, 11 :;:::: 20 cm, h = 10 cm and h = 5 cm are given in Table Ia. 

With the help of these values were obtained the J x, x~curves corres~ 
ponding to h = co, h = 10 cm and 11 = 5 cm which are shown in fig. 5; 
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TABLE Ia (ft = 0.30, R. = 10 cm). 

h 00 20 cm 10 cm 5 cm 

- 14.102 - 14.102 - 14.101 - 14.076 

o - 0.003 - O. 035 1--=;~~8-

- 0.103 - 0.103 - O. 103 I - 0.108 

o - 0.001 - 0.008 I - 0.026 

a curve for h = 20 cm has been omitted since it would not have differed 
much from that for 11 = co. Just as in figs. 3 and 4 the dotted curve gives 
the contribution to J x which is due to direct radiation. 
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Fig. 5. Full curves: calculated relations between Jx and x corresponding to the 
Do 

following cases: 
Upper curve: ft = 0.3, R. = 10 cm, h ::::: ro 
Middle curve: ft = 0.3, R. = 10 cm, h = 10 cm 
Lower curve: ft = 0.3, R. = 10 cm, h = 5 cm 

Dotted curve, relation between Dx and x. 
Do 

Case Ib. ft = 0.30, R = 2.5 cm. 
Here we have 

e= 0.528 1] = 2.80 

0.021 e-o.828h-0.619 
gl1 = 1-0.009 e-1.056h 

1 
-1- = 1.917. 
-m 

_ -0.225 e-O•3h + 0.059 e-O.5281t -O.528/t 
gl2 - 1-0.009 e-1.0561t e 

-0.094-0.002 e-1.056h 

g21 = - 1-0~o69 e-1.056h 

_ - 0.100 e-O.3h + 0.032 e-O.5281t -2.801t 
g22 - 1 _ 0.009 e 1.0561t e 
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If in the latter four of these formulae we substitute h = 00, h = 20 cm, 
h = 10 cm and h = 5 cm we find the values of the quantities g which are 
given in Table Ib. 

TABLE Ib (ft = 0.30. R=2.5cm). 

h 00 20 cm 10 cm 5 cm 

gll - 0.614: - 0.614: -0.614: - 0.614: 

g12e O.528h 0 - 0.001 -0.011 -0.04:6 

g21 -0.094: -0.094: - 0.094: -0.094: 

g22 e2.S0/z 0 0 -0.005 - 0.020 

The ] x, x~curves corresponding to h = 00 and h = 5 cm are shown in 
fig. 6. 
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Fig. 6. Full curves: ca1culated relations between Jx and x corresponding to the 
Do 

following cases: 
Upper curve: ft = 0.3, R = 2.5 cm, h = (X) 

Lower curve: ft = 0.3, R = 2.5 cm, h = 5 cm 

Dotted curve: relation between Dx and x 
Do . 

As to the cases na (p.. = 0.60, R. = 10 cm) and IIb (p.. = 0.6, 
R = 2.5 cm) it may be observed that the differences between the ] x, x~ 
curves for h = 20 cm, h = 10 cm and h = 5 cm and those for h = 00 

given in fig. 4 are negligible. 

6. Genecal discussion. Compat'ison with expet'imental data. 

The formulae for ] x obtained in this paper were derived from the 
integral equation (3) by a method of approximation which is perfectly 
justified. The integral equation itself, however, needs some discussion. One 
of the assumptions on which it is based is the validity of J. J. THoMsoN's 
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classical theory of X~ray scattering. We know that this theory gives a 
reasonable approximation of facts when the wave1engths concerned are 
large with respect to the Compton~wavelength .lee = 0.024 A, but that it 
does not hold for smaller wave1engths (e.g. < 0.24 A). When we have to 
deal with such smaller wavelengths we must account for a reduction of 
sideward and especially of backward scattering and, moreover, for the 
increase of wave1ength known as the Compton~effect. 'VVhilst these 
phenomena will only sIightly reduce the influence of scattering in forward 
directions they may cause a considerable decrease of the influence of 
scattering in backward directions, and so we must expect that their 
neglection wil!. in the main, result in an overvaluation of the influence of 
backward scattering in the theory. To this divergence must be added an 
error due to another source. It was assumed in the deduction of the integral 
equation that scattered radiation of any order originating in some part of 
the watersheet has the same distribution over various directions as 
secondary radiation, and this results in the influence of both forward and 
backward scattering being exaggerated, particularly wh en the incident 
beam is large. In cases of large wavelengths and incident beams of mode~ 
ra te si ze, however, the final formulae for J x may be fairly reliable, and 
the question arises whether we have at our disposal experimental data with 
which these formulae can be compared numerically. Now this appears to 
be actually the case. The curves of figs. 3 and 4: refer to incident beams 
of wavelengths .Ie = 0.363 A and .Ie = 0.552 A, and the formula 

p.. = 37 .P + 0.38 

for the coeffident of enfeeblement in aluminium gives the corresponding 
half value layers for this metal to 3.0 mm and 1.0 mm respectively. Now 
depth dose measurements on radiations with this sort of half value layers 
were carried out during the war by C. B. BRAESTRUP, and his results can 
be found in tables A - F at the end of the book "Physical Foundations 
of Radiology" by O. GLASSER, E. H. QUlMBY, 1. S. TAYLOR and J. 1. 
WEATHERWAX. However. the conditions of the experiments were rather 
different Erom those to which the calculations of this paper apply. The 
main differences are: 

1. The calculations apply to cylindriform beams of parallel X~rays 
whereas the experiments were carried out with divergent beams, and 

2. In the calculations the incident X~radiation is supposed to have one 
definite wavelength whereas in the experiments it formed a rather extensive 

continuous spectrum. 
Now it is easy to see wh at effect these differences will have when we 

compare cases of equal half value layer and equal size of the exposed area 
of the water surface. Let us first consider thc influence of the divergence 
of the incident beams which BRAESTRUP applied in his measurements. It is 
obvious that th is divergence will result in a more rapid decrease of X~ray 
intensity on the way from the surface to the lower parts of the watersheet. 
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For the direct radiation the extra decrease is given by the inverse square 
law; in scattered radiation, however, a still stronger decrease of intensity 
must be expected on account of the fact that the mean distance of any 
part of the incident beam to the other parts increases with increasing cross~ 
section. 

As to the spectral composition of the incident radiation applied in the 
experiments it is clear that the more penetrating components will have 
greater importance according as we consider a lower level in the water~ 
sheet. From this fact will result an increase of X~ray intensity in the lower 
levels and this increase may overcompensate the decrease due to the diver~ 
gence of the incident beam. 

There is, however, one point which is not affected by the discussed 
differences between theoretical and experimental conditions. This point is 
the X~ray intensity at the surface of the watersheet which is due to down~ 
ward incident radiation and to upward backs cat ter. !f, therefore, we express 
backscatter or tota! X~radiation at the water surface in terms of the 
incident radiation we should find close agreement between calculated and 
measured values. Now, in fact, the agreement between calculated and 
measured backscatter values is very satisfactory indeed. This is clearly 
shown by the curves of figs. 7 and 8 which refer to cases with half value 

Fig. 7. 
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Curves giving calculated and measured relations between Ix and x for radiations 
Do 

with haH-value layer of 1 mm AI. 
Full curve (calculated): parallel X~rays of wavelength Ä == 0.552 A (ft == 0.6), 
field of incidence 20 cm2 or greater CR = 2.5 cm). 
Dotted curves (measurements by C. B. BRAiESl1RUP): high tension 100 kV, 
inherent filter only, focus-surface distance 30 cm. 

Upper dotted curve: field of incidence 100 cm2 (R =, 11.3 cm). 
Lower dottedcurve: field of incidence 25 cm2 (R = 5.6 cm). 

Iayers of 1 mm Al (jh = 0.6 and À = 0.552 A in the calculations) and 
4 mm Al (jh = 0.257 and À = 0.313 A in the calculations). Corresponding 
to the lower levels of the waters heet the curves show discrepancies of the 
sort predicted in the above qualitative considerations, and so the formulae 

683 

,obtained in this paper look like giving a good approximation of facts wh en 
the wavelength of the incident radiation is between 0.3 and 0.6 A. It is 
therefore of interest th at they give quantitative information on certaiti 

~Fig. 8. 

h'1/l.= 4mm.AI. -I­
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o 2 4 8 x 
Curves giving calculated and measured relations between l~ and x for radiations 

Do 
with half-value-Iayer of 4 mm Al. and field of incidence of 100 cm2 (R = 5.64: cm). 
Full curve (calculated): parallel X-rays of wavelength;' = 10.363 A (f.l = 0.3). 
Dotted curves (measurements by C. B. BRA,ES~RUP): high tension 120 kV, 
fi],ter 3mm AI. 

Upper dotted curve: focus surface distance 40 cm. 
Lower dotted curve: focus surf ace distance 20 cm. 

'features which are not taken into account in current medica! applications. 
In conclusion some of these features may be mentioned here: 

a. The part of total X~radiation which is due to scattering is more 
important according as we have to do with thicker watersheets, 

b. Wh en compared with its general course in the central parts of the 
watersheet the intensity of total X~radiation shows a marked decrease not 
only towards the surf ace, but also towards the bottom of the sheet. 

Summary. 

A method is given by which can be approximately caIculated the total 
intensity of X~radiation in various levels of a horizontal watersheet which 
is exposed to a cylindriform beam of soft vertical X~rays. The resulting 
formulae are in satisfactory agreement with the results of a series of 
measurements carried out during the war by C. B. BRAESTRUP. They 
give some quantitative information on certain features which are not taken 
jnto account in current medical applications. 
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