Physics, — The intensities of direct and scattered X-radiation in a
horizontal water sheet exposed to a cylindriform beam of soft
vertical X-rays. By R. H. bE WAARD. (X-ray department of the
Medical University Clinic, Utrecht.) (Communicated by Prof. H.
R. KruYT.) :

(Communicated at the meeting of May 31, 1947.)
1. Introduction.

Various illnesses are, nowadays, treated with X-rays. In a simple
treatment some definite part of the skin is exposed to a beam of X-radia-~
tion, and it is important to know what, in such a case, the distribution of
direct and scattered radiation will be in the patients body.

Distributions of this sort have often been investigated by measurements
on waterphantoms. In this paper it will be shown that in several cases
these distributions can also be approximated theoretically.

2. Statement of the problem and its mathematical expression by an
integral equation.

The theoretical developments to be given in this paper refer to the
arrangement represented in fig. 1. On the surface of a horizontal water
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Fig. 1. Cylindriform beam of vertical X-rays falling on a horizontal watersheet of
thickness A, R: radius of a horizontal cross-section of the beam.

sheet falls a cylindriform beam of vertical X-rays having all the same
wavelength 4, the thickness of the sheet being denoted by A and the radius
of the beam by R,

Now the intensities of direct and scattered X-radiation in the water
sheet can be approximately calculated by a method given by the author in
a preceding paper 1). It was assumed in this paper that in any given level

*) The intensity of scattered X-radiation in medical radiography. Proc. Kon. Ned.
Akad, v, Wetensch.,, Amsterdam, 49, 955—966 and 1016—1024 (1946).
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the intensity of scattered radiation is constant throughout the original beam
and zero beyond it. In the present paper we will denote by Sx and Dy the
intensities of scattered and direct radiation in a level at distance x under
the water surface; Dy is then the intensity of the incident radiation and
we have
Di=Dge* . . . . . . . . . (1

where

u=251834+018 . . . . . . . . (2
ic the coefficient of enfeeblement of the X-radiation in question when
propagating in water. When, moreover, we assume that the distribution
of scattered radiation over various directions is given by J. J. THOMSON's
well-known formula 2) Sy will satisfy the integral equation

Sy = f (Dy e + Sy} Bur Lt (v—9)} dy -+
0

\ . . (3)
+f;po e -+ Sy} Bur {u (y—)} dy
X
where
— u?\ (e 51_21_"_“3 2 |
@#R(“)“%“X°°18[<1+5>0f”2 dety e ]z:_.vzmm'

This integral equation is not essentially different from the one treated in
the preceding paper mentioned, and an approximate solution can be
obtained in very much the same way.

3. Approximate solution of the integral equation.
It was found in the paper mentioned that the function @.r(u) can be
conveniently approximated by an expression of the form.
Voplw)=l ent+tlyent. . . . . . . (4

where &y = 0.200 and y; = 10 whilst the constants k; and y, are different
for different values of uR and can be derived from the graphs of fig. 2.
Now, when in the integral equation (3) we replace @,r (u) by the
expression for Wug (1) we arrive at an integral equation which can be
solved by elementary methods. The solution is

Sx=Dy (]’in_“m e ™ +. g e + giz e gne ™+ gy e”x) . (5)

where the constants m, &, 3 are given by the formulae

e 2liler) | 2k (uys) .
(yP—p? " (pra)—p?

2) See M. et L. DE BROGLIE, Introduction a la Physique des Rayons X et Gamma,
Paris 1928, pp. 131—138.

(6)
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and -
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"Fig. 2. Graphs showing the dependence of kg and y2 on uR.

whilst the values of the quantities g can be derived from the equations

(1_:n)el+9n +912+921+922_0
(lnm)ez+911+912+921+g22_~0

(8)
etk gue™t gnet  gueh  gyett
‘(1—1m),'e3’+ as + a, + by + b, =0

e—Hh g et guelt  gueh gy ert
=0
(1—m)e, a4 + az + by T b,

675
where
ey == Uy Y ap=puy —§¢ by=uy;—n
ey = Uy, — Y a,=py,—§& by=pya—n (9)
e == uy -+ u ag=uy +§ by=pyi 41
ey =puy -t u ag=py,+§& by==uy,+n

The total intensity Jx in the level at distance x under the water surface
is then

h_&+m~m<

+g119 gx'+‘912€€x“}"921"3 ”x‘*‘gzzenx) (10)

4. Discussion of the case of thick watersheets.

The most important case is that where the watersheet is rather thick.
In this case the necessary calculations are comparatively simple. We can
obtain the total intensity Jx in levels at some distance from the bottom by
putting A = o in the equations (8) and substituting the resulting values
of the quantities g in (10). Now by doing so we find from the last two
equations (8) that

g12=g»=0;
the first two equations then give
_@OMQE) by b
e, e, b, e a
g1 — a; b and gy = 2. b
(1-—m) 1—222 (1—m){1 =22
a b2 <31 b’2
and so, as —= >< 5—3 Py —Zwl appear to be small quantities, the formula
1 2

for Jx may be Wmtten

]x:Do<le; “5"+Qe“"X> N (8 )

where p— -1 32%1_“91(52._3_2)%

bz ay

and N L (12)

= =1 (b _bia) [ &b
Q—nl-—m (e, €, a1> <1+a1 b2>

This formula will now be applied in some special cases.

Case Ia. =030, R = 10 em.

Formula (2) gives the corresponding wavelength 2 to 0.363 A. From the
curves of fig. 2 we can derive ko = 0.1066, yo =1 .55 whilst &y == 0.200,
y4 == 10.0, Substituting these numbers in (6) and (7) and then applying

(9) and (11) we find

Jo =D, (15533 ¢~ 03x — 14,095 e=0-315% — 0,103 e~2:9%), . (13)
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The relation between [x and x given by this formula is graphically repre~
sented by the upper curve of fig. 3. In this curve is slightly indicated that
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Fig. 3. Full curves: calculated values of Jx at various depths in the watersheet.
0
Upper curve: u =03 (1=203634), R=10 cm. -

Lower curve: # =03 (1 =0363A), R=25cm,

Dotted curve: relative values gﬁi of the intensity of direct radiation.
0

the total X-ray intensity J. has a maximum at some distance under the
water surface. A tendency to the formation of such a maximum is also
found in the lower full curve, but here is not actually present. The latter
curve refers to '

Case Ib. 1 = 0.30, R = 2.5 cm.

Here we have kg = 0.085, yo = 2.12 (see fig. 2), and the resulting
formula for Jx is

Jx=D;,(1.917 e793% — 0.614 ¢~ 0-528x — (0,094 e—2-30%), | (14)
The dotted curve in fig. 3 gives the contribution to J. which is due to direct
radiation, and so the figure clearly shows the importance of the process
of scattering. ’

A comparison of the full curves shows us the influence of the size of
the incident beam. The influence of the wavelength becomes apparent
when we compare these curves with the full curve of fig. 4 which cor-
responds to either of the following two cases:

Case Ila. 4= 0.60, R = 10 cm.

1==0.552 A k,==0.108 v, = 1.53
Jx = Dq (1,916 e70:65 — 0,750 ¢=0.794% — 0,042 ¢=5:80%), , (15)
Case IIb. = 0.60, R = 2.5 cm.

1==0.552 A k, = 0.101 v, = 1.68
Ji == Dy (1.607 e0:6% — 0.453 e=0-894x — 0,042 e~58%), , (16)
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In these cases the influence of scattering is not so important as in the
cases la and Ib.
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Fig. 4. Full curve: calculated relation between %_ and x for
0

u=06 (1=05524), R=25cm.

This curve is not sensibly different from that for
u=06 (A=05524), R =10 cm.

Dotted curve: relation between Dx and x.
0

5. Watersheets of moderate thickness.

The formulae (11) and (12) obtained in the preceding section for the
total X-ray intensity Jx refer to the limit case of infinitely thick water-
sheets. In the present section we will derive formulae applying to the case
of watersheets of moderate thickness.

It is obvious that we can obtain general formulae for the coefficients g
figuring in (10) by solving the set of linear equations (8). We have for
instance:

1 1 1 1 1 1 1 1
as by |es b e; byl |a by
el-utmh e +Mh 4 4 other terms
1 1 1 1 1 1 11
ai by |e; by e, by |a, b,
gi = U 11 1] |1 1P
a; a; |bs Efl as b Cemn L2
J— - - 7
(1—m) {2 1 - L1 e -+ 3 other terms
ar as| |by by |as by

We will now confine ourselves to the consideration of cases where the
watersheet in question is more than 4 cm thick. Numerical calculations
show that several of the terms figuring in the expression for g,; may then
be neglected and that the expression can be reduced to
a?ze(-ﬂ»zm_.,a_z%l_é_x (,ez_@)g

a4 €4 €2 by \er a

"

4
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In a similar way can be obtained the following expressions for the other
quantities g:

(3]

ﬁ.*.aZbl a2 by 62<1_i§52>e—25h

a4 €3

1 — (32)2 eq;n%
a4

-

We will now apply these formulae to some cases where A == 5 cm, 10 cm
and 20 cm, and compare the results with those obtained in section 4 for
watersheets of infinite thickness.

Case la. 4 =0.30, R = 10 cm.

The coefficients figuring in the right hand member of (10) are given
by the formulae

1

£=0.315 n=2.80 =

= 15.533

__0.567 e 06158 __ 14,102
gn = 1—0.036 e—0.63n

—3.042 e=03% 4 2,710 e~ 0315

g1 = e—0.315h

1—0.036 ¢ 0-634

—0.103 — 0,122 e~ 0634
1—0.036 ~9-63%

gn =

—0.730 7031 4. 0.663 e~ 03154
1—0.036 e=0-63%

e~2.80h

g22 =

From the latter four of these formulae can be derived the values of the
quantities g corresponding to different water-thicknesses h. The values
for h =0, h =20 em, h = 10 ¢cm and h = 5 cm are given in Table la.

With the help of these values were obtained the Jx, x-curves corres~
ponding to h == o, A = 10 ¢m and A == 5 ¢m which are shown in fig. 5;

a3 &b 1+§ZZ’_1 enh 18282 1_}_& 282 €2 A4\(,-:tn
e; by ey a; b, €2 44 by\"a; e as —th
e
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TABLE la (# = 0.30, R = 10 cm).

_.b_1+f”3[31 1.‘_‘?_?__1.7_1 e—uﬁ+9_2 by _bia 1—bifea_pa\l —en
es3 a; €4 ‘ay b2 €7\ as dy ay b2 €y a _

h ) 20 cm 10 ¢cm 5 cm

g1 — 14,102 — 14.102 — 14.101 — 14,076
gipe 0350 0 —0.003 —0.035 —0.118

g2 —0.103 —0.103 — 0.103 —0.108
gm >k 0 —0.001 —0.008 —0.026

a curve for h = 20 cm has been omitted since it would not have differed
much from that for A = co. Just as in figs. 3 and 4 the dotted curve gives
the contribution to Jx which is due to direct radiation.
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Fig. 5. Full curves: calculated relations between IDi and x corresponding to the
0
following cases:

Upper curve: =03, R=10em, h =
Middle curve: ¢ = 0.3, R = 10cm, h = 10cm
Lower curve: =103, R=10cm, h=5cm

Dotted curve, relation between Dx and x,
: 0

Case 16, 1 =0.30, R = 2.5 cm.
Here we have

£=0528  75=2.80 a7
1—m
_0.021 70881 0,619

gu = 1—0.009 e—1.056A
—0.225 ¢9-34 |- 0,059 ¢™0.528 1 .

g1= 1—0.009 ¢~1-0567 ~0.528
—0.094 — 0.002 e—1.056 1
921 = 10,009 e—1-0h
__—0.100 e0-3k 1. 0,032 e—0-581 son
f21= 1—0.009 ¢—1-056% e
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If in the latter four of these formulae we substitute h = <o, h = 20 cm,
h = 10 cm and h = 5 cm we find the values of the quantities g which are
given in Table Ib.

TABLE 16 (¢ = 0.30, R = 2.5 cm).

h 0 20 c¢m 10 cm 5 ¢m

gu —0.614 —0.614 —0.614 —0.614
gige 052841 0 —0.001 —0.011 — 0,046

g21 - 0.094 —0.094 — 0.094 — 0.094
gne”®h 0 0 —0.005 —0.020

The Jx, x-curves corresponding to A == o and A == 5 cm are shown in
fig. 6.
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Fig. 6, Full curves: calculated relations between Ix and x corresponding to the

0
following cases:

Upper curve: =03, R==25cm, h= o
Lower curve: p =03, R=25cm, A=>5cm

Dotted curve: relation between &‘ and x,
o

As to the cases Ila (u=10.60, R=10 cm) and II6 (u =06,
R == 2.5 cm) it may be observed that the differences between the Jx, x-
curves for A==20 cm, h==10 ¢m and h =5 cm and those for h =
given in fig. 4 are negligible.

6. General discussion. Comparison with experimental data.

The formulae for Jx obtained in this paper were derived from the
integral equation (3) by a method of approximation which is perfectly
justified. The integral equation itself, however, needs some discussion. One
of the assumptions on which it is based is the validity of J. J. THOMSON's

681

classical theory of X-ray scattering. We know that this theory gives a
reasonable approximation of facts when the wavelengths concerned are
Jarge with respect to the Compton-wavelength 1 = 0.024 A, but that it
does not hold for smaller wavelengths (e.g. < 0.24 A). When we have to
deal with such smaller wavelengths we must account for a reduction of
sideward and especially of backward scattering and, moreover, for the
increase of wavelength known as the Compton-effect. Whilst these
phenomena will only slightly reduce the influence of scattering in forward
directions they may cause a considerable decrease of the influence of
scattering in backward directions, and so we must expect that their
neglection will, in the main, result in an overvaluation of the influence of
backward scattering in the theory. To this divergence must be added an
error due to another source. It was assumed in the deduction of the integral
equation that scattered radiation of any order originating in some part of
the watersheet has the same distribution over various directions as
secondary radiation, and this results in the influence of both forward and
backward scattering being exaggerated, particularly when the incident
beam is large. In cases of large wavelengths and incident beams of mode-
rate size, however, the final formulae for J: may be fairly reliable, and
the question arises whether we have at our disposal experimental data with
which these formulae can be compared numerically. Now this appears to
be actually the case. The curves of figs. 3 and 4 refer to incident beams

of wavelengths 4 = 0.363 A and 1 = 0.552 A, and the formula

p =371-40.38

for the coefficient of enfeeblement in aluminium gives the corresponding
half value layers for this metal to 3.0 mm and 1.0 mm respectively. Now
depth dose measurements on radiations with this sort of half value layers
were carried out during the war by C. B. BRAESTRUP, and his results can
be found in tables A~ F at the end of the book “Physical Foundations
of Radiology” by O. Grasser, E. H. Quimpy, L. S. TAYLOR and J. L.
WEATHERWAX. However, the conditions of the experiments were rather

different from those to which the calculations of this paper apply. The

main differences are: .

1. The calculations apply to cylindriform ‘beams of parallel X-rays
whereas the experiments were carried out with divergent beams, and

2. In the calculations the incident X-radiation is supposed to have one
definite wavelength whereas in the experiments it formed a rather extensive
continuous spectrum.

Now it is easy to see what effect these differences will have when we
compare cases of equal half value layer and equal size of the exposed area
of the water surface. Let us first consider the influence of the divergence
of the incident beams which BRAESTRUP applied in his measurements. It is
obvious that this divergence will result in a more rapid decrease of X-ray
intensity on the way from the surface to the lower parts of the watersheet.

4
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For the direct radiation the extra decrease is given by the inverse square
law; in scattered radiation, however, a still stronger decrease of intensity
must be expected on account of the fact that the mean distance of any
part of the incident beam to the other parts increases with increasing cross-
section,

As to the spectral composition of the incident radiation applied in the
experiments it is clear that the more penetrating components will have
greater importance according as we consider a lower level in the water-
sheet. From this fact will result an increase of X-ray intensity in the lower
levels and this increase may overcompensate the decrease due to the diver-~
gence of the incident beam.

There is, however, one point which is not affected by the discussed
differences between theoretical and experimental conditions. This point is
the X-ray intensity at the surface of the watersheet which is due to down-
ward incident radiation and to upward backscatter, If, therefore, we express
backscatter or total X-radiation at the water surface in terms of the
incident radiation we should find close agreement between calculated and
measured values. Now, in fact, the agreement between calculated and
measured . backscatter values is very satisfactory indeed. This is clearly
shown by the curves of figs. 7 and 8 which refer to cases with half value
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Fig. 7. Curves giving calculated and measured relations between % and x for radiations
0
with half-value layer of 1 mm Al

Full curve (calculated): parallel X-rays of wavelength 1 == 0.5524 (# = 0.6),
field of incidence 20 cm? or greater (R = 2.5 cm).
Dotted curves (measurements by C. B, BRAESTRUP): high tension 100kV,
inherent filter only, focus-surface distance 30 cm. v

Upper dotted curve: field of incidence 100 cm? (R = 11.3 ¢m).

Lower dotted curve: field of incidence 25cm? (R= 5.6cm).

layers of 1 mm Al (u = 0.6 and 1 =0.552 A in the calculations) and
4 mm Al (= 0.257 and 2 == 0.313 A in the calculations). Corresponding
to the lower levels of the watersheet the curves show discrepancies of the
sort predicted in the above qualitative considerations, and so the formulae
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obtained in this paper look like giving a good approximation of facts when
‘the wavelength of the incident radiation is between 0.3 and 0.6 A. It is
therefore of interest that they give quantitative information on certain
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‘Fig. 8. Curves giving calculated and measured relations between Ix and  for radiations
0
with half-value-layer of 4 mm Al and field of incidence of 100 cm? (R = 5.64 cm).

Full curve (calculated): parallel X-rays of wavelength 4 ==10.363 & (p = 0.3).
Dotted curves (measurements by -C. B. BRAESTRUP): high tension 120 kV,
filter 3 mm Al

Upper dotted curve: focus surface distance 40 cm.

Lower dotted curve: focus surface distance 20 cm.

‘features which are not taken into account in current medical applications.
In conclusion some of these features may be mentioned here:

a. 'The part of total X-radiation which is due to scattering is more
dmportant according as we have to do with thicker watersheets,

b. When compared with its general course in the central parts of the
‘watersheet the intensity of total X-radiation shows a marked decrease not

-only towards the surface, but also towards the bottom of the sheet.

Summary.
A method is given by which can be approximately calculated the total

intensity of X-radiation in various levels of a horizontal watersheet which

is exposed to a cylindriform beam of soft vertical X-rays. The resulting
formulae are in satisfactory agreement with the results of a series of
.measurements carried out during the war by C. B. BRAESTRUP, They
give some quantitative information on certain features which are not taken

Anto account in current medical applications.





