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In his "Diophantische Approximationen", MINKOWSKI gave a simple rule 
for obtaining the critical lattices of a convex domain by means of the 
inscribed hexagons (see Lemma 2). I study here an analogous method 
based instead on the circumscribed hexagons. In thc special case of a 
convex polygon, a simple rule for finding all critica! lattices and the 
minimum determinant is obtained. I also show the surprising result that 
tbe boundary of an irreducible convex domain not a parallelogram has in 
all points a continuous tangent. Finally the lower bound of Q(1<) is 

evaluated for all convex octagons. 

§ 1. Notation. 
The same notation as in earlier papers of mine is used 1). In particular, 

the determinant of a lattice A is called d(A); V(K) and 6(K) are the 
area and the minimum determinant of a domain 1<, and Q(K) is the 

absolute affine invariant 
V(K) o (K):- ,6, (K)' 

The letter L is used for straight lines not passing through the origin 
o = (0, 0), and - L is th en the line symmetrical to L in O. 

All domains 1< considerecl in this paper are assumed to be symmetrical 
in 0; the boundary of 1< is called C. A convex polygon of 2n sides and 
symmetrical in 0 win be denoted by IJ n, its boundary by r n· The indices 
of its vertices Pk and its si des Lk are always chosen in such a way th at if 
r n is described in positive direction, thcn the successive vertices are 

Ol' O2 , •••• On. On+1 = - 0\. On+2 = - O2, •••• 02n = - On. 

and the successive sides are 

LI = Ol O2, L 2 = O2 0 3, •••• Ln = On On-rI. 

Ln+1 = Qn+1 On+2 = - LI' Ln+2 = Qn+2 On+3 = - L2> ...• 
L 2n = Q2n QI =-Ln. 

§ 2. Basic lcmmas. 
The following lemmas are essential for our investigations. 

1) See, e.g. Proc. Kon. Ned. Akad. v. Wetenseh., Amsterdam, 50, 98--107 and 

108-118 (1947). These two papers wil! be quoted as A and B, respectively. 
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Lemma 1: Let 1< be a convex domain; let =t= PI' =t= Pb =t= P 3 be six 
points on C such that P 1 + Pa = P2' and let A be the lattice generated 
by P 1 and P 2 • Then A is J(~admissible. 

Proof: Obvious from the convexity. 

Lemma 2: Let A be any critical lattice of the convex domain 1<. Then 
A contains th ree points P l , P 2 , Pa on C such that, (i) P l , P2 is a basis of 
A. and (ii) OP1P 2Pa is a parallelogram of area d (A) = 6 (1<). Conversely, 
if P l , P 2, Pa are three points on C such that OP1P 2Pa is a paralleIagram, 
then the area of this parallelogram is not less than 6 (K), and it is equal 
to 6(1<) if and only if the lattice of basis P l , P 2 is critical 2 ). 

Lemma 3: The convex domain 1< is irreducible if al1d only if every 
boundary point of K belongs to a critical lattice of Ka). 

Lemma 4: For every parallelogram 112 • 

6(112 ) = !V(IJ2 ). Q(112 ) = 4. 

Moreover, every such parallelogram is al1 irl'educible domain 4). 

Lemma 5: Fol' evel'y convex hexagol1 113, 

6(IJa) = t V(11a). Q(11a) = 4. 

Moreover, every such hexagon has only one cl'iticallattice, and this lattice 
has just six points 011 Ta, viz. the midpoints of the six sides of IJa 5). 

§ 3. Two formulae for 6(K). 

Let 1< be a convex domain symmetrical in O. From Lemma 2. we im~ 
mediately obtain the formuia 

(I): /::, (K) = t fin inf V (h) 
helK 

for 6 (K); here h denotes the set of all hexagons h which have their six 
vertices =t= PI. =t= P 2 • =t= P 3 on the boundary C of K and for which 

P 1 + Ps = P 2 • 

For this relation implies eVidently that 

V(h) = 3V(p) 

2) This is Lemma 3 of paper A. 
3) See Lemmas 8 and 12 of paper A. 
4) The first part of the assertion is equivalent to MüNKOWSK,I's theorem on linear 

farms; for the second part see Lemma 1 of paper A. 
5) The assertion foHows fr om the fact that the whole plane can be covered in just one 

way without overlapping by means of hexagons congruent to 11a; see paper B, § 7. 
An entirel,y different result holds for non-ccm/ex hexagonal star domains Ila 

symmetrical in 0, viz. 

D (JI3 ) = t V (JI2). 0 (IJ3 ) > 4; 
here 112 is the inscribed puraJlelogram of maximum area. Tl12re are al1 infinity of critical 
lattices, and every critica! lattice has points only on four of the sides of II 3. 



694 

where p is the parallelogram OPiP2PS ' Since in (I) the lower bound is 
attained, it is allowed to replace "fin int" by the sign "min". 

The following theorem gives a formula analogous to (I) but involving 
the circumscribed hexagons. 

Theorem 1: Let K be an convex domain symmetrical in 0, and let UK 
be the set of all hexagons H bounded by any three pairs of tac~lines 

=+= LI' =+= L2' =+= L3 of K 6). Then 

(II): t::,. (K) = t fin inf V (H). 
HeUK 

Proof: By the Lemmas 4 and 5, since K is a subset of every hexagon H, 

6(K) <: 6(H) = i V(H), 
hence 

t::,. (K) -=;: t fin inf V (H). . (1) 
HeUK 

Next choose any criticallattice A of K, and denote by =F P t • =+= P2•· =F Pl' 
where Pi + Ps = P 2 , its points on C (Lemma 2), and by =F LI' =+= L 2• 

=F L3 three pairs of symmetrical tac~lines of K at these points. The hexagon 
H bounded by these tac~lines is convex; hence, by Lemma 1. A is H~admis~ 
sible, and so by Lemmas 4 and 5. 

6, (K) = d (A) =- 6, (H) = t V (H). (2) 
Since H belongs to UK. the assertion follows from (1) and (2). 

By this proof, the lower bound is attained also in (II); hence the sign 
"fin int" mayalso in this formula be replaced by the sign "min". 

§ 4. Properties of critical1attices. 

The two formulae (1) and (2) of the last paragraph imply that 

V(H)=i t::,. (K) (3) 

for every hexagon H be10nging to a cri tic al lattice. Hence we find: 

Theorem 2: Let K be a convex domain symmetrical in ° which is not 
a parallelogram; let A be any critical lattice of K; and let =F PI' =F P 2• 

=+= P 3• where Pi + Ps = P2 , be the points of A on C. Then, (i) there are 
unique tac~lines =+= Llt =+= L2• =F L3 of K at these points 7); (ii) no two of 
these tac~lines coincide; (iii) the hexagon H bounded by the tac~lines is of 
area V (H) = 4 6 (K); (iv) each side =+= Ik of H is bisected at the lattice 
point =F Pk where it meets and touches C. 

Proof. The notation can be chosen such th at wh en C is described in 
positive direction, th en the six lattice points follow one another in the 
sequence 

6) Parallelograms are considered as Iimiting cases of hexagons and must be inc1uded 

in UK' 
7) These tac-Iines are therefore tangents of C. 
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Since K is not a paralle10gram, none of the six arcs 
,--.-, ,--.-, ,--.-, ,--.-, ,--.-, ,--.-, 

PI P 2• P 2 P3 • P 3 P 4 • P4 Ps. Ps P6 • P6 PI 

of C is a line segment 8), and so (ii) is true. Hence H is a proper hexagon, 
aod the tac~Iines L i at Pi and Ls at Ps are not parallel orcoincident. 
Assume there is more than one tac-line L2 at P2 ; then this tac~line can 
vary over a whole angIe, and so V (H) is also variabIe and not constant, 
contrary to (3). Therefore the assumption is false and (i) is true. The 
assertion (iii) is identical to (3); from it, A must be a criticallattice of H, 
and so (iv) follows at once from Lemma 5. 

One consequence of Theorem 2 is of particular interest: 

Theorem 3: Let K be an irreducible convex domain symmetrical in ° 
which is not a parallelogram. Then the boundary C of K has everywhere 
a continuous tangent. 

Proof: Obvious from Lemma 3 and the last theorem. 
This theorem is rather surprising, since the boundary of non-convex 

irreducible star domains may have angular points. 

§ 5. An inequality property of convex domains. 

Theorem 4: To every convex domain K symmetrical in 0, there exist 
an inscribed hexagon hand a circumscribed hexagon H both symmetrical 
in ° such that 

4V(h) = 3V(H). 

Proof: Obvious from (I) and (II), since the bounds are attained. 
We de duce that if h runs over all inscribed symmetrical hexagons and 

H over all circumscribed symmetrical hexagons, then 

4 fin sup V(h) > 3 fin inf V(H): 

and here the ratio 4/S of the constants can not be replaced by a smaller 
one, as the example of the ellipse shows 8 a ) • 

§ 6. The case of a polygon. 

Let lln be a convex polygon of 2n sides =F L I , =+= L2 • ••• , =+= Ln wh ere 
n ~ 3. and let H af3r be the proper hexagon bounded by =+= La. =F L~. =F L 
wh ere a, {J. r run over all systems of three different indices 1. 2, .... n. 
The number of such hexagons is thus 

(~) = n (n - ~ (n - 2) • 

Theorem 5: lf lln is a polygon of 2n > 6 sides symmetrical in 0, then 

(III): t::,. (TIn) = t min V (Ha~r)' 
a,[3,y 

Every critical lattice of lln is also a critical lattice of at least one hexagon 
Haf3r; hence lln has at most G) different criticallattices. 

S) See paper A, Lemma 5. 
Sa) Theorem 1 is a special case of a more genera! result of L. FEJES. Compositio 

Mathematica 6, 156-167 (1939), § 3. 
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Proof: Analogous to that of Theorem 1, except that UK is replaced by 
the set of all hexagons H a(37. 

The upper bound G) for the number of criticallattices of IJ n is attained 
for n = 3 and n = 4, but not for larger n; it would therefore be of interest 
to find th en the exact upper bound for this number. 

§ 7. The constants Q and Qn. 

The lower bound 
Q = fin inf Q (K) 

extended over all convex domains symmetrical in 0 exists and satisfies 
the inequalities 9) 

,j- 2n 
v12 <Q<iT 

Moreover, there exist convex domains for which 
they are called extreme domains. 

Let, similarly, Qn denote the lower bound 

Qn = fin inf Q (lIn) 

• (4) 

this bound is attained; 

extended over all convex polygons IJ n of 2n 2.: 4 sides. It is evident that 
this limit exists and that Qn ::> Q. Prom Lemmas 4 and 5. 

We caB II Tl extreme if 

§ 8. Thc existcnce of extreme polygons lIn. 

Theol'em 6: ff n 2.: 3, then thete exists to evety given polygon lIn of 
2n sides a polygon lln+1 of 2(n+ 1) sides sueh that 

Q(lIn+l) < Q(IJn). 

Proof: Prom Lemma 3 and any one of the Theorems 1, 3, or 5, every 
polygon not a parallelogram is reducible. Hence lIn contains a convex 
domain K symmetrical in 0 and satisfying 

V(K) < V(lIn ), 6(K) = 6(lIn). 

At least one pair of vertices of lIn, say the vertices =F Ql' lie outside K. 
Therefore there exist a pair of symmetrical tac~lines =F L of K such that L 
separates Ql and - L separates - Ql from 0, while all the other vertices 
of IJ n lie between these two lines. Denote by IJ n +1 the set of all points of 
II n lying between Land - L. Then II n +1 is a proper polygon of 2 (n + 1) 
sides, and from the construction 

hence 

as asserted. 

9) See paper B, §§ 1 and 5. 
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Theorem 7: Fot every n ::> 2, thel'e exists a polygon IIn su eh that 

Q(lIn) = Qn, 

and this polygon is a proper 2n~side. 
Proof: There exists an infinite sequence of polygons 

1I~1) , lI~2) • lI~) , • (5) 
satisfying 

r-+ 00 

Ey affine invariunce, these polygons may be assumed to satisfy the two 
conditions, 

(a) : 

(b) : 

Q (II~r)) = i
2
3 

(r = 1. 2. 3, ... ). 

The six Eixed points 

PI = (1. 0), (
1 i3\ 

P2= z'T)' 
Pi = - PI • Ps = - P2' P6 = - P3 

lie on the boundary of each polygon lI~). 
Denote by H the regular hexagon of vertices Pl' ... , P6' and by S the 

figure consisting of six equilateral triangles of unit si de, where each such 
triangle has its base on one of the sides of H, while its opposite vertex lies 
outside H. Prom (b) and from the assumed convexity. all 2/1 vertices of 
each polygon lI~) belong to the finite set S. It is therefore possible to 
select an infinite subsequence 

IIn, I = II~rl) , IIn,2 = II~r2) , IIn,3 = n~r3) , . . • (rl < r2 < 1'3 < ... ) 
of (5) such that the vertices of these polygons tend to 2n limiting points, 

=F QI' ± Q2 •...• =F Qn. say. 

Let Iln be the polygon which has these points as its vertices. Then by 
the continuity of V and 6, 

!:::. (JIn) = lim !:::. (IIn,r) = lim !:::. (nn = i2
3 . 

r-+ 00 r-+ 00 

hence 

. , V ( I(r)) i3 I' Q (n(r)) _ i3 Q V (Iln) = ltm V (IIn,r) = hm Ln = -2 lm n - -2- n. 
r-+ 00 r-+ 00 r-+ 00 

whence 
Q(Iln) = Qn, 

so that II n is an extreme polygon. This implies that II 11 is a proper 2n~side, 
since it would otherwise be possible, by Theorem 6, to inscribe a polygon 
II~ of at most 2/1~sides tor which 

Q(lI~) < Q(lI,,) = Qn, 

contrary to the definition of Qn. 
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§ 9. Properties of the constants Q and Qn. 

Theorem 8: The constants Qn and Q satisty the relations, 

-:1 = Q2 = Q3 > Q4 > Q5 > ... > Q. 

lim Qn=Q. 

Proof: The inequalities Qn > Qn+l for n :> 3 followat on ce from the 
last two theorems. The further inequality Q" > Q holds since every 
polygon which is not a parallelogram is reducible. Finally, for the proof 
of the limit formula, denote by K any extreme convex domain, so th at 

Q(K) = Q. 

Given 13 > 0, it is possible to approximate to K by a polygon IJ" of suf~ 
ficiently large n such that 

V(IJ,,) < (1 + 13) V(K). /:'(IJ Tl ) 2:: /:'(K), 
hen ce 

Q(IJn ) < (1 + 13) Q(K) = (1 + é) Q. 

On allowing é to end to zero, the assertion becomes obvious. 

§ 10. The triangles T k belonging to an extreme octagon. 

The preceding results enable us to determine die extreme octagons IJ4 
and to evaluate the constant Q4. as follows. 

Let IJ4 be a fixed extreme octagon; for its vertices and sides, we use the 
notation of § 1, and we denote by k one of the four indices 1, 2, 3. 4. 

On omitting the pair of sides =F Lk of IJ4• the remaining sides 

=F Lh. wh ere h =f k. 1:::;; h ~ 4. 

form the boundary of a hexagon. fh say. This hexagon contains IJ4 as a 
subset and is. in fact. the sumset of IJ4 and two triangles Tk and - Tk 
symmetrical to one another in O. Let Tk be that triangle with its base on 
Lk, and -Tk the triangle with its base on -Lk. Then 

V(Hk) = V(IJ4 ) + 2V(Tk), 

whence by Theorem 5, 

6 (IJ,!) = tV (IIk) + t min V (Tk). 
l::Sk::S4 

Therefore, 

Q (IJ4)-1 = t + tM (II1). where M (IJ4) = min V (Tk ). (6) 
l::Sk::S1 V (II,!) 

For an extreme octagon. M (IJ4 ) evidently assumes its largest value. 

Theorem 9: ft IJ4 is an extreme octagon, then 

V(Td = V(T2 ) = V(T3 ) = V(T4 ). 

Proof: It suffices to show that if these equations are not all satisfied. 
then there exists an actagon IJ: satisfying 

M (IJ;) > M (IJ1). • • • • • • • • (7) 
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We may assume. without loss of generality, th at T 2 is the triangle of 
smallest area and that, say, 

. . • (8) 

The line L2 intersects L1 at the vertex Q2 of IJ4, and it intersects - L4 at 
a point Rl which is a vertex of Tl' Denote by Q; an inner point of the 
line segment QIQ 2' and by Rr the point on - L1 near to RI for which the 
triangle Tr = Q1R; Qi is of equal area to Tl: 

. (9) 

Let further Li be the line through Qi and Rf , and let n; be the octagon 
bounded by the sides =F LI' =F L;, =F L3' =F L4' Then, firstly, 

V (II;) < V ([Ji). . . . .. .. (10) 

since IJ; is contained in 114' Next let Ti, Ti, T;, T; be the triangles 
analogous to T l' T 2' T 3, T 4 which belang to Il;, and assume th at Qi is 
chosen sufficiently near to Q2' Then V ( n) differs arbitrarily little from 
V ( T 3); further, from the construction, 

V (T;) > (1'2), V (1';) < V (1'3), V (1';) = V (1'4)' . (11) 

the last formulae holding since T; and T 4 are the same triangle. On 
combining (8), (9), and (11), secondly, 

. . . (12) 

The assertion (7) follows now immediately from (6), (10), and (12). 

§ 11. Determination of the extreme odagons. 

We determine now the octagons IJ4 for which 

V (TI) = V (1'2) = V (1'3) = V (Ti)" • . . . (13) 

and select from among these the extreme ones. Since M (IJ 4) is an affine 
invariant, it suffices ta con si der octagons which are normed in the following 
way: 

Denote by Rl, R2' R3' R4 the points of intersection of -L4 and L2' 
L t and L3' L2 and L4' and L3 and - Ll' respectively, and by IJ~) the 
parallelogram of vertices =F Rl> =F Rs, and by IJ~2) the paral1elogram of 
vertices =F Rl, =F Ri' Hence Il~I) has the sides =F L2• =F L4' and n~2) has 
the si des =F LI' =F L3' and Il4 is the intersection of niJ) and n~). Apply 
an affine transformation such that Il~) bec0111es the square of vertices 

RI =(1.-1). R3=(1.1).-RI.-R3' 

The second paralleIagram Il~) is th en subject only to the conditions th at its 
sides intersect those of IJ~I) so as to form together a convex octagon Il4' 
Let the sides of Il~) be, say. 

L I : X2=tXI-r; L3! X2=-SXI +a; 

-LI ! X2=tXl+r; -L3 : X2=-SXI-a ; 

46 
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its vertices are therefore 

R2 
__ (·sa ++ tr , ast+str) , (a-r at + sr) R R1 = s+t'~+t ,-R2,- 4' 

On intersecting the si des of IJ~l) and n~), the vertices of IJ 4 become, 

Q1 = C--t-! , -1); Q2 = (1, t-r): Q3 = (1, -s + a): Q4 = (a S 1, 1 ): 

-Q1' -Q2' -Q3' -Q~. 

From the construction, L1 is of positive and L:; of neg.-üivc gradient, and 
these lines meet the coordinate axes outside Il~I); hence 

s> 0, t> 0, a> 1, r > 1. . . . . . . (14) 

The conditions th at the four points Rv Q2' Q:), R3 on L2' and the four 
points R3' Q4' - Q1> - R1 on L4' follow one another in this order, give 
the further inequalities, 

~>o, 17>0, ~+1]<2, 2st--a-S1]>o, .. (15) 

where ~ and 1] are defined by 

~=s-a+L 1]=t-7:+1. 

The areas of the triangles Tk are easily obtained; on substituting in 
( 13), these equations take the farm, 

where, from (14) and (15), À is positive; hence 

1 
=<T say. 

s=U2, t=À1]2, s+t=À(2-~_1])2, st(s+t)=À(2st-t~-S17)2. 

From these equations, firstly 

e + 1]2 = (2-~_1])2, hence 2-~-1] = ~ + 1]-~1], . . (16) 

and secondly, 

À3 e 172 (2-~_1])2 = À (2 st-t~-S17)2 = À3 ~2172 (2 U 1]_~_<1])2. 

whence, Erom (15), 

and sa, either 

or 

(B) : 2-r-17 = ~ + 1]-h = - (2 V;1]--~-1]), 

In case (A), 

!; 
s=-, 

1] 
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sa that adjacent sides of 11~2) are perpendicular; hence 1112) is a rectangle. 
It is even a square congruent to 11~), since the distances 

1 1(1] )( 1]2)-kl 1~1]-~-1]1 01=+r(1+t
2
)-,= 1-1]+1 1+ e = -y~2+1]2 ' 

03=+a(1+s2)-i= I (l_~+ 1) (1 + ~2)-tl = 1~17 ~-~<I, 
1] 1]2 ye+1]2 

of L1 and L3 from 0 are bath equal to unity, as follows from (16). The 
four triangles Tk are therefore congruent and of .area 

~2 !; 1] 
V (Tk ) = 2s = -Z--. 

Further 

hence 

~1] 
M ([J4) = 4 (2=~~) 

is an increasing functiall of !; 1]. By (15) and (16), 

~ > 0, 1] > 0. !; + 1] < 2. (2-~) (2-1]) = 2, 

and sa M(114 ) attains its maximum when 

~ = 1] = 2 - i2, ~ 17 = 6-4(2. s = t = 1. a = r = {2, 

th at is, wh en 114 is a regular octagon. For such an octagon, 

Next, in case (B). 

whence from (15) and (16), 

e 
S -<--2 . 

2 

t - 2-- 2' 

which is impossible; this case therefore cannot arise. 
We have thus proved 10) 

Theorem 10: Por wery convex octagan 114 symmetrical in O. 

16 ,r-
Q (111) ?:: 7 (3- V 2). 

with equality i[ and only i[114 is affine~equivalent ta the regtzlar octagon. 

10) Dr. LEDERMANN, to whom I showecl this paper, bas sil1ce fOUl1d a much simp Ier 
proof of Theorem 10. 



§ 12. An upper bound for Q. 

The last theorem implies th at 
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16 ,;--
Q4 = 7 (3- r 2) = 3.624654715... I'). 

This result is rather surprising, since in the case of an ellipse E 12) 

2n 
Q (E) = 73 = 3.627598727 ... > Q4' 

As we show now, one can construct an irreducible convex domain K for 

which Q(K) is even smaller. 
Let again I14 be the regttlar octagon which is the intersection of the 

square I1~') of vertices 

Rl -< (1 --- 1) R" = (1 1) - Rl -<- R·, - t tiJ" t ~Jt 

and the square 11~) of vertices 

R2 = (VZ, 0). R 1 = (0. V2). -R2• -R4• 

The vertices of TI4 itself are 

Q,=(V2-1,-1). Q2=(1,1-V2). Q3=(1.{Z-1). Q4=({Z-1,1). 

and further 

There are four hexagons lik circumscribed to 114 , namely, 

the hexagon Hl of vertices Rl' Q3' Q4' -Rl' -Q3. -Q4: 

the hexagon H 2 of vertices R2' Q4' - Ql' - R2' - Q4' Ql: 
the hexagon H 3 of vertices R3' - Q1> - Q2' - R3' Ql' Q2; 

the hexagon H 4 of vertices R4' - Q2. --< Q3' - R4' Q2' Q3' 

Each hexagon H k possesses just one critical lattice Ak, and this is also a 
critical lattice of TI4 • On the boundary of TI4• Ak has exactly six points. 

say the points 

namely the midpoints of the sides of Hh. The coordinates of these points 
are given in the following tabIe: 

UI = (Y:f--l. -1). VI =(vI.-Yt). 
U2=(t.t-Vï). V 2 =(1. 0). 
U 3=(L vI-t). v3 =(vI. vI). 
U 4=(vï- ~.t). Voj=(o.1). 

Evidently, 

Uk + Wk= V k• 

W 1 =(1, I-vI). 
W 2 =(-h Vï-t), 
W 3 =(Y:f-1.1), 
W 4=O --vi.t)· 

(k = 1. 2, 3. 4). (18) 

li) 1 am in great debt to Mr. D. F. FEROUSON, M. A .. for thc evaluation of this 
constant anel thc two other ones. 

12) See paper B. § 1. 
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Consider now two variabIe points 

PI = (1, a). P3 = (f3. f3 + V2) 
on the line segments joining V 2 to W 1 and - U 2 to - Vlo respectively, 
and assume th at the determinant of these two points has the value. 

Then the point 
(19) 

(20) 

describes a hyperbola arc A4 connecting W 2 with - U l' Since by (19). 

f3-af3 + V2 = V2-t. 
and by (20). 

XI = 1 + f3. X2 = a + f3 + V2. 
this hyperbola has the equation, 

1 ,;-
X2=XI+2(XI_1)+ r2 . •..••• (21) 

The arc A4 touches the boundary r 4 of TI 4 at the two points - U 1 and 
W 2. and together with this boundary encloses a curvilinear triang Ie. 1:'4 

say. which is of area. 

V(loj)=![t-(l-Y:f)] d -Ht-(Vï-l)Fl-

j t( 1 _ 
- XI + ;f(x;--=-l) + V 2) dXI (22) 

1-Vi 

=(- V +2V2)--(i-tlog2)=2V2-3+tlog2. 

In just the same way, each vertex =F Qk of TI4 can be separated from 0 
by means of a hyperbola arc =F Ak: this arc is congruent to A4 and touches 
r 4 • and it encloses. together with r 4. a triangle H congruent to 1:'4' 

Let now K be the convex domain obtained from TI4 by cutting oH all 
eight triangles =F H. Then every point on the boundary C of K belongs to 
a lattice of determinant !:::,(TI4 ) which has on C just six points =FPI.=FP2• 

=F P 3 satisfying Pi + P 3 = P 2 • and is therefore K~admissible (Lemma 1). 
Hence K is irreducible and of determinant 

L, (K) = L, (II .. ) = V2-l. 
(Lemmas 2 and 3). On the other hand, Erom (17) and (22), 

V(K)= V (114)-8 V (t4) = 16-8 V2-log4. 

By combining these two equations, we find that 

Q (K) = 32-16 V2-41og 2 = 3 609656737 
2 V2-1 . . .. 

This is an upper bound for Q, and possibly even its exact value. 

Mathematics Department, Manchester University. 
March 20, 1947. 




