Mathematics. - On the minimum determinant and the circumscribed hexagons of a convex domain. By K. Mahler. (Communicated by Prof. J. G. van der Corput.)

(Communicated at the meeting of May 31, 1947.)

In his "Diophantische Approximationen", Minkowski gave a simple rule for obtaining the critical lattices of a convex domain by means of the inscribed hexagons (see Lemma 2). I study here an analogous method based instead on the circumscribed hexagons. In the special case of a convex polygon, a simple rule for finding all critical lattices and the minimum determinant is obtained. I also show the surprising result that the boundary of an irreducible convex domain not a parallelogram has in all points a continuous tangent. Finally the lower bound of $Q(K)$ is evaluated for all convex octagons.

§ 1. Notation.

The same notation as in earlier papers of mine is used 1). In particular, the determinant of a lattice Λ is called $d(\Lambda) ; V(K)$ and $\triangle(K)$ are the area and the minimum determinant of a domain K, and $Q(K)$ is the absolute affine invariant

$$
Q(K)=\frac{V(K)}{\triangle(K)}
$$

The letter L is used for straight lines not passing through the origin $O=(0,0)$, and $-L$ is then the line symmetrical to L in O.
All domains K considered in this paper are assumed to be symmetrical in O; the boundary of K is called C. A convex polygon of $2 n$ sides and symmetrical in O will be denoted by Π_{n}, its boundary by Γ_{n}. The indices of its vertices P_{k} and its sides L_{k} are always chosen in such a way that if T_{n} is described in positive direction, then the successive vertices are
$Q_{1}, Q_{2}, \ldots, Q_{n}, Q_{n+1}=-Q_{1}, Q_{n+2}=-Q_{2}, \ldots, Q_{2 n}=-Q_{n}$,
and the successive sides are

$$
\begin{aligned}
L_{1}=Q_{1} Q_{2}, \quad L_{2}=Q_{2} Q_{3}, \ldots, L_{n}= & Q_{n} Q_{n+1} \\
L_{n+1}=Q_{n+1} Q_{n+2}=-L_{1}, \quad L_{n+2}=Q_{n+2} Q_{n+3}=- & L_{2}, \ldots \\
& L_{2 n}=Q_{2 n} Q_{1}=-L_{n}
\end{aligned}
$$

§ 2. Basic lemmas.

The following lemmas are essential for our investigations.
$\left.{ }^{1}\right)$ See, e.g. Proc. Kon. Ned. Akad. v. Wetensch., Amsterdam, 50, $98-107$ and 108-118 (1947). These two papers will be quoted as A and B, respectively.

Lemma 1: Let K be a convex domain; let $\mp P_{1}, \mp P_{2}, \mp P_{3}$ be six points on C such that $P_{1}+P_{3}=P_{2}$, and let A be the lattice generated by P_{1} and P_{2}. Then Λ is K-admissible.

Proof: Obvious from the convexity.
Lemma 2: Let A be any critical lattice of the convex domain K. Then A contains three points P_{1}, p_{2}, P_{3} on C such that, (i) p_{1}, P_{2} is a basis of A, and (ii) $O P_{1} P_{2} P_{3}$ is a parallelogram of area $d(\Lambda)=\triangle(K)$. Conversely. if P_{1}, P_{2}, P_{3} are three points on C such that $O P_{1} P_{2} P_{3}$ is a parallelogram, then the area of this parallelogram is not less than $\triangle(K)$, and it is equal to $\triangle(K)$ if and only if the lattice of basis P_{1}, P_{2} is critical ${ }^{2}$).

Lemma 3: The convex domain K is irreducible if and only if every boundary point of K belongs to a critical lattice of K^{3}).
Lemma 4: For every parallelogram H_{2},

$$
\triangle\left(\Pi_{2}\right)=\frac{1}{4} V\left(\Pi_{2}\right), \quad Q\left(\Pi_{2}\right)=4
$$

Moreover, every such parallelogram is an irteducible domain ${ }^{4}$).
Lemma 5: For every convex hexagon Π_{3}.

$$
\Delta\left(\Pi_{3}\right)=\frac{1}{4} V\left(\Pi_{3}\right), \quad Q\left(\Pi_{3}\right)=4
$$

Moreover, every such hexagon has only one critical lattice, and this lattice has just six points on Γ_{3}, viz. the midpoints of the six sides of $\Pi_{3}{ }^{5}$).

§ 3. Two formulae for $\triangle(K)$.

Let K be a convex domain symmetrical in O. From Lemma 2, we immediately obtain the formula (I):

$$
\triangle(K)=\frac{1}{3} \underset{h \in I_{K}}{ } \operatorname{fin} \inf V(h)
$$

for $\triangle(K)$; here I_{K} denotes the set of all hexagons h which have their six vertices $\mp P_{1}, \mp P_{2}, \mp P_{3}$ on the boundary C of K and for which

$$
P_{1}+P_{3}=P_{2}
$$

For this relation implies evidently that

$$
V(h)=3 V(p)
$$

${ }^{2}$) This is Lemma 3 of paper A.
${ }^{3}$ See Lemmas 8 and 12 of paper A.
${ }^{4}$) The first part of the assertion is equivalent to Minkowski's theorem on linear forms; for the second part see Lemma 1 of paper A.
${ }^{5}$) The assertion follows from the fact that the whole plane can be covered in just one way without overlapping by means of hexagons congruent to I_{3}; see paper $B, \S 7$.
An entirely different result holds for non-convex hexagonal star domains Π_{3} symmetrical in O, viz.

$$
\Delta\left(\Pi_{3}\right)=\frac{1}{4} V\left(\Pi_{2}\right), \quad \mathrm{Q}\left(\Pi_{3}\right)>4
$$

here Π_{2} is the inscribed parallelogran of maximum area. There are an infinity of critical lattices, and every critical lattice has points only on four of the sides of Π_{3}.
where p is the parallelogram $O P_{1} p_{2} P_{3}$. Since in (I) the lower bound is attained, it is allowed to replace " f in inf" by the sign "min".
The following theorem gives a formula analogous to (I) but involving the circumscribed hexagons.
Theorem 1: Let K be an convex domain symmetrical in O, and let U_{K} be the set of all hexagons H bounded by any three pairs of tac-lines $\mp L_{1}, \mp L_{2}, \mp L_{3}$ of K^{6}). Then
(II):

$$
\triangle(K)=\frac{1}{4} \operatorname{fin}_{H \varepsilon U_{K}} V(H)
$$

Proof: By the Lemmas 4 and 5 , since K is a subset of every hexagon H,

$$
\Delta(K) \leq \Delta(H)=\frac{1}{4} V(H)
$$

hence

$$
\begin{equation*}
\triangle(K) \leqq \frac{1}{4} \operatorname{fininf}_{H \varepsilon U_{K}} V(H) \tag{1}
\end{equation*}
$$

Next choose any critical lattice Λ of K, and denote by $\mp P_{1}, \mp P_{2}, \mp P_{3}$, where $P_{1}+P_{3}=P_{2}$, its points on C (Lemma 2), and by $\mp L_{1}$, $\mp L_{2}$, $\mp L_{3}$ three pairs of symmetrical tac-lines of K at these points. The hexagon H bounded by these tac-lines is convex; hence, by Lemma 1, Λ is H-admissible, and so by Lemmas 4 and 5,

$$
\begin{equation*}
\triangle(K)=d(A) \equiv \triangle(H)=\frac{1}{4} V(H) . \tag{2}
\end{equation*}
$$

Since H belongs to U_{K}, the assertion follows from (1) and (2).
By this proof, the lower bound is attained also in (II); hence the sign "fin inf" may also in this formula be replaced by the sign " $\min ^{\prime}$ ".

§ 4. Properties of critical lattices.

The two formulae (1) and (2) of the last paragraph imply that

$$
\begin{equation*}
V(H)=4 \Delta(K) \tag{3}
\end{equation*}
$$

for every hexagon H belonging to a critical lattice. Hence we find:
Theorem 2: Let K be a convex domain symmetrical in O which is not a parallelogram; let A be any critical lattice of K; and let $\mp P_{1}, \mp P_{2}$, $\mp P_{3}$, where $P_{1}+P_{3}=P_{2}$, be the points of A on C. Then, (i) there are unique tac-lines $\mp L_{1}, \mp L_{2}, \mp L_{3}$ of K at these points ${ }^{7}$); (ii) no two of these tac-lines coincide; (iii) the hexagon H bounded by the tac-lines is of area $V(H)=4 \triangle(K)$; (iv) each side $\mp L_{k}$ of H is bisected at the lattice point $\mp P_{k}$ where it meets and touches C.

Proof. The notation can be chosen such that when C is described in positive direction, then the six lattice points follow one another in the sequence

$$
P_{1}, p_{2}, P_{3}, P_{4}=-P_{1}, P_{5}=-P_{2}, P_{6}=-P_{3}
$$

$\left.{ }^{6}\right)$ Parallelograms are considered as limiting cases of hexagons and must be included in U_{K}.
${ }^{7}$) These tac-lines are therefore tangents of C.

Since K is not a parallelogram, none of the six arcs

$$
\overparen{P}_{1} P_{2}, \overparen{P}_{2} P_{3}, \overparen{P}_{3} P_{4}, \overparen{P}_{4} P_{5}, \overparen{P}_{5} P_{6}, \overparen{P}_{6} P_{1}
$$

of C is a line segment ${ }^{8}$), and so (ii) is true. Hence H is a proper hexagon, and the tac-lines L_{1} at P_{1} and L_{3} at P_{3} are not parallel or coincident. Assume there is more than one tac-line L_{2} at P_{2}; then this tac-line can vary over a whole angle, and so $V(H)$ is also variable and not constant, contrary to (3). Therefore the assumption is false and (i) is true. The assertion (iii) is identical to (3); from it, Λ must be a critical lattice of H, and so (iv) follows at once from Lemma 5.
One consequence of Theorem 2 is of particular interest:
Theorem 3: Let K be an irreducible convex domain symmetrical in O which is not a parallelogram. Then the boundary C of K has everywhere a continuous tangent.

Proof: Obvious from Lemma 3 and the last theorem.
This theorem is rather surprising, since the boundary of non-convex irreducible star domains may have angular points.

§ 5. An inequality property of convex domains.

Theorem 4: To every convex domain K symmetrical in O, there exist an inscribed hexagon h and a circumscribed hexagon H both symmetrical in O such that

$$
4 V(h)=3 V(H)
$$

Proof: Obvious from (I) and (II), since the bounds are attained.
We deduce that if h runs over all inscribed symmetrical hexagons and H over all circumscribed symmetrical hexagons, then

$$
4 \text { fin sup } V(h) \geq 3 \text { fin inf } V(H)
$$

and here the ratio $4 / 3$ of the constants can not be replaced by a smaller one, as the example of the ellipse shows ${ }^{8 a}$).
§6. The case of a polygon.
Let Π_{n} be a convex polygon of $2 n$ sides $\mp L_{1}, \mp L_{2}, \ldots, \mp L_{n}$ where $n \geq 3$, and let $H_{a \beta \gamma}$ be the proper hexagon bounded by $\mp L_{\alpha_{0}} \mp L_{\beta}, \mp L$ where α, β, γ run over all systems of three different indices $1,2, \ldots, n$. The number of such hexagons is thus

$$
\binom{n}{3}=\frac{n(n-1)(n-2)}{6} .
$$

Theorem 5: If Π_{n} is a polygon of $2 n \geq 6$ sides symmetrical in O, then

$$
\text { (III): } \quad \triangle\left(I_{n}\right)=\frac{1}{4} \min _{\alpha, \beta, \gamma} V\left(H_{\alpha \beta \gamma}\right)
$$

Every critical lattice of Π_{n} is also a critical lattice of at least one hexagon $H_{a \beta \gamma}$; hence Π_{n} has at most $\binom{n}{3}$ different critical lattices.

[^0]Proof: Analogous to that of Theorem 1, except that U_{K} is replaced by the set of all hexagons $H_{\alpha \beta \gamma}$.
The upper bound $\binom{n}{3}$ for the number of critical lattices of Π_{n} is attained for $n=3$ and $n=4$, but not for larger n; it would therefore be of interest to find then the exact upper bound for this number.

§ 7. The constants Q and Q_{n}.

The lower bound

$$
\mathbf{Q}=f \operatorname{fin} \inf \mathbf{Q}(K)
$$

extended over all convex domains symmetrical in O exists and satisfies the inequalities ${ }^{9}$)

$$
\begin{equation*}
\sqrt{12}<\mathrm{Q}<\frac{2 \pi}{\sqrt{3}} \tag{4}
\end{equation*}
$$

Moreover, there exist convex domains for which this bound is attained; they are called extreme domains.

Let, similarly, Q_{n} denote the lower bound

$$
\mathrm{Q}_{n}=\operatorname{ininf} \mathrm{Q}\left(I_{n}\right)
$$

extended over all convex polygons Π_{n} of $2 n \geq 4$ sides. It is evident that this limit exists and that $\mathbf{Q}_{n} \geq \mathbf{Q}$. From Lemmas 4 and 5 .

$$
\mathrm{Q}_{2}=\mathrm{Q}_{3}=4
$$

We call Π_{n} extreme if

$$
\mathrm{Q}\left(\Pi_{n}\right)=\mathbf{Q}_{n} .
$$

§8. The existence of extreme polygons Π_{n}.

Theorem 6: If $n \geq 3$, then there exists to every given polygon Π_{n} of $2 n$ sides a polygon Π_{n+1} of $2(n+1)$ sides such that

$$
Q\left(\Pi_{n+1}\right)<Q\left(\Pi_{n}\right)
$$

Proof: From Lemma 3 and any one of the Theorems 1, 3, or 5, every polygon not a parallelogram is reducible. Hence Π_{n} contains a convex domain K symmetrical in O and satisfying

$$
V(K)<V\left(\Pi_{n}\right), \quad \triangle(K)=\triangle\left(\Pi_{n}\right)
$$

At least one pair of vertices of Π_{n}, say the vertices $\mp Q_{1}$, lie outside K. Therefore there exist a pair of symmetrical tac-lines $\mp L$ of K such that L separates Q_{1} and $-L$ separates $-Q_{1}$ from O, while all the other vertices of Π_{n} lie between these two lines. Denote by Π_{n+1} the set of all points of Π_{n} lying between L and $-L$. Then $\Pi_{n_{+1}}$ is a proper polygon of $2(n+1)$ sides, and from the construction

$$
V\left(\Pi_{n+1}\right)<V\left(\Pi_{n}\right), \quad \triangle\left(\Pi_{n+1}\right) \geqslant \triangle\left(\Pi_{n}\right)
$$

hence

$$
\mathrm{Q}\left(\Pi_{n+1}\right)=\frac{V\left(I_{n+1}\right)}{\triangle\left(I_{n+1}\right)}<\frac{V\left(I_{n}\right)}{\triangle\left(\Pi_{n}\right)}=\mathrm{Q}\left(I_{n}\right),
$$

as asserted.

[^1]Theorem 7: For every $n \geq 2$, there exists a polygon Π_{n} such that

$$
\mathrm{Q}\left(\Pi_{n}\right)=\mathbf{Q}_{n}
$$

and this polygon is a proper $2 n$-side.
Proof: There exists an infinite sequence of polygons

$$
\begin{equation*}
I_{n}^{(1)}, \Pi_{n}^{(2)}, \Pi_{n}^{(3)}, \tag{5}
\end{equation*}
$$

satisfying

$$
\lim _{r \rightarrow \infty} Q\left(\Pi_{n}^{(r)}\right)=\mathbf{Q}_{n}
$$

By affine invariance, these polygons may be assumed to satisfy the two conditions,
(a):

$$
Q\left(\Pi_{n}^{(r)}\right)=\frac{\sqrt{3}}{2} \quad(r=1,2,3, \ldots)
$$

(b): The six fixed points

$$
\begin{array}{lll}
p_{1}=(1,0), & p_{2}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), & p_{3}=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right), \\
p_{4}=-p_{1}, & p_{5}=-p_{2}, & p_{6}=-p_{3}
\end{array}
$$

lie on the boundary of each polygon $\Pi_{n}^{(r)}$.
Denote by H the regular hexagon of vertices p_{1}, \ldots, p_{6}, and by S the figure consisting of six equilateral triangles of unit side, where each such triangle has its base on one of the sides of H, while its opposite vertex lies outside H. From (b) and from the assumed convexity, all $2 n$ vertices of each polygon $\Pi_{n}^{(r)}$ belong to the finite set S. It is therefore possible to select an infinite subsequence

$$
\Pi_{n, 1}=\Pi_{n}^{\left(r_{1}\right)}, \Pi_{n, 2}=\Pi_{n}^{\left(r_{2}\right)}, \Pi_{n, 3}=\Pi_{n}^{\left(r_{3}\right)}, \ldots \quad\left(r_{1}<r_{2}<r_{3}<\ldots\right)
$$

of (5) such that the vertices of these polygons tend to $2 n$ limiting points,

$$
\mp Q_{1}, \pm Q_{2}, \ldots, \mp Q_{n}, \quad \text { say }
$$

Let Π_{n} be the polygon which has these points as its vertices. Then by the continuity of V and \triangle,

$$
\triangle\left(I_{n}\right)=\lim _{r \rightarrow \infty} \triangle\left(I_{n, r}\right)=\lim _{r \rightarrow \infty} \triangle\left(\Pi_{n}^{(r)}\right)=\frac{\sqrt{3}}{2}
$$

hence

$$
\begin{aligned}
& V\left(\Pi_{n}\right)=\lim _{r \rightarrow \infty} V\left(\Pi_{n, r}\right)=\lim _{r \rightarrow \infty} V\left(\Pi_{n}^{(r)}\right)=\frac{\sqrt{3}}{2} \lim _{r \rightarrow \infty} Q\left(\Pi_{n}^{(r)}\right)=\frac{\sqrt{3}}{2} \mathbf{Q}_{n}, \\
& \text { whence }
\end{aligned}
$$

$$
Q\left(\Pi_{n}\right)=\mathbf{Q}_{n}
$$

so that Π_{n} is an extreme polygon. This implies that Π_{n} is a proper $2 n$-side, since it would otherwise be possible, by Theorem 6 , to inscribe a polygon Π_{n}^{*} of at most $2 n$-sides for which

$$
\mathrm{Q}\left(\Pi_{n}^{*}\right)<\mathrm{Q}\left(\Pi_{n}\right)=\mathrm{Q}_{n}
$$

contrary to the definition of \mathbf{Q}_{n}.

§ 9. Properties of the constants Q and Q_{n}.

Theorem 8: The constants \mathbf{Q}_{n} and \mathbf{Q} satisfy the relations,

$$
\begin{gathered}
4=\mathrm{Q}_{2}=\mathrm{Q}_{3}>\mathrm{Q}_{4}>\mathrm{Q}_{5}>\ldots>\mathrm{Q}, \\
\lim _{n \rightarrow \infty} \mathrm{Q}_{n}=\mathrm{Q} .
\end{gathered}
$$

Proof: The inequalities $\mathbf{Q}_{n}>\mathbf{Q}_{n+1}$ for $n \geq 3$ follow at once from the last two theorems. The further inequality $\mathrm{Q}_{n}>\mathrm{Q}$ holds since every polygon which is not a parallelogram is reducible. Finally, for the proof of the limit formula, denote by K any extreme convex domain, so that

$$
Q(K)=\mathbf{Q}
$$

Given $\varepsilon>0$, it is possible to approximate to K by a polygon Π_{n} of suf ficiently large n such that

$$
V\left(\Pi_{n}\right)<(1+\varepsilon) V(K), \Delta\left(\Pi_{n}\right) \geq \triangle(K)
$$

hence

$$
\mathrm{Q}\left(\Pi_{n}\right)<(1+\varepsilon) \mathrm{Q}(K)=(1+\varepsilon) \mathbf{Q} .
$$

On allowing ε to end to zero, the assertion becomes obvious.
\S 10. The triangles T_{k} belonging to an extreme octagon.
The preceding results enable us to determine the extreme octagons Π_{4} and to evaluate the constant \mathbf{Q}_{4}, as follows.
Let Π_{4} be a fixed extreme octagon; for its vertices and sides, we use the notation of § 1 , and we denote by k one of the four indices 1, 2, 3, 4.

On omitting the pair of sides $\mp L_{k}$ of Π_{4}, the remaining sides

$$
\mp L_{h} \text {, where } h \neq k, 1 \leqslant h \leqslant 4
$$

form the boundary of a hexagon, H_{k} say. This hexagon contains Π_{4} as a subset and is, in fact, the sumset of Π_{4} and two triangles T_{k} and $-T_{k}$ symmetrical to one another in O. Let T_{k} be that triangle with its base on L_{k}, and $-T_{k}$ the triangle with its base on $-L_{k}$. Then

$$
V\left(H_{k}\right)=V\left(\Pi_{4}\right)+2 V\left(T_{k}\right)
$$

whence by Theorem 5 ,

Therefore,

$$
\triangle\left(\Pi_{4}\right)=\frac{1}{4} V\left(\Pi_{k}\right)+\frac{1}{2} \min _{1 \leq k \leq 4} V\left(T_{k}\right)
$$

$$
\begin{equation*}
Q\left(\Pi_{4}\right)^{-1}=\frac{1}{4}+\frac{1}{2} M\left(\Pi_{4}\right), \text { where } M\left(\Pi_{4}\right)=\min _{1 \leq k \leq 4} \frac{V\left(T_{k}\right)}{V\left(\bar{\Pi}_{4}\right)} \tag{6}
\end{equation*}
$$

For an extreme octagon, $M\left(\Pi_{4}\right)$ evidently assumes its largest value.
Theorem 9: If Π_{4} is an extreme octagon, then

$$
V\left(T_{1}\right)=V\left(T_{2}\right)=V\left(T_{3}\right)=V\left(T_{4}\right)
$$

Proof: It suffices to show that if these equations are not all satisfied, then there exists an octagon Π_{4}^{*} satisfying

$$
\begin{equation*}
M\left(\Pi_{4}^{*}\right)>M\left(\Pi_{4}\right) \tag{7}
\end{equation*}
$$

We may assume, without loss of generality, that T_{2} is the triangle of smallest area and that, say,

$$
\begin{equation*}
V\left(T_{1}\right) \geqslant V\left(T_{2}\right), \quad V\left(T_{3}\right)>V\left(T_{2}\right) \tag{8}
\end{equation*}
$$

The line L_{2} intersects L_{1} at the vertex Q_{2} of Π_{4}, and it intersects - L_{4} at a point R_{1} which is a vertex of T_{1}. Denote by Q_{2}^{*} an inner point of the line segment $Q_{1} Q_{2}$, and by R_{1}^{*} the point on - L_{4} near to R_{1} for which the triangle $T_{1}^{*}=Q_{1} R_{1}^{*} Q_{2}^{*}$ is of equal area to T_{1} :

$$
\begin{equation*}
V\left(T_{1}^{*}\right)=V\left(T_{1}\right) \tag{9}
\end{equation*}
$$

Let further L_{2}^{*} be the line through Q_{2}^{*} and R_{1}^{*}, and let Π_{4}^{*} be the octagon bounded by the sides $\mp L_{1}, \mp L_{2,}^{*} \mp L_{3}, \mp L_{4}$. Then, firstly,

$$
\begin{equation*}
V\left(\Pi_{4}^{*}\right)<V\left(\Pi_{4}\right) \tag{10}
\end{equation*}
$$

since Π_{4}^{*} is contained in Π_{4}. Next let $T_{1,}^{*}, T_{2}^{*}, T_{3}^{*}, T_{4}^{*}$ be the triangles analogous to $T_{1}, T_{2}, T_{3}, T_{4}$ which belong to $\Pi_{4,}^{*}$, and assume that Q_{2}^{*} is chosen sufficiently near to Q_{2}. Then $V\left(T_{3}^{*}\right)$ differs arbitrarily little from $V\left(T_{3}\right)$; further, from the construction,

$$
\begin{equation*}
V\left(T_{2}^{*}\right)>\left(T_{2}\right), \quad V\left(T_{3}^{*}\right)<V\left(T_{3}\right), \quad V\left(T_{4}^{*}\right)=V\left(T_{4}\right) \tag{11}
\end{equation*}
$$

the last formulae holding since T_{4}^{*} and T_{4} are the same triangle. On combining (8), (9), and (11), secondly,

$$
\begin{equation*}
\min _{1 \leq k \leq 4} V\left(T_{k}^{*}\right) \geqslant \min _{1 \leq k \leq 4} V\left(T_{k}\right) \tag{12}
\end{equation*}
$$

The assertion (7) follows now immediately from (6), (10), and (12).

§ 11. Determination of the extreme octagons.

We determine now the octagons Π_{4} for which

$$
\begin{equation*}
V\left(T_{1}\right)=V\left(T_{2}\right)=V\left(T_{3}\right)=V\left(T_{4}\right) \tag{13}
\end{equation*}
$$

and select from among these the extreme ones. Since $M\left(\Pi_{4}\right)$ is an affine invariant, it suffices to consider octagons which are normed in the following way:

Denote by $R_{1}, R_{2}, R_{3}, R_{4}$ the points of intersection of $-L_{4}$ and L_{2}, L_{1} and L_{3}, L_{2} and L_{4}, and L_{3} and $-L_{1}$, respectively, and by $\Pi_{2}^{(1)}$ the parallelogram of vertices $\mp R_{1}, \mp R_{3}$, and by $H_{2}^{(2)}$ the parallelogram of vertices $\mp R_{2}, \mp R_{4}$. Hence $\Pi_{2}^{(1)}$ has the sides $\mp L_{2}, \mp L_{4}$, and $\Pi_{2}^{(2)}$ has the sides $\mp L_{1}, \mp L_{3}$, and Π_{4} is the intersection of $\Pi_{2}^{(1)}$ and $\Pi_{2}^{(2)}$. Apply an affine transformation such that $\Pi_{2}^{(1)}$ becomes the square of vertices

$$
R_{1}=(1,-1), R_{3}=(1,1),-R_{1},-R_{3}
$$

The second parallelogram $\Pi_{2}^{(2)}$ is then subject only to the conditions that its sides intersect those of $\Pi_{2}^{(1)}$ so as to form together a convex octagon Π_{4}. Let the sides of $\Pi_{2}^{(2)}$ be, say,

$$
\begin{aligned}
& L_{1}: x_{2}=t x_{1}-\tau ; \quad L_{3}: x_{2}=-s x_{1}+\sigma ; \\
& -L_{1}: x_{2}=t x_{1}+t ;-L_{3}: x_{2}=-s x_{1}-\sigma ;
\end{aligned}
$$

its vertices are therefore

$$
R_{2}=\left(\frac{\sigma+\tau}{s+t}, \frac{\sigma t-s \tau}{s+t}\right), \quad R_{4}=\left(\frac{\sigma-\tau}{s+t}, \frac{\sigma t+s t}{s+t}\right),-R_{2},-R_{4} .
$$

On intersecting the sides of $\Pi_{2}^{(1)}$ and $\Pi_{2}^{(2)}$, the vertices of Π_{4} become,

$$
\begin{gathered}
Q_{1}=\left(\frac{\tau-1}{t},-1\right) ; \quad Q_{2}=(1, t-\tau) ; \quad Q_{3}=(1,-s+o) ; \quad Q_{4}=\left(\frac{\sigma-1}{s}, 1\right) ; \\
-Q_{1},-Q_{2},-Q_{3},-Q_{4} .
\end{gathered}
$$

From the construction, L_{1} is of positive and L_{3} of negative gradient, and these lines meet the coordinate axes outside $\Pi_{2}^{(1)}$; hence

$$
\begin{equation*}
s>0, t>0, \sigma>1, \quad \tau>1 \tag{14}
\end{equation*}
$$

The conditions that the four points $R_{1}, Q_{2}, Q_{3}, R_{3}$ on L_{2}, and the four points $R_{3}, Q_{4},-Q_{1},-R_{1}$ on L_{4}, follow one another in this order, give the further inequalities,

$$
\begin{equation*}
\xi>0, \quad \eta>0, \quad \xi+\eta<2, \quad 2 s t-t \xi-s \eta>0 \tag{15}
\end{equation*}
$$

where ξ and η are defined by

$$
\xi=s-\sigma+1, \quad \eta=t-r+1
$$

The areas of the triangles T_{k} are easily obtained; on substituting in (13), these equations take the form,

$$
2 V\left(T_{k}\right)=\frac{\xi^{2}}{s}=\frac{\eta^{2}}{t}=\frac{(2-\xi-\eta)^{2}}{s+t}=\frac{(2 s t-t \xi-s \eta)^{2}}{s t(s+t)}, \quad=\frac{1}{\lambda} \text { say }
$$

where, from (14) and (15), λ is positive; hence

$$
s=\lambda \xi^{2}, t=\lambda \eta^{2}, s+t=\lambda(2-\xi-\eta)^{2}, s t(s+t)=\lambda(2 s t-t \xi-s \eta)^{2}
$$

From these equations, firstly

$$
\begin{equation*}
\xi^{2}+\eta^{2}=(2-\xi-\eta)^{2}, \text { hence } 2-\xi-\eta=\xi+\eta-\xi \eta \tag{16}
\end{equation*}
$$

and secondly,

$$
\lambda^{3} \xi^{2} \eta^{2}(2-\xi-\eta)^{2}=\lambda(2 s t-t \xi-s \eta)^{2}=\lambda^{3} \xi^{2} \eta^{2}(2 \lambda \xi \eta-\xi-\eta)^{2}
$$

whence, from (15),

$$
2-\xi-\eta=\mp(2 \lambda \xi \eta-\xi-\eta)
$$

and so, either
(A):

$$
2-\xi-\eta=+(2 \lambda \xi \eta-\xi-\eta), \quad \lambda=\frac{1}{\xi \eta}
$$

or
(B): $\quad 2-\xi-\eta=\xi+\eta-\xi \eta=-(2 \lambda \xi \eta-\xi-\eta), \quad \lambda=\frac{1}{2}$.

In case (A),

$$
s=\frac{\xi}{\eta}, \quad t=\frac{\eta}{\xi}, \quad s t=1
$$

so that adjacent sides of $I_{2}^{(2)}$ are perpendicular; hence $I_{2}^{(2)}$ is a rectangle. It is even a square congruent to $\Pi_{2}^{(1)}$, since the distances

$$
\begin{aligned}
& \delta_{1}=+\tau\left(1+t^{2}\right)^{-\frac{1}{2}}=\left|\left(\frac{\eta}{\xi}-\eta+1\right)\left(1+\frac{\eta^{2}}{\xi^{2}}\right)^{-\frac{1}{2}}\right|=\left|\frac{\xi \eta-\xi-\eta}{\sqrt{\xi^{2}+\eta^{2}}}\right| \\
& \delta_{3}=+\sigma\left(1+s^{2}\right)^{-\frac{1}{2}}=\left|\left(\frac{\xi}{\eta}-\xi+1\right)\left(1+\frac{\xi^{2}}{\eta^{2}}\right)^{-\frac{1}{2}}\right|=\left|\frac{\xi \eta-\xi-\eta}{\sqrt{\xi^{2}+\eta^{2}}}\right|
\end{aligned}
$$

of L_{1} and L_{3} from O are both equal to unity, as follows from (16). The four triangles T_{k} are therefore congruent and of area

$$
V\left(T_{k}\right)=\frac{\xi^{2}}{2 s}=\frac{\xi \eta}{2}
$$

Eurther

$$
V\left(\Pi_{4}\right)=V\left(\Pi_{2}^{(1)}\right)-4 V\left(T_{k}\right)=4-2 \xi \eta
$$

hence

$$
M\left(\Pi_{4}\right)=\frac{\xi \eta}{4(2-\xi \eta)}
$$

is an increasing function of $\xi \eta$. By (15) and (16),

$$
\xi>0, \quad \eta>0, \quad \xi+\eta<2, \quad(2-\xi)(2-\eta)=2
$$

and so $M\left(I_{4}\right)$ attains its maximum when

$$
\xi=\eta=2-\sqrt{2}, \quad \xi \eta=6-4 \sqrt{2}, \quad s=t=1, \quad \sigma=r=\sqrt{2}
$$

that is, when I_{4} is a regular octagon. For such an octagon,
$M\left(\Pi_{4}\right)=\frac{6-4 \sqrt{2}}{4(4 \sqrt{2}-4)}=\frac{\sqrt{2}-1}{8}, \quad Q\left(\Pi_{4}\right)=\left\{\frac{1+2 M\left(\Pi_{4}\right)}{4}\right\}^{-1}=\frac{16}{7}(3-\sqrt{2})$.
Next, in case (B),

$$
s=\frac{\xi^{2}}{2}, \quad t=\frac{\eta^{2}}{2}
$$

whence from (15) and (16),

$$
\xi \eta>0, \xi+\eta<2,2 s t-t \xi-s \eta=\frac{\xi \eta}{2}(\xi \eta-\xi-\eta)=\frac{\xi \eta}{2}(\xi+\eta-2)>0
$$

which is impossible; this case therefore cannot arise.
We have thus proved 10)
Theorem 10: For every convex octagon Π_{4} symmetrical in O ,

$$
Q\left(\Pi_{4}\right) \geqslant \frac{16}{7}(3-\sqrt{2})
$$

with equality if and only if I_{4} is affinewequivalent to the regular octagon.

[^2]
§ 12. An upper bound for \mathbf{Q}.

The last theorem implies that

$$
\left.\mathrm{Q}_{4}=\frac{16}{7}(3-\sqrt{2})=3.624654715 \ldots \quad{ }^{11}\right)
$$

This result is rather surprising, since in the case of an ellipse E 12)

$$
\mathrm{Q}(E)=\frac{2 \pi}{\sqrt{3}}=3.627598727 \ldots>\mathbf{Q}_{4} .
$$

As we show now, one can construct an irreducible convex domain K for which $Q(K)$ is even smaller.

Let again Π_{4} be the regular octagon which is the intersection of the square $\Pi_{2}^{(1)}$ of vertices

$$
R_{1}=(1,-1), R_{3}=(1,1),-R_{1},-R_{3}
$$

and the square $I_{2}^{(2)}$ of vertices

$$
R_{2}=(\sqrt{2}, 0), \quad R_{4}=(0, \sqrt{2}),-R_{2},-R_{4}
$$

The vertices of Π_{4} itself are

$$
\begin{gathered}
Q_{1}=(\sqrt{2}-1,-1), \quad \begin{array}{l}
Q_{2}=(1,1-\sqrt{2}), \quad Q_{3}=(1, \sqrt{2}-1), \quad Q_{4}=(\sqrt{2}-1,1) \\
\\
\end{array} \quad-Q_{1},-Q_{2},-Q_{3},-Q_{4},
\end{gathered}
$$

and further

$$
\begin{equation*}
V\left(\Pi_{4}\right)=8(\sqrt{2}-1), \quad \Delta\left(\Pi_{4}\right)=\sqrt{2}-\frac{1}{2} . \quad \mathrm{Q}\left(\Pi_{4}\right)=\frac{16}{7}(3-\sqrt{2}) \tag{17}
\end{equation*}
$$

There are four hexagons H_{k} circumscribed to I_{4}, namely,
the hexagon H_{1} of vertices $R_{1}, Q_{3}, Q_{4},-R_{1},-Q_{3},-Q_{4}$;
the hexagon H_{2} of vertices $R_{2}, Q_{4},-Q_{1},-R_{2},-Q_{4}, Q_{1}$;
the hexagon H_{3} of vertices $R_{3},-Q_{1},-Q_{2},-R_{3}, Q_{1}, Q_{2}$;
the hexagon H_{4} of vertices $R_{4},-Q_{2},-Q_{3},-R_{4}, Q_{2}, Q_{3}$.
Each hexagon H_{k} possesses just one critical lattice Λ_{k}, and this is also a critical lattice of Π_{4}. On the boundary of Π_{4}, Λ_{k} has exactly six points, say the points

$$
\mp U_{k}, \quad \mp V_{k}, \mp W_{k}
$$

namely the midpoints of the sides of H_{h}. The coordinates of these points are given in the following table:

$$
\begin{array}{lll}
U_{1}=\left(\sqrt{\frac{T}{2}}-1,-1\right), & V_{1}=\left(\sqrt{\frac{T}{2}},-1 \frac{1}{2}\right), & W_{1}=\left(1,1-1 \frac{1}{2}\right), \\
U_{2}=\left(\frac{1}{2}, \frac{1}{2}-\sqrt{2}\right), & V_{2}=(1,0), & W_{2}=\left(\frac{1}{2}, \sqrt{2}-\frac{1}{2}\right), \\
U_{3}=\left(1 \sqrt{\frac{T}{2}}-1\right), & V_{3}=\left(\sqrt{\frac{T}{2}}, \sqrt{\frac{T}{2}}\right), & W_{3}=\left(\sqrt{\frac{T}{2}}-1,1\right), \\
U_{4}=\left(\sqrt{2}-\frac{1}{2}, \frac{1}{2}\right), & V_{4}=(0,1), & W_{4}=\left(\frac{1}{2}-\sqrt{2}, \frac{1}{2}\right) .
\end{array}
$$

Evidently,

$$
\begin{equation*}
U_{k}+W_{k}=V_{k}, \quad\left\{U_{k}, W_{k}\right\}=\triangle\left(I_{4}\right) \quad(k=1,2,3,4) \tag{18}
\end{equation*}
$$

[^3]Consider now two variable points

$$
P_{1}=(1, \alpha), \quad P_{3}=(\beta, \beta+\sqrt{2})
$$

on the line segments joining V_{2} to W_{1} and $-U_{2}$ to $-V_{1}$, respectively, and assume that the determinant of these two points has the value,

$$
\begin{equation*}
\left\{P_{1}, P_{3}\right\}=\triangle\left(\Pi_{4}\right) \tag{19}
\end{equation*}
$$

Then the point

$$
\begin{equation*}
p_{2}=\left(x_{1}, x_{2}\right)=p_{1}+p_{3} \tag{20}
\end{equation*}
$$

describes a hyperbola arc A_{4} connecting W_{2} with $-U_{1}$. Since by (19),
and by (20),

$$
\beta-\alpha \beta+\sqrt{2}=\sqrt{2}-\frac{1}{2}
$$

$$
x_{1}=1+\beta, \quad x_{2}=a+\beta+\sqrt{2}
$$

this hyperbola has the equation,

$$
\begin{equation*}
x_{2}=x_{1}+\frac{1}{2\left(x_{1}-1\right)}+\sqrt{2} \tag{21}
\end{equation*}
$$

The arc A_{4} touches the boundary Γ_{4} of Π_{4} at the two points $-U_{1}$ and W_{2}, and together with this boundary encloses a curvilinear triangle, τ_{4} say, which is of area,

$$
\begin{align*}
& V\left(x_{4}\right)=\left\{\left[\frac{1}{2}-\left(1-\sqrt{\frac{1}{8}}\right)\right] \cdot 1-\frac{1}{2}\left[\frac{1}{2}-(\sqrt{2}-1)\right]^{2}\right\}- \\
&-\int_{1-\sqrt{\frac{1}{2}}}^{\frac{1}{6}}\left(x_{1}+\frac{1}{2\left(x_{1}-1\right)}+\sqrt{2}\right) d x_{1} \tag{22}\\
&=\left(-\frac{21}{8}+2 \sqrt{2}\right)-\left(\frac{3}{8}-\frac{1}{4} \log 2\right)=2 \sqrt{2}-3+\frac{1}{4} \log 2 .
\end{align*} .
$$

In just the same way, each vertex $\mp Q_{k}$ of Π_{4} can be separated from O by means of a hyperbola arc $\mp A_{k}$; this arc is congruent to A_{4} and touches Γ_{4}, and it encloses, together with Γ_{4}, a triangle $\quad \tau_{k}$ congruent to τ_{4}.

Let now K be the convex domain obtained from Π_{4} by cutting off all eight triangles $\mp \tau_{k}$. Then every point on the boundary C of K belongs to a lattice of determinant $\triangle\left(\Pi_{4}\right)$ which has on C just six points $\mp P_{1}, \mp P_{2}$, $\mp P_{3}$ satisfying $P_{1}+P_{3}=P_{2}$, and is therefore K admissible (Lemma 1). Hence K is irreducible and of determinant

$$
\Delta(K)=\Delta\left(I_{4}\right)=\sqrt{2}-\frac{1}{2}
$$

(Lemmas 2 and 3). On the other hand, from (17) and (22),

$$
V(K)=V\left(\Pi_{4}\right)-8 V\left(\tau_{4}\right)=16-8 \sqrt{2}-\log 4
$$

By combining these two equations, we find that

$$
Q(K)=\frac{32-16 \sqrt{2}-4 \log 2}{2 \sqrt{2}-1}=3.609656737 \ldots
$$

This is an upper bound for \mathbf{Q}, and possibly even its exact value.
Mathematics Department, Manchester University.

[^0]: ${ }^{8}$) See paper A, Lemma 5.
 8_{a}) Theorem 4 is a special case of a more general result of L. FEJES, Compositio Mathematica 6, 456-467 (1939), §3.

[^1]: $\left.{ }^{9}\right)$ See paper $B, \$ \S 1$ and 5.

[^2]: ${ }^{10}$) Dr. Ledermann, to whom I showed this paper, has since found a much simpler proof of Theorem 10.

[^3]: ${ }^{11}$) I am in great debt to Mr. D. F. Ferguson, M. A., for the evaluation of this constant and the two other ones.
 ${ }^{12}$) See paper $B, \S 1$.

