740

§ 10. Die Trennungsaxiome in ihrer gewdhnlichen Form enthalten alle
den Begriff des offenen Kernes. Duale Umsetzung liefert 'die Form, bei
der in allen die abgeschlossene Hiille als Grundbegriff auftritt.

So sind in einer Struktur Sy, in welcher die topologischen Axiome I—VI
erfiillt sind, gleichwertig die topologischen Axiome:

A*. zu jedem Paar py, ps von Primsomen mit py - ps = O gibt es Somen
a, b mit ab =0, p; Caund p; C b;
und: h

A. zu jedem Paar py, ps von Primsomen mit (1-—py) + (1 —pa) =1
gibt es Somen a, b mit a +b =1, 1—p; D@ und 1—py D b.

Bei Benutzung des Randes als Grundbegriff hat man als aequivalentes
Axiom: ‘

Ar. zu jedem Paar von Primsomen p;, pp mit py - p = 0 gibt es Somen
a, b mit ab = 0, py C ala’)’ und py < b(b7)".

Duale Umsetzung liefert als mit A" gleichwertig:

Ar. zu jedem Paar py, ps von Primsomen mit (1 —py) -+ (1 —py) =1
gibt es Somen a, b mit a+b=1 1—p; Da+(ar) und 1—p; D
"D b+ (br).

Wir iiberlassen dem Leser die Formulierung der iibrigen Trennungs-~.

axiome mittels offenen Kernes oder Randes 10), und der dualen Grund-
begriffe.

10) Siche ALBUQUERQUE, loc. cit. 6), S. 193—196; auch RIDDER, loc. cit. 1), §28.

Mathematics. — Non-homogeneous binary quadratic forms. IV. By H.
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1. The present paper is a continuation of paper II of this series 1). We
are concerned with the minimum of the product

(¢ —a) (&' —b)],
where £ is an arbitrary integer of the field k£(0), say

t=x+0y, 0:%(1*}'1@).

and a, b are given real numbers, It was proved in II that if a, b are not of
the form

a=%v+4+& b=%+&. . . . . . . (D)
nor of the form
1
-5
where 7 1s a unit and & an integer of k(6), then there exists an integer &
satisfying :

a ="

1, ,
T—l—fo. b:“‘"'V_gT +§0’ e e e e e (2)

1

R—— 4 ——— JU———

(E—a) (' ~B)| < g5

The question of the existence of a third minimum was left unsolved,

though it was proved that if such a third minimum exists, it cannot be less
than

1 1 ‘
ﬁ e mfj . . . . . . . » . (3)

I have now established the existence of a third minimum, and indeed of
an infinite sequence of minima having values greater than (3). These
minima occur when

7
2= A&, b= J,— -+ & (or vice versa), . . . (4)
am i a'm

where 7 is a unit and &g an integer of k(6), and where m is an odd positive
integer, and am is defined by
. 2 (6n+1 — 1)

Am == ~7mﬁ’ n=3m.. . . . . . (5)

1} Proc. Kon. Ned, Akad. v. Wetensch., Amsterdam, 50 (1947) 378—389.
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The case m = 1 gives

206 1) _ e
R T M 20 —1=15,
so that a, b are then of the form specified in (2). The case m = 3 gives
2 —1) 11
BETELT T 46—3

and the values of a, b defined by (4) are then those corresponding to the
third minimum, the value of which is

IO L
lagas] — 1217 6.368...
The formal enunciation of the results is as follows.

Theorem 1. Suppose that a, b are not of the form (1), nor of the form
(4), where am is defined by (5) and m = 1, 3, 5, .... Then the lower bound
M(a, b) of

(6 —a) (&' —b)]
for integers ¢ of k(8) satisfies
1
M(a,b)Sq—g. B ()]

Theorem 2. If a, b are of the form (1), we have M(a, b) — 1, and
this minimum is then attained for an infinity of integers £. If a, b are of the
form (4), we have

1
M@by=r——, . . . . . . .. (7
@ 5= o o)
and this minimum is then also attained [or an infinity of integers &.
We may note that the value of the minimum correspending to any m,
which is specified in (7), may also be expressed in terms of the Fibonacci

numbers. If we define these by
Fi=F,=1, Fpo,=DFu.+ F, (n=1,2,..),
then 67 — F,0 + F,_1, and we easily find that

1 — Fﬂ+1+Fn_1 n____3m (8)
lamam] — 4(Fpaz + Fp—2) M7 2m o

The greater generality of the present arguments, as compared with those
of II, has the effect that the present paper supersedes a great deal of the
former one. In fact, the only results which will be quoted from II are the
comparatively simple Lemmas 1, 2, 3.
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2. The assertion of Theorem 1 is that if

1
then a, b must be either of the form (1) or of the form (4). We may
therefore write

1
M_u‘iﬁ(l-—é), SO ()]
where 8 > 0. Let ¢y be an arbitrarily small positive number, which we can
suppose to satisfy any desired inequality of the form &y << E(d), where
E(6) is any positive number depending only on . A finite number of such
inequalities will be imposed on &, in the course of the paper.
By the definition of M, there exists an integer &, of k(6) such that

|(£0—~a)(56——b)|:i—]g—g, where 0 Se<leg. . . . (10)
We define a, 8 by
a=(a—E&)", B=(b—&)Y . . . . . (11)
so that
]aﬁ]:1&8:46(1—8)(1~5)‘ N (V)

By the definition of M, and by (10) and (11), we have ‘
[a—1)(BE—D|=1—e . . . . . . (13)

for all integers & of k(0).
By the operations of (i) replacing @, § by at, p7’, where ¢ is any unit,
(ii) interchanging a, ff, we can ensure, as in II, that

a>0, %gqmga.. N T

It follows from (12) and (14) that
@ < alf|6=146(1—)(1—0),
a<l2—96. . . . . . . . . . {15
Also
Bl<s (e[ < (4 6)
18] <255 . . . . . . . . . (16)

3. Lemma 1. If a<<}5—¢ then a = f = 2.
Proof. Lemmas 1, 2, 3 of Il
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Lemma 2. IfT/S——e <L a<20—4 then f <0.
Proof. By (13) with § = 6-2, we have
(@2a—1) (@ f—1)| =1—s.
Suppose f > 0, then g = ¢/ = (J5—¢)/0 > 1, by (14). Hence
a6 (f—6) = 1—e, |
If o << 02, this gives

B2 67 4 (1—e) (62— a) " = 672 4 (1—&) (82— 15 + o)
=672 (1—6) (62 + o).

This last expression is almost 3, and so we have a contradiction to (16),
We may now suppose that a > 02, We have

=67+ (1—0) (a— &),
af=(l—e){82a-+1+ 62 (a—69),

This last expression decreases as a increases for 62 <o <<262. Since
a << 28— ¢, it follows that

af=(1—e {261 —626+1+ 622 6—6—08) ")
=(1—¢) {26766+ 1+ 6% (1—36)1}.

Since 20-1+ 1+ 63 =40, this gives aff >40, provided ¢ is small
compared with 8, and so gives a contradiction to (12). This proves
Lemma 2.

Lemma 3. If J5—¢<Ca<<20-—34, then
2+ 40— O

Proof. By Lemma 2, we have f <<0, and we write f = — §, where

B> 0. In view of (16), it suffices to prove that f >2 + 1 4.
By (13) with £ = 8, we have

(a—6)1f—60]=1—e
Now ¢ —60-1 <26 —§—0-1 = 82— . Hence
B—61= (11— =8 > (1= 67 (1+867) > 62419,
if ¢ is small compared with 6. If <8, this would give
f<B—62—10,

6—62—15 1237 1

p
a < <2.236 <3

a V§—£
contrary to (14). Hence > 6, and

B>6+624+38=2+%0.
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4. In virtue of (15), and Lemmas 1 and 3, we may suppose henceforth,
in proving Theorem 1, that

Vs—eKa<<20—8, 24+16<B<6%. . . . (17)
where f = — .
We define integers &m, gm of k(9), form =1, 2, 3, ..., as follows:
—n+3 — g
Emzl———%—%—‘, nm:}—ng , where n==3m. . (18)

That these are integers follows from the fact that €3 =—=20 + 1 =1
(mod 2). Since
1 2 263

R — — 2
ok e Rl s Rl

1 ,
and 77—- decreases as m increases and has the limit 2, there will be exactly
m

one value of m for which

1

Nmat

,7—1”; > 5> (19)

Moreover, by (17), m will have an upper bound depending only on §.

Hence, by a previous remark, we can suppose that ¢y (and therefore also
¢} is less than any positive number which depends only on m.

Lemma 4. If (19) holds, then

1 g !

Em Emez

Proof. One half of this is easily proved; by (12), (18), (19), we

have

(20)

46 26 I
— ma =26 (1—673 - :
e SOma =200 < s T

To obtain the other half, we first apply (13) with & = 6. This gives

Ba—1)@ 11— =1—e, . . . . . . (21)
on noting that § > 2> 6. By (19)‘,’

5 1
-1 8 e I
o7 p—1< Him 1= 6—@g-ntt -

If we could neglect ¢ in (21), we should conclude that

6 — G+t N 2 . 262
2_5+g—n+1_2_g+5-n+1"‘ 1 +5—n+3'

@

a1+
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whence

26 1
a?—lvv:l:'e—_‘m-_—g.

It is clear, therefore, that the corresponding deduction from (21) when we
do not neglect ¢ will be of the form

1
>_.._ ,
a = — &

where y is a positive number depending only on m. But from (13), with
& = &m, we have

@ bn—1[(|¢n] f+ 1) =10
and if ¢ = 1/én the last two inequalities give a contradiction if ¢ is less than

some positive number depending only on m. Thus we have a > 1/&m.

Lemma 5. The value of m determined by (19) cannot be even,
Proof. We observe first that if m is even, then from (18)

, o1 —1 ) (9n+3+1
Nm==— 7 Nm+1 == -

The proof is based on the two inequalities derived from (13) by taking
E=—n'n and & = —'m.1. These are:

(l1mla—1) (1 —gmp)=1—e
sy @+ 1) (7mss B—1) = 1—s
The expressions in brackets are all positive, by (19) and the fact that
| =5 (67— 1) = = V5.

We multiply these by #m 41 and #nm respectively and add, thus eliminating f.
The result may be written

Nm+1~Nm Nm+1 Nm
; e .. (22
[—e wla—1 T ymma 1 22)

This inequality determines a lower bound for . Hence, if we prove that
the inequality is violated when a is replaced by 1/émi2, we shall have
reached a contradiction, by (20).

Since

Nt — 1 = § (61— =1=0) = 712,

it will suffice to prove that the sum on the right of (22), with the above
value of q, exceeds 6-7-2 by a positive amount deending only on m. This
sum is
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N+t Emea Nm Em+2
i"]lln("—fm+2 "7/m+1 + Emy2

(1—6--5) (1 + 6--3)

(1—6-") (146-")

=2{66 1) —( 6] Z(6(67 + 1)+ 1+ 6]
- ] — @206 T el
——2{5n+1_‘_62__(9—n—3$ 2 ;5n+4+1;

> 3 6711 (1 — B-26) (1 — G=n+1)=1 - 1 =14 (1 — G-7) (1 4 §~n%)-1
> % H-n-1 (1 _— 6-—2n—6) (1 + 0—n+1) + ’é‘ 6—n-—4 (1 _— 6—n) (1 — 6—71—4)

> _%_ ((9——21—1 — H—3n—-7 _+_ 8—-2!1 — 6-—411——-6 + 8‘—12—4 — 6—2n—4 —t 0*27178)

f— H—n~2 _I__ _!2_ 6—-2n (1 [ 6~4 — 6——8___ 6——1’1——7_ 6—271—6).

Since n==3m =6, the sum in the bracket is greater than a positive
absolute constant, and the result follows.

Lemma 6. If mis odd, it is impossible that (19) holds and that

1
i o¢<$m+2 R V)|
Proof. The proof is based on two inequalities, derived from (13)
by taking & = &m 41 and & == —#'m ;1. Since m is odd, we have, from (18),.

HGnr3 — 1

Em-H “% 6 (9”—“ 1), 77’m+1 e 2 o

As we suppose that (19) and (23) hold, the inequalities, which are

[ Gmer @ —1) (Ep B+ 1) = 1—¢,
|(77'm+1 a - 1)(’7m+13“"1” =1—e¢,

take the form

(§m+1(1——1)(§,m+lﬁ+l)>l—“8, e e e . (29
(nmla—D)(mup—1)=1—¢ . . . . . (25)
where each factor is positive.

We use (24), together with the fact that § <<46/a by (12), to obtain
a lower bound for a. It will be clear from the nature of the calculations
and result that we can neglect . Thus (24) gives

46
(Emen a—1)< Enet g 1>
It will be convenient to write P = &ni1 &mi1, so that P is a positive

integer. Substituting for &1, the last inequality gives

40P - Empy a_;ﬁp

—1=1, . . . . . (26

m+1 @



whence

Now

Hence

since
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(Emprat+(20P—1)2=462P2 + 1,

Emp1 o= V462 P2+ 1—20P+ 1
1

1

>20P ) +ggip — g eipi( 290 +1

1 |
=l+35p Gz B>

p:—‘N(‘SmH) :%N(l -+ 8") :%(6"—“6"").

Empra>14 0711 —-6‘2")—1 — §-3n=3 (] — g-2n)~3
> 14 -1 (14472) — @33 (] — G-2n)3

=1 + 6—!2—1 + G—3n-3 { 62__ (1 . 0“2”)_3 % ,

Emyra> 1467771,

(1—6-7)3 < 1—< B2

We now use (25) in a similar way to obtain a lower bound for §.

Writing Q = | gm41 #'my1|, the inequality analogous to (26) is

whence
Now

Hence

We have

Q=N (1ms)| =4 (1 =6 (" —1) =} 6+ (1 — 6P

Hence

46Q

40 Q—nuufp———+1=1,

Hm+1 13

260 Q—nmn P <462QP—46Q.

B<O* <2604 (0°—1) <26 | it =20 Q/mer.

1
>20Q—-260Q11 390

1
=1t g

Nm+1 B > 14 -1

1
T 867 Q?
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The inequalities {(27) and (28) have been derived from (24) and (25)
by neglecting ¢. They should therefore be corrected by subtracting on the
right terms depending only on m and &, which tend to zero with & for fixed
m. We shall prove that (27) and (28) give a lower bound for a § greater
than 4 0. In view of (12), this gives a contradiction, since the correcting
terms involving ¢ are negligible in comparison with &, by a previous remark.

The product &m 1 Hma1 is

1 1
15 (L0 —6-")= (1 42672 — g7

The product of the expressions on the right of (27) and (28) is
1+ 469 >146"4@+1)=1+26"72

Hence a § > 46, as was to be proved.





