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§ 1. lntroduction and results. As usual, C[a, b] denotes the space of 
all continuous functions of x, a <:: x <:: b. A set {<pk (x)} € C[ a, b] is said 
to be closed in C[a, b], or to span this space, if it is possible to approximate 
uniformly over [a, b] to every function € C [a, b] by linear aggreg ates 
2) ak<pk(x). 

This note is concerned with closure~properties in C [a, b] of sets 

(1. 1) (k= 1, 2 .... ) 

where {nk} is an increasing sequence of non~negative integers. The classical 
result in this field is the theorem of MÜNTZ 3) and SZÁSZ 5) which implies 
that the set (1.1) is closed in C [0. 1] if, and only if, 

(1.2) 
00 1 

n1 =0, }) -= 00. 
k=2 nk 

It was shown recently by CLARKSON and EROÖS 1). and independent1y 
by L. SCHWARTZ 4), that the sub~manifald of C [0. 1] spanned by a 
sequence 

(1. 3) 

is rather smalI: a continuous function which is the uniform limit on [0. 1] 
of a sequence of linear aggregates of functions (1.3) can be extended to 
be analytic in the interiot· of the unit~circle. The power series for this 

analytic extension contains only powers Xnk. 
Conversely, the question arises whether it is possible ta approximate 

uniformly over [0, 1] by linear aggregates of functions (1.3) ta every 

function 
CJ;J 

(1. 4) [(x) = Z ak xllk 
k=l 

where the series converges far ° <:: x < 1 and where 

(1. 5) lim [(x) 
x-+l 

exists. This questian was answered in part by CLARKSON and EROÖS, viz. 
for the lacunary case nk + link> c > 1. Here the existence of the limit 
(1.5) is known to imply the convergence of Zak and hence the uniform 
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convergence on [0,1] of the series (1.4). (See HAROY and LITTLEWOOO 2).) 
It is shown below (theorem 2) that [(x) can be uniformly approximated 
by linear aggregates of functions (1.3) in the genera! case also. This 
yields a complete characterization of the sub~manifold of C [0, 1] spanned 
by the sequence (1.3) .. 

In § 4 a similar result is reached for the interval [a, b], ° <:: a < b. The 
establishment of this theorem 6 requires some more information than was 
known until now about the best approximation to powers xm by linear 
aggregates );,' akxnk on [a, b]. This information is obtained in § 3 by the 
method used by CLARKSON and EROÖS to prove the extension to [a, b] of 
the theorem of MÜNTZ and SZÁsz for [0,1]. (See (1), § 3].) 

§ 2. The interval [0, 1]. The characterization~theorem for [0, 1] is 
Theorem 1. The set of continuous functions of x, ° :s x <:: 1, spanned 

by the sequence 

( }) 1_<00) 
nk>O nk 

is identical with the set of all power series 

convergent on .0 <: x < 1 for which 

exists. 

00 

lim }) ak Xnk 
x-+ I k=l 

The proof follows from the result of CLARKSON, EROÖS and L. SCHWARTZ 
mentioned in § 1 combined with the following theorem, which may be of 
some interest in itself. 

Theorem 2. lf the series 

g (x) = L:bk xk 

converges for ° <: x < Land if 

lim g (x) 
x-+l 

exists - name it g( 1) - then it will be possible to approximate uni[ormly 
to g(x) on [0,1] by linear aggregates of the partial sums Sn(X) of .:EbkXk• 

The proof of theorem 2 is exceedingly simpIe. It follows from the uniform 
continuity of g(x) on ° <:: x <: 1 that if eis an arbitrary positive number, 
then 

(2. 1) Ig (x)-g (fJ x) 1< e/2 (o~x~ 1) 

for () sufficiently near to 1 (() < 1 ). But the series for g (ex) is convergent 
on ° <:: x < ()-l. Hence if N is sufficiently large, 

N 

(2.2) Ig (fJ x)-}) b" fJk x" 1< 1':/2, (0 ~ x~ 1). 
1 
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A combination of (2.1) and (2.2) yields the theorem: 

N 

I g (x) - Z ()k 1 SIc (x) - Sk-l (x) I1 < e. (0 :s; x:::::; 1). 
t 

The interval [0. b]. By the substitution bx = x' theorem 1 yields a 
corresponding result for the interval [0. b]. 

§ 3. Approximation to powers xln on [a, b]. Starting from MÜNTZ's 
formula (see 3). 5) ) 

1 

I b j 'l m '" n 12d -- 1 II (1 2m + 1 )2 
•• X - '""' ak x" x - -2 + 1 - + + 1 I ak I m k=! nk m 

o 

CLARKSON and EROÖS proved an estimate (see [1). theorem 2]) which 
impliesthe following fundamental 

Theorem 3. Let S be an inereasing sequenee of non~negative integers 
{ nk} satisfying the eondition 

Let 0 < ë < 1. Then there exists an integer mO(é, S) sueh that m> mO(é, S), 
m not in S, imp lies 

1. b. max I xm - 1: ak xn" I > (l-e)m. 
lak 1 O::S:x::S:! 

Inkl=S 

Furthermore this mO ean be ehosen independently of the partieular sequenee 
S for every family F of sequenees S for whieh the funetions 

tend to zero uniformly as m ~ co for S E F. 
Remark 1. Let the family F of sequences S satisfy the conditions of 

theorem 3. Now replace every sequence S = {nk} "=1,2, ... EF by the set of 
sequences Sj = {nk + Ïh=I,2, ... , j = 0, 1. 2 ..... Then the family F' formed 
by all sequences Sj will also satisfy the conditions of theorem 3. For 

1 1 1 
(])(m,Sj)= .2 ---;= J: --.+ .2 --.:::::; 

m<n,,+j nk+J m<nk n"+J m-j<n,,::S:m nk+J 

and 

Remark 2. Let the family F again satisfy the conditions of theorem 3. 

Now replace every sequence S = {nkh=I.2, ... EF by the set of sequences 
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Sj = ! n" I k=!j. j = 1.2, .... Then the family F" formed by all sequences Sj 
will again satisfy the conditions of theorem 3. For clearly 

cp (m, Sj):::::; cp (m, Sj. lJf(m. Sj)::::;: lJf(m. Sj. 

From theorem 3 a similar result wil! be derived for the interval [a, bL 
a> O. 

Theorem 4. Let S denote a sequenee of integers {m} satisfying the 

eonditions 

Let F be a family of sequenees S satisfying the eonditions that 

cp (m. S) = }; ~ and lJf(m. S) = _1 .2 1 
m<n" n" m nk::S:m 

tend to zero as m ~ co uniformly for S E F. Let 0 < e < b. Then there 
exists an integer mo (e, F) sueh that m > mo (e, F) imp lies 

1. b. 
SEF 

Snot 3m 

1. b. max I xm - Z ak xn" I?: (b-e)m. 
I a" 1 a::S:x::S:b " 

In" I=S 

There is no restriction in taking b = 1. (Substitution x = bx'.) Further 
let a> O. Finally, let 1-e > a. Now if there were no integer mO(é, F) 
satisfying the above condition then there would be a sequence of integers 
mk ~ co (k ~ co) and a corresponding sequence of linear aggregates 

(3.1) P" (x) =}; bkj xnkj. 
j 

mk not in Sk= {mj}1=1,2, ... • SIc E F. such th at 

(3.2) 

Now let 11 fil. 11 f 11', 11 f 11" denote the maximum of I f I on [a, 1]. [0, a] 
and [0. 1] respectively. Let 0 < () < 1. Then it will be possible to choose 
k1 = kd()) so large that 

(3.3) (k> kt (())). 

This is a consequence of theorem 3, remark 1. For the set F 1 of all 

sequences S~ = {mj + mk}j=I,2, ... is a sub~set of the set P' considered 
there. Taking ()2 = 1 -- E in (3.3) and comparing with (3.2) ane sees th at 

11 x 2mk-xm" P k (x) 11' > (I-e)m". (Ic> klj· 
Hence 

Ilxmk-Pdx) 11' > l(1-e)jal mlc (k>k l )· 

As (l-e)/a > 1, 11 Pk 11' must increase exponentially: 

(3.1) .lh = 11 P k 11" > cm". (k > k2) 

where e> L 

50 
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Now let ra be so large that 

2: la(2-a)lr<t, 
ro< r 

anel let 110 be su eh that 

(3.5) 1. b. 11 xnkl- 2: aki xnki 11" > (2-a)-nkJ 
lakil i-::j=J 

I nki I =Sk 

for all k anel j for which I1kj > 110' This is possible by theorem 3, remark 2. 
By (35), if b k1 0, I1kj > 110, 

II P~~;) r = 11 xnkj + .. ·11" > (2-a)- nkl. 

Henee 

I bkJ I < Ak (2-a)nkl 

It follows that if Po = max (ra, na), 

11 2: bk1 x nklll'<Ak.2 !a(2-a)lr<tAk. 
po<nkj po<r 

Henee if 1'3 is so large that for k> k3 11 Pk 11" = 11 Pk 11', then k> k3 
must imply that 

But then there exists, to every !, > k3 , a j (k) sueh that 

(3.6) nk,j(k) ~ Po 

(3.7) 

By (3.4) it is then possible to take k4 so large th at k > 1c4 implies 

(3.8) 

Now for Ic> k\,2,3,4 consieler the expression 

(3.9) 

Here Ak = nk, l(k) + mk, anel Qk (x) represents a linear aggregate of x 2mk 

anel xnki+mk,i y!::. j(k). IE Ic is suHiciently large, the expres sion (3.9) will 
be less than alnk, where O<a< 1, everywhere on [0,1]. This follows 
from (3.2) anel (3.8) for [a, 1]. For [0, a], by (3.8) anel (3.7). 

1 bk, 1 (k) I-I / x 2mk_x mk Pk (x) 1 ~ a2mk + 2 (Po + 1) amk• 

Thus 

(3.10) 11X'\k+Qk (x)II"=llx)'k-bk,l j (k) x 2mk +Rdx)I/" <amk, (k>ks)· 
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The inequalities (3.10), (3.7) anel (3.4) imply 

11 xÀk + RI< (x) 11" < fJmk. (k> k6) 

wh ere ° < fJ < 1. Finally, by (3.6), 

(3.11) I/Xi'k + Rk (x) 11" < '(h, 

O<y< 1. Here Rk(x) eontains only powers Xnki+mk, i y!::.j(k). As the 
family of sequences {nki + mk}i-::j=l(k) (k = 1, 2, ... ) satisfies the eonelitions ' 
of theorem 3 the inequality (3,11) must be false. This eompletes the proof 
of theorem 4. 

CoroUary 1. (CLARKSON and ERDÖS) The set 

jxnk I (3. 12) 

of C[a, b], where ° <: Hl < 1'12 < ... < 11k < ... --;; co, is closed il1 C[a, b] 
(0 < a < b) if and only if the series 

(3. 13) 

diverges. 
Proaf. If the series (3.13) diverges the set (3.12) is closed in Co[O, b] 

by the theorem of MÜNTZ and SZÁSz. Here Co [0, b] elenotes the space 
of all continuous functions of x, ° <: x <: b, vanishing at x = 0. The set 
(3.12) is then a fortiori closed in C [a, b], a > 0. 

If the series (3.13) converges on the other hanel, then it follows from 
theorem 4 by taking F = S = {11k} that it is impossible to approximate 
uniformlyon [a, b] to any function xm, m not in S, as soon as m > mo. 

However, this is true for m <: mo also: 
CoraUary 2. ff m does not belong ta the Îl1cceasil1g sequence of nOI1~ 

negative integers {11k} satisfying , 

1 
.2 --<00 

n/( >0 nk 

then it is impossible to approximate unifarmly ta xm on [a, b] by linear 
aggregates 

Proof. Take in theorem 4 

F= !S'l'-o l J J- ,lJ2,. o.t 

It follows that far m + j> mo, m not in {11k}, 

l.b. max /xm+l-Xl 2: ak Xn,,/?: (b-e)m+l. 
I af( I aS,xS,b 

Hence, taking j = mo + 1, 

1. b. max / xm-2: af( Xllk I ?;:: (b-e)m+mo+' b-mo- I 

I ak I aS,xS,b 

whenever m is not an nk. 
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The following corollary will also be used in § 4. 
Corollary 3. Let {nk} be an increasing sequence of non~negative 

integers satisfying the condition 

Let ° < é < b. Then there exists an integer ko = ko (é) such that k > ko 
implies 

1. b. max I xllk- }; aj xllj I?': (b-s)llk. 
lajl a:S:x:S:b lofk 

Proot See theorem 4, and theorem 3, remark 2. 

§ 4. The principal theorem. The above corollaries 2, 3 yield the 
analogue for [a, b] of the result of CLARKSON, ERDÖS and L. SCHWARTZ 

for [0, 1] mentioned in § 1. 
Theorem 5. Let the increasing sequence of non~negative integers {nk} 

satisfy the condition 

1 
~ -- < 00. 

Ilk>O nk 

Let the sequence of linear aggregates 

(j= L 2 .... ) 

converge uniformly ta [(x) on a <:: x:::::; b, a:::> 0, as j ~ co. Then [(x) 
can be extended to be analytic in the interior of the circle I x I < b. The 
power series for this analytic extension is 

where 

Ak = lim ajk 
j-+w 

(k = 1. 2, ... ). 

The proof is essentially the same as that given by CLARKSON ond ERDÖS 
for the interval [0, 1]. It follows here for the sake of completeness, however. 

(i) ajk tends to a limit as j -7 co. For to any e> 0 there exists a jo such 

that j, j' > jo implies 

e> max IPj(x)-Pi'(x)I=lajk-ai'kl max Ixfllc-Q(x)l, 
a:S:x:S:b a:S:x:S:b 

where Q(x) is a linear aggregate of powers Xlli. i ~ Je Now by theorem 4, 

corollary 2, 

max I xllk-Q (x) I ~ Ck > O. 
a~x5b 

Hence if j, j' > jo, 

Let 

(4. 1) lim ajk =Ak 
j-+ 00 
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(k = 1. 2 .... ). 

(ii) The next step is to find a proper es ti mate for the Ale. Let E> O. 
Let Qjk(x) be defined by the equation 

P l (x) = Bjk 1 xllk + Qjk (x) I 

whenever ajk =j:. 0. By theorem 4, corollary 3, 

for k > ko (ë), j = 1, 2, .... The P j (x) will be uniformly bounded: 

Hence for all j 

(4.2) 

and by (4.1), 

(4.3) 

(a ~ x ~ b; j = 1, 2 •. : .). 

(k> kol 

The power series ~ AkXnk will thus at least converge for I x I < b. Let 
the sum of the series be g (x) . 

(iii) It remains to be proved that [(x) = g(x) on a :::::; x < b. This will 
follow from the relation 

1im I Pj {x)-g (x) I = 0. 
j-+oo 

(a~x< b). 

To prove it, let x be fixed on a <:: x < b. 

00 00 

IPj{x)-g(x)I=1 1) AkXllk- 1) ajkxllkl~ 
k=1 k=1 

(4.4) 
N 00 

~~IAk-ajklxllk+}) {IAkl+lajkl)x llk• 
1 N+1 

Now first choose N so large that 

for k > N. (See (4.2) and (4.3).) N ext let N increase until the last term 
of (4.4) is sufficiently smal1. Finally take j 50 large that the first term of 
the third member of (4.4) is also small enough. 

A combination of theorems 5 and 2 now yields the principal theorem. 
Theorem 6. The set of continuous functions of x, a <:: x :::::; b, a 2': 0. 

spanned by the sequence 
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is identical with the set of all power series 

convergent on a -< x < b for which 

00 

lim 2 ak Xllk 
x-+:b 1e=1 

exists, 
Another corollary to theorem 5 is 
Theorem 7. Let the increasing seql1ence of non~negative integers {nk} 

satisfy the condition 

Let the sequence of linear aggregates 

Pj (x) = 2 ajk Xllk 
Ic 

(j = 1. 2, ... ) 

converge uniformly to [(x) on a -< x -< b. a >- O. Then the sequenee 
{Pj(x)} is uniformly convergent in every circle lxi -< b-o, 0>0. lts 
limit is the analytic extensian of [( x) . 

In particular, let {Pj(x)} canverge unifarmly to zero on a -< x -< b, 
a >- O. Then it will do sa in every circle I x I -< b - 0, 0 > O. 

Proof. See (4.4). 
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Mathematics. - lnequalities for the coefficients af trigonometrie poly~ 
nomials. 11. By R. P. BOAS Jr, (Communieated by Prof. J. G. VAN 
DER CORPUT.) 

(Communicated at the meeting of May 31, 1947,) 

Il 

1. Let F(t) = 2 8j eijt be a real trigonometrie polynomial. The 
-Il 

inequality 

2" 

18 0 I + t I ale 1-= t JI F (t) I d t, k>tn, . (1) 
o 

was given by VAN DER CORPUT and VISSER 1). The constant i in (1) was 

improved 2) to -! (1 + t -y2) /;re = ·234 .... Here I shall obtain the best 
possible result 

2" 

laai + ~·Ialel-= C JIF(t)1 dt, k > {- n. 

o 
with 

C = 1/(2 n-4 0), 

sin 0 + -~ à = t n, 0 < 0 < n/2. 

We have ·2136 < C < ·2137. 
More generally, far any pasitive y, 

2" 

laol + 2y lakl-=CrJIF(t)1 dt, k>§ n. 

o 

(2) 

(3) 
(4) 

(5) 

where Cr is given by (3) and 0 is the smallest positive root of sin 0 = 
=-!y(n-20); equality occurs in (5) for some F(t):;éO. For example, 

Cl = .338; the value given before 2 ) was t (1 '+ ]l2)/n = ·384 ... , Thus 
we have 

2" 

1 J' I ao I + 21 ale I < 2.126 . 2~ I F (t) I d t, k > l n, F (t) ot: 0, 

o 
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