Mathematics. — A characterization of the sub-manifold of Cla, b]
spanned by the sequence {x"t}. By ]J. KOREVAAR. (Communicated
by Prof. ]J. G. vAN DER CORPUT.)

(Communicated at the meeting of ]ﬁne 28, 1947.)

§ 1. Introduction and results. As usual, C[a, b] denotes the space of
all continuous functions of x, a = x = b. A set {pr(x)} €Cla, b] is said
to be closed in C[a, b], or to span this space, if it is possible to approximate
uniformly over [a, b] to every function € Cla, b] by linear aggregates
Zarpr(x).

This note is concerned with closure-properties in C[a, b] of sets

(1.1 § xmk (k=1,2,...)

where {n:} is an increasing sequence of non-negative integers. The classical
result in this field is the theorem of MUNTZ 8) and SzAsz 5) which implies
that the set (1.1) is closed in C[0, 1] if. and only if,

21
. =0, 2 —=w,
.2 n=0 g =

It was shown recently by CLARKSON and ERDOS 1), and independently '

by L. ScnwarTz4), that the sub-manifold of C[0,1] spanned by a
sequence

1
(1.3 (2 <)
nk>0 ng
is rather small: a continuous function which is the uniform limit on [0, 1]
of a sequence of linear aggregates of functions (1.3) can be extended to
be analytic in the interior of the unit-circle. The power series for this
analytic extension contains only powers x"k.

Conversely, the question arises whether it is possible to approximate
uniformly over [0,1] by linear aggregates of functions (1.3) to every
function

w
(1.4 f(x) :kZ’ ag x"k

=1
where the series converges for 0 = x <1 and where
(1.5) lim £ (x)

x-»1

exists, This question was answered in part by CLARKSON and ERDOs, viz.
for the lacunary case ngii/nk>c>1. Here the existence of the limit
(1.5) is known to imply the convergence of Zax and hence the uniform
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convergence on [0,1] of the series (1.4). (See HARDY and LITTLEWOOD 2).)
It is shown below (theorem 2) that f(x) can be uniformly approximated
by linear aggregates of functions (1.3) in the general case also. This
yields a complete characterization of the sub-manifold of C[0, 1] spanned
by the sequence (1.3)..

In § 4 a similar result is reached for the interval [a,b], 0 = a <{b. The
establishment of this theorem 6 requires some more information than was
known until now about the best approximation to powers x™ by linear
aggregates & arx™ on [a, b]. This information is obtained in § 3 by the
method used by CLARKSON and ERDOS to prove the extension to [a, b] of
the theorem of MUNTZ and SzAsz for [0, 1]. (See [1), § 3].)

§ 2. The interval [0,1]. The characterization-theorem for [0,1] is
Theorem 1. The set of continuous functions of x, 0 = x = 1, spanned
by the sequence

1
{ Xy, 2 — <
nE>0 ng
is identical with the set of all power series
w0
2 ap x"k
k=1

convergent on 0 = x <1 for which

el
lim 2 axx™™
x+1 k=1
exists.

The proof follows from the result of CLARKSON, ERDOS and L. SCHWARTZ
mentioned in § 1 combined with the following theorem, which may be of
some interest in itself.

Theorem 2. If the series

g (x) = 2'bx x*
converges for 0 = x <1, and if

lim g (x)
x=r1
exists — name it g(1) — then it will be possible to approximate uniformly
to g(x) on [0, 1] by linear aggregates of the partial sums sa(x) of Zbrx*.
The proof of theorem 2 is exceedingly simple. It follows from the uniform
continuity of g(x) on 0 = x =1 that if ¢ is an arbitrary positive number,
then

@n glx)—g@x)|<ef2 0sxx1)

for O sufficiently near to 1 (6 <C1). But the series for g{8x) is convergent
on 0 = x << 0-1. Hence if N is sufficiently large,

(2.2) mww~ngxH<M, 0<x<1).
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A combination of (2.1) and (2.2} yields the theorem:

Ig(x)""gﬁk{Slc(x)~5k;1(x)§l<5, 0<Lx1)

The interval [0,b]. By the substitution bx — x’ theorem 1 yields a
corresponding result for the interval [0, 5].

§ 3. Approximation to powers x™ on [a, b]. Starting from MUNTZ's
formula (see 3), 5))

1

\ 1 ® 2m -+ 1 \2
m_ |2 dog 2= e - )
g J X e zm+1,£1<1 nk+m+1>

0

CLARKSON and ERDOS proved an estimate (see [1), theorem 2]) which
implies the following fundamental

Theorem 3. Let S be an increasing sequence of non-negative integers
{n«} satisfying the condition

1
2 — <o,
ng >0 ny )
Let 0<¢ < 1. Then there exists an integer mo(e, S) such that m > my(e, S),
m not in S, implies
b, max |x™—J3ap x| > (1—em,

jagl 0=x=1
(g | =S8

Furthermore this m, can be chosen independently of the particular sequence -

S [or every family F of sequences S for which the [unctions

SmS= 3 L, ¥m=" 31
m<ny Nk m np<m
tend to zero uniformly as m —> o for SeF.

Remark 1. Let the family F of sequences S satisfy the conditions of
theorem 3. Now replace every sequence S == {ni} 4=, ... €F by the set of
sequences S; = {n& + j}r=12...., ] = 0,1,2,.... Then the family F’ formed
by all sequences §; will also satisfy the conditions of theorem 3. For

1 1 1 ‘
D (m,S;) = = —— =
(m j) m<n2£+j nk‘|“] m<z;1k ﬂlc+] m-j<nps=m nk+] -
< 14l v i=0mS+¥ms)
m<ny Nk m n.<m
and
1 1
No— < .. — .
Vi S)=—- 2 1< L =Tms)

Remark 2. Let the family F again satisfy the conditions of theorem 3..

Now replace every sequence S == {ns};=1,... €7 by the set of sequences
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!Slj = {ntezs, j=1,2,.... Then the family F” formed by all sequencesSj
will again satisfy the conditions of theorem 3. For clearly
D(m, S P(m, S), ¥(m, S} ¥P(m,S).
From theorem 3 a similar result will be derived for the interval [a, b],
a= 0.
Theorem 4. Let S denote a sequence of integers {ni} satisfying the
conditions

1
O <np<l...<me< e,y 2 — L,

nE>0 1k
Let F be a family of sequences S satisfying the conditions that

Om, S)= 3 = and ¥m S=1 3 1
am<np Nk m np<m
tend to zero as m — o uniformly for S € F. Let 0 <e<Cb. Then there
exists an integer my(e, F) such that m > my(e, F) implies
L b. Lb.  max |x™— 3 ag x™| = (b—e)™
SEF Lag agxsblx LZ’ e x| = (b—)
Snot3m |ngi=§

There is no restriction in taking b = 1. (Substitution x = bx’.) Further
let @ > 0. Finally, let 1 —¢>>a. Now if there were no integer mgy(e, F)
satisfying the above condition then there would be a sequence of integers
mr —> @ (k— o) and a corresponding sequence of linear aggregates

(3.1) by (x):Zbij”kf,
J

mi not in Sg== {nk;};=1,2.., St € F, such that
(3.2) max | x™k— Py (x)| < (1—e)™k,

a=sx=:1

Now let || £, || fII', || f || denote the maximum of |f| on [a, 1], [0, a]
and [0, 1] respectively. Let 0 <6 <C 1. Then it will be possible to choose
ki == k{(0) so large that

(3.3) | 2™ — x ™k Py (x) || > 627, (k >k, (6)).

This is a consequence of theorem 3, remark 1. For the set F{ of all
sequences Sy == {nt; + Mi}j=1,,...is a sub-set of the set I’ considered
“there. Taking 62 = 1 —¢ in (3.3) and comparing with (3.2) one sees that

|| x2mk—xmi Py () || > (1—e)™k, (f > ky).

Hence '
=P ()| > §(1—e)fay™ (k> k)

As (1—eg)/a>1, | Pt ||’ must increase exponentially:

(3.4) qu:’:HPkHN >ka, (k>k2)

where ¢ > 1.

@ 50
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Now let ry be so large that

Z {a(2—a)}y" <4

re<tr
and let ng be such that
(3.5) Lb. |lxmi— 3 ag: x| > (2—a)~ ks
Jaki| 1]
| ki { =Sk

for all k and j for which nr; > nq. This is possible by theorem 3, remark 2,
By (3.5), if byj 5£ 0, nej > ng,

il

— (x> (2—a) e,
bk]

Hence
[biy| < Ak (2—a)ki (nkj > no).
It follows that if py == max (rq, n9),

X bk,x”kfi|'<Ak 2 fa (2—a)}” < Ax.

Po<flfj

Hence if ks is so large that for k> kg || Pe||” = || Pt |/, then k> ky
must imply that

Zlbm Z| 2 by x|l >4 A

ngj=no Ny j=Po

But then there exists, to every k> ks, a j(k) such that

(3. 6) - i, j k) <= Po
Ag
br juy| > = -,
(3.7) | bk 50l > 57017
By (3.4) it is then possible to take k4 so large that k> k4 implies
(3.8) |br, jy| > 1.

Now for k > k; 5,54 consider the expression
(3.9 | br, j g~ | ac?me—x ik Py (o) | =[xk -+ Qe (ox) .

Here At = ny ji+ me, and Qi(x) represents a linear aggregate of x2m
and xmitmi, i =~ j(k). If k is sufficiently large, the expression (3.9) will

be less than a™k, where 0<Ca<C 1, everywhere on [0,1]. This follows

from (3.2) and (3.8) for [a, 1]. For [0, a], by (3.8) and (3.7),
| b, o |71 | x2k—ac ™k Py (x) | << @™k -+ 2 (po + 1) a™k
Thus

(3.10) ||tk 4 Qi (x) ][/ ==|| x2,—bF ; (ky 2™k ~+ Ry (x) || < amk, (k> ks)-

(3.13) 5 L

755

The inequalities (3.10), (3.7) and (3.4) imply
e+ R () [ < pme, (k> ko)
where 0 << f < 1. Finally, by (3.6),
(.11) |+ Re ()| <yt (k> k)
0 <<y <<1. Here Ri(x) contains only powers x™i*mk, i=£j(k). As the

family of sequences {nu: + mk}i¢j(,c) (k=1,2,...) satisfies the conditions -

of theorem 3 the inequality (3.11) must be false. This completes the proof
of theorem 4.
Corollary 1. (CLARKSON and ErRDOS) The set

(3.12) § o }
of Cla, b], where 0 = ny <<ny<...<nr<...—> o, is closed in Cla, b]
(0 <<a<<b) if and only if the series

1

>0 Nk
diverges.

Proof. 1If the series (3.13) diverges the set (3.12) is closed in Cy[0, 5]
by the theorem of MUNTZ and SzAsz. Here Cy[0, b] denotes the space
of all continucus functions of x, 0 = x = b, vanishing at x = 0. The set
(3.12) is then a fortiori closed in Cfa, 5], a> 0.

If the series (3.13) converges on the other hand, then it follows from
theorem 4 by taking F = S = {n:} that it is impossible to approximate
uniformly on [a, b] to any function x™, m not in S, as soon as m > my.

However, this is true for m = m, also: '

Corollary 2. I} m does not belong to the increasing sequence of non-
negative integers {nz} satisfying

1
2 <0
)“lk>0 134 .
then it is impossible to approxzmate uniformly to x™ on [a, b] by linear
aggregates
> ag x"k,
Proof, Take in theorem 4
F= {Sj}jzo,x,z,..., Sj ::{nk ‘f‘j}k:lﬂ,..n
It follows that for m -+ j>mg, m not in {ni},

Lb. max [x™"—x/ Sagxmk|Z= (b—e)™H.
jag) asx=b

Hence, taking j = mg -+ 1,

L b. max lxm_zak Xk | ; (b__e)m-l—mgﬂ b—me1
jagla=x=b

whenever m is not an ne.
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The following corollary will also be used in § 4.
Corollary 3. Let {ni} be an increasing sequence of non-negative
integers satisfying the condition
1
S < 0.
ng>0 Nk
Let 0 < s << b, Then there exists an integer ko = ko(e) such that k >k,
implies ‘
Lb. max |x"%— 3 ajx"i| == (b—e)".
aji as=x=Db j.—,tk

Proof. See theorem 4, and theorem 3, remark 2,

§ 4. The principal theorem. The above corollaries 2, 3 yield the
analogue for [a, b] of the result of CLARKSON, ERDOS and L. SCHWARTZ

for [0, 1] mentioned in § 1.
Theorem 5. Let the increasing sequence of non-negative integers {n}
satisfy the condition

1
>t cw.
ng>0 ng

Let the sequence of linear aggregates
pj(x):%'ajkxnk (Gj=1,2,...)

converge uniformly to f(x) on a=x=b, a=0, as j - oo, Then f(x)
can be extended to be analytic in the interior of the circle |x|<<b. The
power series for this analytic extension is

fe.s]
2 Ay x"k,
k=1

where

Ar= lim ajk (k:l.z,...).

Jre
The proof is essentially the same as that given by CLARKSON and ErRDOS
for the interval [0, 1]. It follows here for the sake of completeness, however.
(i) ajx tends to a limit as j — 0. For to any ¢ > 0 there exists a jo such
that j, j/ > jo implies

e > max | Py (x)—Pj (x)| =|aje—ay| max | xm—Q (),
a=<x= a=x=

where Q(x) is a linear aggregate of powers x7:, i =% k. Now by theorem 4,

corollary 2,

agxaéb| xMe—Q (x)| = ¢ > 0.
=X

Hence if j, i > jo,

\3]](‘"3]"[{‘ < 8c;1.
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Let

4. 1) lim aj= Ax (k=1,2,...).

jrew
(ii) The next step is to find a proper estimate for the Ar, Let ¢ >0,
Let Qjx(x) be defined by the equation

Pj(x)=ajk{x™ + Qji (x)}
whenever a;r 7ﬁ 0. By theorem 4, corollary 3,

max |x™ + Qi (x)]| = (b—e)"

aA=x=<b

for k> ko (e),j = 1,2, .... The P;(x) will be uniformly bounded:
Pix)| <M (a<<a<<b:;j=12..)

Hence for all j

4.2) M > |aji| (b—e), (k> ko)
and by (4.1},
4. 3) PAk| < M (b—e) M, (k> ko).

The power series 2 Axrx™ will thus at least converge for |x|<Cb. Let
the sum of the series be g(x).

(iii) It remains to be proved that f{x) = g(x) on a =< x < b. This will
follow from the relation

lim |Pj(x)—g (x)|=0, (a << x < b).

j=rew

To prove it, let x be fixed on a = x < b.

Py (@)= ()| =1 T Acwrmi— 3 apxme| <
(4. 4) N ]
< I Ax—aji| xm + 3 (| Ax| +|ajr]) x.
1 N+1

Now first choose N so large that

A<M <_b_%_x>—nk ;

laskl,
for k> N. (See (4.2) and (4.3).) Next let N increase until the last term
of (4.4) is sufficiently small. Finally take j so large that the first term of
the third member of (4.4) is also small enough.
A combination of theorems 5 and 2 now yields the principal theorem.
Theorem 6. The set of continuous [unctions of x, a=<=x=b, a= 0.
spanned by the sequence

e (2 J-_<oo)i

nE>0 ng
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is identical with the set of all power series

[+o}

2 ar x'k
k=1

convergent on a = x < b for which

@
lim 2 apx
xrb k=1
exists,
Another corollary to theorem 5 is
Theorem 7. Let the increasing sequence of non-negative integers {ny)}
satisfy the condition
L ow.

nE>0 Nk
Let the sequence of linear aggregates

pj(x):’Zajkx"k (j=12..)
2

converge uniformly to [(x) on a<=x=0b, a= 0. Then the sequence
{P;(x)} is uniformly convergent in every circle x| =b-—26, 6 >0. Its
limit is the analytic extension of f(x).

In particular, let {P;(x)} converge uniformly to zero on a =x =),
a = 0. Then it will do so in every circle |x| =b—6, § > 0.

Proof. See (44).
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Mathematics. Inequalities for the coefficients of trigonometric poly-
nomials. II. By R. P. Boas Jr. (Communicated by Prof. J. G. vaN
DER CORPUT.)

{(Communicated at the meeting of May 31, 1947.)

n
1. Let F(t) = 2 aj e!/t be a real trigonometric polynomial. The

-n
inequality

2n
2ol +3 larl =t [1F01de E>4n ()
0

was given by VAN DER CORPUT and VISSER 1). The constant % in (1) was

improved 2) to (1 -+472)/n = .234.... Here I shall obtain the best
possible result

. 2%
|ao|+§xak|§cflﬁ<r>|dt, k>fn . .. (@)
0
with
C=1/Qn—48), . . . . . . . . (3
sin(3+~§~5:%n,;0<§<n/2.. B 1]

- We have .2136 << C < .2137.

More generally, for any positive y,
; ) ‘ 2n
aol+27[al =C, [1F@Ids k>in ...
. \

where Cy is given by (3) and ¢ is the smallest positive root of sin ¢ =

= % y(n—20); equality occurs in (5) for some F(f)5%0. For example,’

Cy = -338; the value given before 2) was (1 + J2)/n = .384 .... Thus

" we have

27
|a0[~l—2|akl<2.126~§1~nj IF@|de,  k>1in F(=£0,
(V]
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