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TABEL 1.
Conc. KCI G 2.107Y 107! 1072 1073 107* 105
Aantal metingen 5 30 30 30 30 30
E gemiddeld 416.0  |412.47 | —7.87 [|—29.37 |~44.27 |_51.43
V berekend - 0.802 | 0.356 | 0.151| 0.0832] 0.0627

Het geringe aantal metingen bij de hoogste concentraties is het gevolg
van de onbetrouwbaarheid dezer metingen, vermoedelijk ten gevolge van
beschadiging van de wortel door de hoge KCI concentratie.

Door lineaire vereffening van (2) werd berekend:

Kr=12,36.108
A = 0.0653

Met deze waarden werden vervolgens de waarden van V berekend met
(1), en vervolgens de potentialen volgens:

E=05771og V.

In tabel 2 zijn de aldus berekende potentialen verzameld met de bij de
verschillende KCl-concentraties gemeten waarden,

TABEL 2,
Conc. KC1Cy | >10° 2.107Y 107! 1072 1073 1074 1072
E gev. - |416.0  |412.47 |~ 7.87 |—29.37 |—44.27 |-51.43
E ber. 4+18.0 |+15.8 |+13.7 |- 5.7 |—32.6 |—47.7 |—51.0
Samenvatting.

Volgens een reeds eerder gegeven theorie blijkt, dat Sinapis alba ge-
karakteriseerd wordt door

K’ = 2,36 . 103 en A = 0.0653.
Laboratorium voor Physische-~

en Kolloidchemie.
Wageningen, Maart-April 1947,

Applied Mechanics. — On the plastic stability of thin plates and shells. By
P. P. Byyraarp. (Communicated by Prof. . A, VENING MEINESZ.)

(Communicated at the meeting of May 31, 1947.)

About nine years ago we published in these Proceedings our theory on
the plastic stability of thin plates 1), Some time ago KOLLBRUNNER com-~
municated very extensive and systematic tests on the same subject 2). It
appeared that these tests confirm our theory completely.

The tests were effected with thin plates of avional, an aluminium alloy,
whilst the stress~strain graph of the material was determined by compression
of short plates.

We will compare here the tests as given by KOLLBRUNNER in his figures
33, 34 and 35 with the results of our theory. All these tests relate to plates,
compressed in longitudinal direction and supported at the unloaded sides.

Fig. 33 refers to plates of which the unloaded sides are simply supported.
According to our theory 3) the buckling force of such plates is, if the entire
plate deforms plastically

hoy=Q2m2EI/b))(YAD+B+2F). . . . . (1)

The modulus of elasticity E of avional is 715000 kg/cm2. The thickness
h and the breadth b of the plates were 0,2 cm and 6,2 cm respectively, so
that 2 EI/b2 = a2 ER3/12 b2 = 122,8 kg/cm. Furthermore, as in this case
the second principal stress is zero, so that f = 05/0; = 0 and %2 = 2 —
—f -+ 1==1, we have4)

A = ylpy, B = @alpy, D = @gpy, F = m|{(2m + 2 + 3em),
in which
pr=m?{E + (4 + 3e) tan ¢}
g=2m{mE 4 2 tan ¢)
@3 =4m?(E + tan @)
ps=mBm—4+3em)E+{4(m*—1)+3em?ltangp

(2)

in which m = 1/v == 10/3, value » being P0issON"s ratio, e == F ¢p/o and
tan @ = do/dsp, the latter two values having to be measured from the
stress-strain graph with pure compression at a stress ¢ being equal to the

) BIJLAARD, Proc. Kon, Akad. v, Wetensch., Amsterdam, Nrs. 5 and.7 (1938).
)  KOLLBRUNNER, Mitt. a. d. Institut f. Baustatik, Ziirich, Nr. 17 (1946).

}  BIJLAARD, loc. cit. eg, (53).

) BIJLAARD, loc. cit. egs, (22)—{(24).
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buckling stress ox. The plastic strain ¢, is equal to the total strain ¢ minus

the elastic strain s = ¢/E, so that

. _do__ do 1 __ EE; 3
an?7_dgp_d8—a’se~1/E¢——~1/E_—E——Et R

E: = do/ds being called the tangent modulus,

With a stress ox = 2200 kg/cm? we find from the stress-strain graph
of avional E+ = 350000 kg/cm? = 0,49 E, e = 0,065, tan ¢ = 0,96 E, by
which eqs. (2) yield A == 0,655, B =041, D = 1,02, F = 0,36, so that it
follows from eq. (1)

0x = 3,886 72 EI/b2h — 2385 kg/cm?

being more than the stress 2200 kg/cm? we started from.

Assuming now a stress ox = 2300 kg/cm? we find in the same way
E+ = 300000 kg/cm? = 042 E, e = 0,11, tan ¢ = 0,725 E, A = 0,59,
B =041, D = 0,985, F = 0,34, ox == 2276 kg/cm2. »

Interpolating linearly between assumed as well as between resulting
values ox we finally find a buckling stress ox == 2288 kg/cm2.

With these tests the eccentricity of the load was certainly such, that
with buckling practically no discharge occurred, so that we will have to
assume that the plates showed no elastic region. Hence. the buckling stress
is indeed determined by eq. (1) only, in the same way as also in practice,
in connection with small eccentricities, the critical stress with a plate,
assumed to be plastic all over, is determinant for the strength of the plate,
as we stated already previously 5).

According to our theory ) the plate should buckle in waves with a half
wave length a/p = (A/D)tb. With a buckling stress 2288 kg/cm? we
find A = 0,60 and D == 0,99, so that the half wave length is 0,882b.
This wave length will occur if the plate is free in selecting its most
favourable wave length, i.e. if it is infinitely long. With finite length and
if the loaded edges of the plate are simply supported, the half wave length
will have to be an integer part of the total length, so that it will deviate
to both sides from the most favourable wave length. With the tests,
however, the loaded edges were not simply supported, but somewhat
clamped, so that the number of half waves will have been the same as with
a plate with simply supported extremities, that may be assumed to be about
one third of a half wave length shorter. Hence the half wave length,
calculated by dividing the total length a of the plates by the number of
half waves p, will give a somewhat too high value for the real wave length,
whilst moreover these lengths will deviate to both sides from this too high
value. The longer the plates, however, the better the optimum wave length
will be approximated. According to fig. 33 of KOLLBRUNNER's publication

5) BIJLAARD, Publications Int. Association for Bridge and Structural Engineering.
Zirich, Vol. 6 (1940/1941), p. 54, footnote 10,
6) BIJLAARD, lit, footnote 1, p. 739.
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we give in the following table I the lengths a of the plates and the calculated
half wave lengths a/p, the numbers in brackets indicating the number
of tests.

TABLE L
a 320 4,85 b 6,45 b 815
alp 1,07 5 (3) 0,97 b(3) 0,92 b(3) 0,90 b(3)

It is clear that with longer plates the half wave length converges indeed
towards value 0,882 b according to our theory. That for example value
1,07 b, with a plate length 3,20, is also in accordance with our theory,

‘may be seen as follows. With a free supported plate length of 3 times

0,882b = 2,646 b we could expect a buckling in 3 half waves of the
optimum wave length 0,882 b, yielding the minimum buckling stress. But
from eq. (52), given in our paper mentioned in footnote 1, it may be
computed easily, that the same number of waves will occur with freely
supported plate lengths between 0,8826 } 6 —=2,116b and 0,882 b

Y12 == 3,06 b. According to our statement above here, the freely supported
plate length of the plate with a = 3,2 b will be somewhat less than 3,0 b,
so that according to our theory it should indeed buckle in 3 waves, yielding
the calculated wave length a/p = 3,2 b/3 = 1,07 b, in accordance with
the tests.

The buckling stresses of the 12 testplates vary between 2040 and
2190 kg/cm?, except one, that yields the low value 1950 kg/cm2. Hence,
disregarding the latter value, the lowest buckling stress 2040 kg/cm? is
only 11 % below the theoretical value 2288 kg/cm? according to our theory,
As this discrepancy is not more than the percentage the experimental values
in the elastic domain remain underneath the theoretical values, owing to
unavoidable inaccuracies, and the theoretical values in the elastic domain

‘being undoubtedly right, we may conclude also to the exactness of our

buckling stresses for the plastic domain.

We now consider the buckling of plates of which the unloaded sides are
fixed, the test results of which are given in KOLLBRUNNER's fig. 34. The
plates have a thickness 0,2 cm and a breadth b = 4,4 cm. According to our
theory the buckling condition for these plates in the plastic domain is7)

a, tanh (a; b[2) + oy tan (0, b/2)=0 . . . . . (4

in which

_B+42F ,, (B+2Ff—AD
G=="5— H= =  K=1D\ 5
h oy
plgy 1=l

~7)  BIJLAARD, lit, footnote 5, p. 57.
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After assuming ox to be 3100 and 3150 kg/cm?2, it appears that its real
value is about 3140 kg/cm?2, With ox — 3150 kg/cm2 we found, in the
same way as before: Er = 0,04 E, e = 1,49, tan ¢ = E/24, A = 0,157,
B =10,238 D — 0,485, F — 0,141, and by using egs. (5): G = 1,07,
H —=0,825, K =206, ¢2=1,32. Assuming now 1= 1,55 we obtain
ay = 2,435, a; = 0,89, so that eq. (4) yields

aq tanh (aq 6/2) -+ as tan (ag b/2) == 0,27

instead of zero,

Assuming now ox = 3140 kg/cm2 we find G = 1,072, H = 0,827,
K = 2,01, ¢2 = 1,315, yielding, with 1= 1,55, values ay = 2,43 and
ag == 0,872, by which eq. (4) yields

aq tanh (ay 6/2) + ay tan (as b/2) = 0,02

so that ox is round 3140 kg/cm? with 4 == mp/a = 1,55 and a half wave
length a/p = 7/1,55 = 2,02 cm = 0,46 b.

Calculating in the same way the buckling stresses with other values 1 it
appeared that with 41— 1,55 the critical stress is about a minimum. In
the following table the plate lengths a and the half wave lengths a/p
according to the tests are given.

TABLE 1L

a ‘ 455 b 6,80 b 9,10 b 11,40 &

0,495 b(3) | 052 b(2) | 0535b(1)| 0475 b(3)
0,485 b(1) | 0,505 b (2)

afp

It is clear that with longer plates the half wave length converges indeed
to our theoretical value 0,46 b. The latter plate, of which the free supported
length may be assumed as 11,20 b, buckled in 24 half waves, whilst with
the theoretical buckling length 0,46 b this number of waves should occur
between freely supported plate lengths of about 23,5 and 24,5 times 0,46 b,
or 10,81 b and 11,27 b, so that the 24 half waves are indeed in accordance
with our theory.

One extraordinary low value, being 2580 kg/cm?2, excepted, the buckling
stresses for the other 11 tests were between 2830 and 3115 kg/cm?2, the
lowest value 2830 kg/cm? being only 10 % underneath our theoretical value.

Finally considering fig. 35, referring to plates that are simply supported
at one unloaded side and fixed at the other, with A=—0,2cm and b == 5,3 ¢cm,
the buckling condition is given by 7)

ajcotha;b—aycota,b=0 . . . . . . (6)
whilst a; and ay follow from egs. (5).

In the same way as before we find here that the buckling stress o
acquires a minimum value with about 1 = 0,865, hence with a half wave

length a/p = n/4 == 3,63 cru = 0,685 b, whilst o = 2882 kg/cm2.
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The following table gives the experimental values a/p, converging again
in an excellent way to our theoretical value 0,685 5. The buckling stresses
of all thirteen tests are between 2660 and 2850 kg/cm?, the lowest value
being only 8 % underneath our theoretical value.

TABLE IIL

a 38 b 5,65 b 7,55 b 9,45 b

alp 0,635 b(3) | 0,705 b(3) | 0755 b(1) | 0,727 b(1)
0,760 b (1) 0,685 b(2) | 0,675 b{2)

Hence we may conclude, that KOLLBRUNNER's tests have proved the
applicability of our theory, as the number of waves shows, that the
anisotropic behaviour of the material is exactly such as predicted by our
theory, whilst the discrepancies of the buckling stresses are not more than
in the elastic domain,

Under these circumstances it may be of interest to give here a short
indication of the application of our theory to the buckling of shells.
Our fundamental equations are those giving the relation between the
excess stresses and the excess strains with buckling, being 8)
oy =FE (A& + Bey) _
oy=EBe-+De)y . . . . . . . (7)
Ty = EFyy
values A, B, D and F being given by egs. (22) and (23) of our publication
mentioned in footnote 1.
Using the same notations as TIMOSHENKO 9), except our primes,

indicating infinitely small stresses and strains occurring with buckling,
we have

Ex TR e —x Z
gy==er—yy 2 B ()
?;cy = 7, —“27(;;) z
in which &}, ¢ and )’ are the excess strains of the middle surface in X- and
Y-directions, 7y and g, are the changes of curvature and g4, is the twist,
whilst z is the distance from the middle surface. Substituting eqs, (8) in
eqs. {7) we get
ox=E{Ae+ Bs/z——z(Ax;c—%Bx’y)}
oy=E {Be -+ Dey—z(Byx+ D))}
Ty = EF () —25ky 2)

©)

8) BULAARD, lit. footnote 1, egs, (21}—(24).
9} TIMOSHENKO, Theory of elastic stability, Chapters VIII and IX
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Hence we find 10)
+hj2 ’ ,
Ni= | o'xdz::Eh(Ael—{—Bsz)
~hp2

n2 1 ’
Nj= | dydz=Eh(Bei+De)
—hj2

s Fhy'
N;y:Nﬁx:Wg/zrxde:E 4 L. (0)

+hf2

M= | dyzdz=—EI(Axx+B1)
2

-~

hz ’ '
MJ;:+] Olyde:—*—EI(BXx“{"DXy)
—hp2 T a2

Myy=—Myx= —_{Izr;y 2dz==2EIF xxy
¢ the buckling of a cylindrical shell under
hox per unit breadth. If buckling
the equilibrium of an element
if compressive stresses

As an example we will conside
the action of uniform axial pressure
symmetrical to the axis of the cylinde‘r occurs, t}.l
hdx of a strip OP of unit width (fig. 1) requires,

Fig. 1.

are denoted as positive and denot
Z-~direction by w

dQs g, d?w Ny_o ... (1)

{ue Q. = dM/dx. Owing to impe .
e ek ma; be equated to zero, sO that egs. (10) vield

M,=—EIA yy=—EIA d?w/d x?

. !
section, value ¥y

i in i 3 o p. 421, 422.
10) Cf. same values in clastic domain in TIMOSHENKO, lLe p

ing displacements with buckling in

diment of distortion of the cross
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and, as & = — w/a
Ny=Eh (A& —Buwl/a).

As, however, hox does not increase with buckling, N must be zero, yielding
& = (B/A) (w/a), by which we obtain

Ny =Eh (B*|A—D)wl/a.

Substitution of these values in eq. (11) yields, as in (11) N} is a com~
pression, the differential equation

L diw & w B2
dx?

E]A_J;cq_,}_hgx—l—- —-~—~D)Ehw/a2: N (V)

With w = wy sin pra/l eq. (12) yields, after ranging
hoy=EIA p*n?[? + (D —B?|A)(Eh[a?) Plp*n2. . . (13)

With sufficiently long cylinders the wave length can establish itself in
such a way as to make hox a2 minimum. Differentiation shows that then

prn__{* AD—B" h

N AT a?]
insertion of which in eq. (13) yields the critical stress

EhR1/AD—B?
ox:_a“]/——w»éﬁ—- e e o (19

whilst the length of the half waves in X-direction is

! AT
;:TE [/WAB‘ZA) Vah. e e e e (15)

In the elastic domain e =— 0 and tan ¢ = <o, so that egs. (2), which
also apply to this case, yield A = D == m?2/(m2—1) and B = m/(m2?—1),
by which egs. (14) and (15) transform in

LT W VT

== Vim—1 ® 5= 1

in accordance with the values obtained directly for this case 11),
Considering the more general case of buckling of a cylindrical shell under

axial compression and denoting the displacements with buckling in X-, Y~
and Z-direction by u, v and w respectively, our equations (10) yield, after
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‘oint i 12
expression of values &, 8,7, Zx Xy and yiy in terms of the displacements 12),

: 0u , p(0v w

Ny = Eh% 6u+ <56'63*“L§>%

ou , 0v
ny_-Nyx.dEFh( 55+ﬁ> »
Nw B [dv  w )
wa‘ElgAaxz T a(9+a¢92>§

FPw dv , w
M:-—El% +7<a‘5+5§2‘>g

' 1 >>>>>

value 0 being indicated in fig. 1.
The conditions of equilibrium are in our notations and neglecting second

order terms 18)

ONx , ONyx

2% T 06 0
ON, , 3N Pv  AMyy, OM, . .oar
’5-62+a_a—3;§l-‘ahox6_~x'2'lﬁ Bx da& =0 ( )

L EML PM @M PM
—ahoe 5 TN Fa 0 T o0 Ta0er  ox08

+B—}—F v B ow lj;@i%:()
dx? a ox0f aox 06
6 v aw

v | O w 0?0 _aho 0% _
“[g(“g l)’ka(BJFZF)B?SE*“zaFaxZ Ex o 018

592+693
h Dov D a v Do

: dw | Ddw]|_
33A2T;§ +28(B+2F) ‘*"f‘aﬁéi +“; aféq“ =0

in which a = h2/12 a2,

12) TIMOSHENKO, loc. cit. p. 434,
18} Cf. TIMOSHENKO, loc. cit. egs (c), p- 454
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Assuming

u==uycosnbcospmx/l
v =1y, sinn @ sin prx|l T 1)

w=w,cosnfsinpax|l

egs. (18) yield

(A2 + Fn?)uy— (B+F)nlvy+ Blwy=0
B F) ntuy - [Dri(l+a)+
FR(142a)—0x2/E]lvg—n[D(1+an?) 4+ (B+42F)ai?]w,=0 ) (20)

Bluy—n[D(l4ant)+(B+44F)al?v,+
[Aait+2(B+2F)an?22+D(1 +ant)—ox 2/[E]l wy=10

in which 1 = pra/l.

Hence the critical stress ox follows by equating the determinant of these
equations to zero. Further computations may be effected along the same
lines as in the elastic domain,

In order to check egs. (20) we assume again buckling symmetrical to
the axis of the cylinder, so that in eqs. (19) we have to equal n to zero,
so that also v becomes zero, Hence the second equation (20) vanishes and
egs. (20) transform in

A;LUO"*I"BWQ:O

21
B/,{UO‘}“(AG)\.‘t"}“‘D”’OXZ.z/E)wO:O ( )
yielding ox = E [Acl2 + (AD — B2) /AX2]
or hox = EIAp2n2j12 + (D — B2/A) (Ehla?)12]p2n2

in accordance with eq. (13).

As a matter of fact thick tubes, buckling in the plastic domain, do this
usually in a symmetrical way, whilst with thin tubes buckling which is
non-symmetrical with respect to the axis usually occurs 14), This behaviour
is in good accordance with our theory, because non-symmetrical buckling
causes twisting stresses, against which, if e is small, as with steel, the
resistance is only slightly diminished according to our theory. We can proof
this directly with our egs. (20).

For the elastic domain TIMOSHENKO proofs, that, if 12 is a large number,
the critical stress with non~-symmetrical buckling is equal to that with
symmetrical deformation 15), Taking into account the same terms as he

14} TIMOSHENKO, loc, cit. p. 443,
18)  TIMOSHENKO, loc, cit. p. 456.
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does, we find for the plastic domain, by equating the determinant of egs.
(20) to zero, the following equation

(A2 Fn?) (F12 + Dn?) — (B -- F)? n? 2] 12 oy |E =
(AD—BY) Fit 1+ » ,
a[AN+2(B-+2F)n222 4+ Dn®] [(A 22+ Fn?) (Fi2 - D n?)—(B + F):n21?]

or, after some transformation

% (AD—B) ¥ AR D ABHIF)]
E Ai+Dn*+-[(AD~B?)/F-2B|n%? A2 )
In the elastic domain we have16) A — D =— m2/(m2 — 1),

=m/(m2—1), F = m/2(m + 1), so that (AD — B2)/F — 2B =
=2 (B + 2F) == 2m2/{(m2 - 1), by which the denominator of the first
fraction of the second member of eq. (22) is equal to the term in brackets
of the numerator of the second fraction, If in the plastic domain this would
be so too, we could write eq, {(22) as follows

ox]E=(AD—B¥w +aly . . . . . . (23)

value 1 being a function of values 4 and n, that determine the number of
waves in axial and circumferential direction. In order to make o, a minimum,
we then would have the condition

in accordance with the buckling stress given by eq. (14) for symmetrical
buckling. In the plastic domain, however, considering for example buckling
at the yield stress with mild steel, value (AD — B2)/F — 2B will be much
less than value 2(B -+ 2F). In this case we have1?) A = 0,421, B = 0,426,
D =0,938, F = 0,322, by which (AD —B2)/F — 2B =— —0,19, whilst
2(B + 2F) = 2,14. Hence the first fraction of the second member of eq.
(22) has a much higher value than with our assumption that gave eq. (23).
Hence we may conclude that with higher values 12 in the plastic domain
the critical stress with non~symmetrical buckling is higher than with
symmetrical buckling, which may explain why short and thick tubes usually
buckle symmetrically. In another paper we will consider these questions
more in detail. '

As follows also from the good agreement, obtained in this way with the

tests of KOLLBRUNNER, with a given stress-strain graph of the material,
16)  BIJLAARD, lit. footnote 1, p. 739,
17)  BIJLAARD, lit. footncte 1, p. 736,

775

the buckling stresses of thin plates will have to be computed under the
assumption that the entire plate deforms plastically. If, however, not the
stress-strain graph is given, but for example the relation between slenderness
ratio and buckling stress of columns, it evidently makes little difference in
the resulting buckling stresses whether both columns and plates are assumed
to show elastic regions or not, the latter way being, however, the most
simple one. Although with shells conditions are in several respects different
from those with plates, we think that here too, with a given stress-strain
graph, the most logical way is to assume that no elastic regions occur with
buckling.





