
Cone. KCI Cl 
Aantal metingen 
E gemiddeld 
V berekend 

2.10-1 

5 
+16.0 
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10-1 

30 
+12.47 

0.802 

10-2 

30 
-7.87 

0.356 

10-3 

30 
-29.37 

0.151 

10-4 10-5 

30 30 
-44.27 -51.43 

0.0832 0.0627 

Het geringe aantal metingen bij de hoogste ,concentraties is het gevolg 
van de onbetrouwbaarheid dezer metingen, vermoedelijk ten gevolge van 
beschadiging van de wortel door de hoge KCI concentratie. 

Door lineaire vereffening van (2) werd berekend: 

K' = 2,36. 103 

A = 0.0653 

Met deze waarden werden vervolgens de waarden van V berekend met 
(1), en vervolgens de potentialen volgens: 

E = 0.577 log V. 

In tabel 2 zijn de aldus berekende potentialen verzameld met de bij de 
verschillende KCl~concentraties gemeten waarden. 

TABEL 2. 

Cone. KCI Cl >10° 2.10- 1 10-1 10-2 10-3 10-4 10-5 

E gev. +16.0 +12.47 - 7.87 -29.37 -44.27 ·-51.43 
E ber. +18.0 +15.8 +13.7 - 5.7 -32.6 -47.7 -51.0 

Samenvatting. 

Volgens een reeds eerder gegeven theorie blijkt, dat Sinapis alba ge~ 
karakteriseerd wordt door 

K' = 2,36 . 103 en A = 0.0653. 

Wageningen, Maart-April 1947. 

Laboratorium voor Physische~ 
en Kolloidchemie. 

App1i.ed Mechanks. - On the plastic stability ot thin plates and shells. By 
P. P. BIJLAARD. (Communicated by Prof. F. A. VENINO MEINESZ.) 

(Communicated at the meeting of May 31, 1947.) 

About nine years ago we published in these Proceedings our theory on 
the plastic stability of thin plates 1). Same time ago KOLLBRUNNER com~ 
municated very extensive and systematic tests on the same subject 2). It 
appear,ed that these tests confirm our theory completely. 

The tests wereeHected with thin plates of avional, an aluminium aHoy, 
whilst the stress~strain graph of the material was determined by compression 
of short plates. 

We will compare here the tests as given by KOLLBRUNNER in his figures 
33, 34 and 35 with the results of our theory. All these tests relate to plates, 
compressed in longitudinal direction and supported at the unloaded sides. 

Fig. 33 refers to plates of which the unloaded sides are simply supported. 
According to our theory 3) the buckling force of such plates is, if the entire 
plate deforms plastically 

h ox = (2 Jl2 E 1/ b2
) Cv A t5 + B + 2 F) . (l) 

The modulus of dasticity E of avional is 715000 kg/cm 2• The thickness 
hand the breadth b of the plates were 0,2 cm and 6,2 cm respectively, so 
that Jl2 El/b2 = Jl2 Eh 3 /12 b2 = 122,8 kg/cm. Furthermore, as in this case 
the second principal stress is zero, so that p = (J2/ (JI = 0 and Y)2 = fJ2 -
-p + 1 = 1, we have 4) 

A = CPl!CP4, B = CP2!CP4, D = cP S!CP4 , F =-= m!(2 m + 2 + 3 em), 

in which 

CPI =-= m 2 ! E + (4 + 3e) tan cp! 

q:2 = 2 m (m E + 2 tan cp) 

CP3 = 4 m 2 (E + tan cp) 

cp 4 = m (5 m - -4 + 3 e m) E + 1 4 (m 2 
- 1) + 3 e m2 1 tan cp 

(2) 

1ll which m = I/v = 10/3, value ')J being POlSSON's ratio, e = E ëp!a and 
tan rp = do/dep, the latter two values having to be measured from the 
stress~strain graph with pure compression at a stress a being ,equal to the 

1) B:IJLAAI~D, Proc. Kon. Akad. v. 'VVetensch .. Amsterdam, Nrs. 5 and7 (1938). 
2) KOLLBRUNNER. Mitt. a. d. Institut f. Baustatik, Zürich, Nr. 17 (1946). 
3) B'IJLAARD, loc. cito eq. (53). 
4) BI)LAARD, loc. ei!. cqs. (22)-(24). 
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buckling stress Ox. The plastic strain ê p is equal to the total strain s minus 
the elastic strain Se = o/E, sa that 

do do 1 EEt tan cp - - - -----.~ - - ~~--

- dep - dë-dee - I/Et-lIE - E -Et . (3) 

Et - do/de being called the tangent modulus. 
With a stress Ox = 2200 kg/cm2 we find from the stress~strain graph 

of avional Et = 350000 kg/cm2 = 0,49 E, e = 0,065, tan cp = 0,96 E, by 
which eqs. (2) yield A = 0,655, B =;0,41, D = 1,02, F = 0,36, so that it 
follows from eq. (1) 

Ox = 3,886 n 2 EI/b2h = 2385 kg/cm2 

being more than the stress 2200 kg/cm2 we started from. 
Assuming now a stress Ox = 2300 kg/cm2 we find in the same way 

Et = 300000 kg/em2 = 0,42 E, e = 0,11, tan cp = 0,725 E, A = 0,59, 
B = 0,41, D = 0,985, F = 0,34, Ox = 2276 kg/em2 • 

Interpolating linearly between assumed as weIl as between resulting 
values Ox we finally find a buekling stress Ox = 2288 kg/em2 • 

With these tests the eccentricity of the load was eertainly sueh, that 
with buckling practically no discharge oceurred, so that we will have to 
assume that the plates showed no elastic r,egion. Hence. the buckling stress 
is indeed determined by 'eq. (1) only, in the same way as also in praetice, 
in connection with small eccentricities, the critical stress with aplate, 
assumed to be plastic all over, is det'erminant for the strength of the plate, 
as we stated alr,eady previously 5). 

According to our theory 6) the plate should buekle in waves with a half 
wave length alp = (A/D)!; b. With a buckling stress 2288 kg/cm2 we 
find A = 0,60 and D = 0,99, so that the half wave length is 0,882 b. 
This wave 1ength will occur if the plate is free in selecting its most 
favourable wave length, i.e. if it is infinitely long. With finite length and 
if the loaded edges of the plate are simply supported, the half wav,e length 
will have to be an integer part of the total length, sa that it will deviate 
to both sides from the most favourable wave length. With the tests, 
however, the loaded ·edges were not simply supported, but somewhat 
cIamped, so that th~ nu mb er of half waves will have been the same as with 
a plate with simply supported extremities, that may be assumed to he about 
one third of a half wave Iength shorter. Hence th~ half wav·e length, 
calculated by dividing the total Iength a of the plates by the number of 
half waves p, will give a somewhat too high value for the real wave length, 
whilst moreover these lengths will deviate to bath si des from this toa high 
value. The long er the plates, however, the better the optimum wave length 
will be approximated. According to fig. 33 of KOLLBRUNNER's publication 

5) BII]LAARD, Publications Int. Association for Bridge and Structural Engineering. 
Zürich, Vol. 6 (1940'/1941), p. 54, footnote 10. 

6) BI]LAARD, Iit. footnote 1, p. 739. 
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we give in the following table I the lengths a of the plates and the calculated 
half wave lengths alp, the numbers in brackets indicating the number 
of tests. 

TABLE I. 
-

a 
I 

3,2 b 4,85 b 6,45 b 8,1 b 

a/p 
I 

1.07 b (3) 0,97 b (3) 0,92 b (3) 0,90 b (3) 

It is dear that with longer plates the half wave length converges indeed 
towards value 0,882 b according to our theory. That for example value 
1,07 b, with a plate length 3,2 b, is also in accordance with our theory, 

. may be seen as follows. With a free supported pla1;e Iength of 3 times 
0,882 b = 2,646 b we could expect a buckling in 3 half waves of the 
optimum wave length 0,882 b, yieJding the minimum buckling stress. But 
hom eq. (52), given in our paper mentioned in footnote 1, it may be 
computed easily, that the same numher of waves will occur with freely 

supported plate lengths between 0,882 b (6 = 2,16 band 0,882 b 

VI2 = 3,06 b. According to our statement above here, the freely supported 
plate length of the plate with a = 3,2 b wil! be somewhat Iess than 3,0 b, 
so that according to our theory it should indeed buckle in 3 waves, yielding 
the calculated wave length alp = 3,2 b/3 = 1,07 b, in accordance with 
the tests. 

The huekling stress es of the 12 testplates vary between 2040 and 
2190 kg/cm2 , except one, that yields the low value 1950 kg/cm2• Hence, 
disregarding the latter value, the Iowest buckling stress 2040 kg/cm2 is 
only 11 % be10w thc theoretical value 2288 kg/cm2 according to our theory. 
As this discrepancy is not more than the percentage the experimental values 
in the eIastic domain remain underneath thc theoretical values, owing to 
unavoidable inaccuracies, and thc theoretica! values in the eIastic domain 
being undoubtedly right, we may conclude aIso to the exactness of our 
buckling stress es for the plastic domain. 

We now consider the buckling of plates of which the unloaded sides are 
fixed, the test results of which are given in KOLLBRUNNER's fig. 34. The 
plates have a thickness 0,2 cm and a breadth b = 4,4 cm. According to our 
theory the buckling condition for these plat:es in the plastic domain is 7) 

al tanh (al b12) + a2 tan (a2 b12) = 0 (4) 
in which 

al,2= y-± G).2 +). VHll+ Kcp2 

G - B+2F H - (B+2F)2-AD K= liD 
- D ,- D2 ' (5) 

7) B<IJLAARD, lito footnote 5, p. 57. 
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Af ter assuming Ox to be 3100 and 3150 kg/cm 2 , it appears that its real 
value is about 3140 kg/cm 2• With Ox = 3150 kg/cm 2 we found, in the 
same way as before: Et = 0,04 E, e = 1.49, tan cp = E/24, A = 0,157, 
B = 0,238, D = 0,485, F = 0,141, and by using eqs. (5): G = 1.07, 
H = 0,825, K = 2,06, cp2 = 1,32. Assuming now À = 1,55 we obtain 
al = 2,435, a2 = 0,89, so that 'eq. (4) yields 

al tanh (al b/2) + a2 tan (a2b/2) = 0,27 

instead of zero. 
Assuming now Ox = 3140 kg/cm 2 we find G = 1,072, H = 0,827, 

K = 2,01, cp2 = 1,315, yielding, with À = 1,55, values al = 2,43 and 
a2 = 0,872, by which eq. (4) yieIds 

al tanh (al b/2) + a2 tan (a2 b/2) = 0,02 

so that Ox is round 3140 kg/cm2 with À = n p/a = 1,55 and a half wave 
Iength alp = n/1,55 = 2,02 cm = 0,46 b. 

CaIcuIating in the same way the buckling stresses with other vaIues À it 

appeared that with À = 1,55 the critical stress is about a minimum. In 
the following table the plat~ lengths a and the half wave lengths a/ p 
according to the tests are given. 

TABLE Ir. 

alp 0,495 b (3) 0.52 b (2) 0,535 b (1) 0,475 b (3) 

0,485 b (1) 0,505 b (2) 

lt is dear that with langer pIates the half wave Iength converges indeed 
to our theoretical value 0,46 b. The Jatter pIate, of which the free support:ed 
length may he assumed as 11,20 b, buckled in 24 half wav,es, whilst with 
the theoreticaI buckling length 0,46 b th is number of waves should occur 
between freely supported plate lengths of about 23,5 and 24,5 times 0,46 b, 
or 10,81 band 11,27 b, so that the 24 half waves are indeed in accordance 
with our theory. 

One extraordinary Iow vaIue, being 2580 kg/cm 2 , exüepted, thebuckling 
stress es for the other 11 tests were between 2830 ancl 3115 kg/cm2 , the 
lowest vaIue 2830kg/cm2 being only 10 % underneath our theoretica! value. 

Finally considering fig. 35, referring to pIates that are simply supported 
at one unIoaded side and fix'ed at the other, with h = 0,2 cm and b = 5,3 cm, 
the buckling condition is given by 7) 

al coth al b-a2 cot a 2 b = ° (6) 

whiIst al and a2 follow Erom eqs. (5). 
In the same way as hefore we find here that the btlCkling stress Ox 

acquires a minimum value with about À = 0,865, hence with a half wave 
Iength alp = n/À = 3,63 cm = 0,685' b, whilst Ox = 2882 kg/cm2• 
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The following table gives the experimental values a/ p, converging again 
in an excellent way to our theoreticaI vaIue 0,685 b. The buckling stresses 
of all thirteen tests are between 2660 and 2850 kgf cm2, the Iowest vaIue 
being onIy 8 % underneath our theoretica! value. 

TABLE lIL 

0,760 b (1) 0,685 b (2) 0,675 b (2) 

Hence we may conclude, that KOLLBRUNNER's tests have proved the 
appIicability of our theory, as the number of waves shows, that the 
anisotropic behaviour of thc material is exactly such as predicted by our 
theory, whilst the discrepancies of the buckling stresses are not more than 
in the e1astic domain. 

Under these circumstances it may be of interest to give here a short 
indication of the application of our theory to the buckling of shells. 

Our fundamental equations are those giving the re1ation between the 
excess stresses and the excess strains with buckling, being 8) 

O~ = B (A ë~ + B e~) l 
o~=E(Bé~+Dë~) . 

T~y =EFy~y 

(7) 

va lues A, R D and F heing given by eqs. (22) and (23) of OUl' publication 
mentioned in footnote 1. 

Using the same notations as TIMOSlIENKO 9), except our primes, 
indicating infinitely small stress es and strains occurring with buckling, 
we have 

e~=e;-x~z ( 
e~ = e; -- x~ z 

r~y - y' -2X~y z 

(8) 

in which e'l' e2 and y' are theexcess strains of the middle surface in X~ and 
y ~directions, x~ and X~ are the changes of curvature and X~y is the twist, 
whilst z is the distance from the middIe surface. Substituting eqs. (8) in 
cqs. (7) we get 

O~ = B jAE; + Be;-z (AX~+BX~)1 ( 

~~=E IBe; +D,ê2-z(Bx~+Dx~)1 . 
Txy = EF(y -2Xxy z) 

8) BIJLAAHD, lit. footnote 1, eqs. (21)-(21). 
9) TIMOSHENIW, Theol',y of elastic stahility. Chapters VIII and IX 

(9) 

51/t 
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Hence we find 10) 

+h/2 , B') 
N; = f o~ d z = Eh (A 131 + 132 

-h/2 

+ h/2 ") 
N' = f o~ dz =Eh (BBl +D 13

2 
y -h/2 

+h/2 

N' =N'x= f t~ydz=EFh'Y' xy y -h/2 

+h/2 , B') M; = f o~ zdz = -EI(AXx + Xy 
--h/2 

+h/2 , D') 
M; = f o~ z d z = - EI (B XX + Xy 

-h/2 +h/2 , 

M ' =-M'x=- f t~yzdz=2EIFXxy xy y -/lIl 

. (10) 

1 '11 consider the buckling of a cylindrical shell under 
As an examp e we Wl hoer unit breadth. If buckling 

the ac~~n 1
0:0 ~~~::7s :;~~le ~~~;~~:; occ~r:' the equilibrium of .an element 

symme nca . f' 'dth (fig 1) requires, iE compresslve stresses 
hdx of a strip OP 0 umt Wl· -

, p 
---,--

\ 
I x 

[( 

-------- .. 

y 

Fig. 1. 

d denoting displacements with buckling in 
are denoted as positive an 

Z~direction by w 
dQ~ ho cj2 w __ N ;=0. 
dx - x dx 2 a 

(II} 

V alue Q~ = dM~/ dx. Owing to impediment of distortion. of the cross 
. 1 ' may be equated to zero, so that eqs. (10) vleld 

sectlon, va ue Xy 
M; =-EIA X~= - EIA d 2 wldx

2 

10) Cf. same values in elastic domain in TIMOSHENKO, l.c. p. 421, 422. 
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and, as ê; = - w/a 

N;=Eh (Aê; -Bw/a). 

As, however, hox does not increase with buckling, N~ must be zero, yieIding 
13; = (BIA) (w/a), by which we obtain 

N; = Eh (B2/A-D) w/a. 

Substitution of these values in eq. (11) yields, as in (11) N~ 
pression, the differential equation 

~w ~w (W) 2 EIA dx1-+hox dx2 - X-D Ehwja =0. 

With w - Wo sin p n x/I eq. (12) yields, af ter ranging 

is a com~ 

(12) 

With sufficiently long cylinders the wav'e length can establish itself in 
such a way as to make hox a minimum. Differentiation shows that th en 

insertion of which in eq. (13) yields the critica1 stress 

o _ Eh l/AI?_- B2 
x- a r 3 . (14) 

whilst the Iength of the half waves in X~direction is 

I , 4/----:A2-- ,;--
-p=n V 12(AD-B2) yah. . (15) 

In the elastic domain e = 0 and tan (iJ = CD, so that eqs. (2). which 
a1so apply to this case, yield A = D = m2/ (m 2-1) and B = m/ (m2-1 ), 
by which eqs. (14') and (15) transform in 

~ ~ ,-- m 2 
-- pi __ ~ I 4/-

1
-m

2 
(2ma22 h2

l
) 

Ox = a V3(m2-l) and ,. V 

in accordance with the values obtained directly for this case 11 ) • 

Cons1dering the more genera! case of buckling of a cylindricaI shell under 
axial compression and denoting the displacements with buckling in X~, y­
and Z~direction by u, vand w respectively, ourequations (10) yield, af ter 

11) TIMOSBENKO, loc. cito p. 440-441. 
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expres sion of values e~,ë;,y',X~,Xy and X~y in terms of the displacements 12), 

. (16) 

M; = - EI ~ B ~2X~ + ~ (~~ + ~2a~) ~ 
1 (à V 02 W ) 

M;y=-M;x=2EFI-;; à;+ÖxCJa J 

value () being indicated in fig. 1. 
The conditions of equilibrium are in our notations and neglecting second 

order terms 13) 

a oN; +~~~=O 
Ox oa 

oN;+ ~N;:t_ ha à2v+~~~_~Mr=0 
-ti7j a à x a x àx2 à x a 0 t3 

. (17) 

à2 w , 02 M; 02 M;x ~ N!:x_ Q:!'!!3"~ = 0 
-ahox àx2 +Ny+a àxz- + ö-X-aa + aàt}2 àxo/9 

in which a = h2/12 a2• 

12) TIMOSHBNKO, loc. cito p. 134. 
13) Cf. TIMOSJ-IENKO, loc. cit. eqs (cl, p. 454. 
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eqs. (18) yield 
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u = Uo cos n f:) cos pnx/l ( 

v = Vo sin n f:) sin pnxjl 

W = Wo cos n f:) sin pnxjl 

(A ,1.2 + F n2
) Uo - (B + F) nAVo + B A Wo = 0 

-(B +F) nAuo + [Dn2 (1 +a) + 

. (19) 

F ),.1(1 + 2 a) -ax,PIE] Vo -n [D (1 + an2
) + (B +2F) aA2

] Wo =0 (20) 

Bluo-n [D(1 +an2)+(B+4F) a12]vo + 
[A aÁ4 + 2 (B+ 2F)a n2 12+D(1 + an 4)-ax,FjE] Wo = 0 

in which A = p na/I. 
Hence the critical stress Ox follows by equating the determinant of these 

equations to zero. Further computations may be effected along the same 
lines as in the eIastic domain. 

In order to check eqs. (20) we assume again buckling symmetrical to 
the axis of the cylinder, so that in eqs. (19) we have to equal n ta zero, 
sa that also v becomes zero. Hence the second equation (20) vanishes and 
eqs. (20) transform in 

A A Uo + B Wo = 0 ~ ) . . . . (21 
B 1 Uo + (A a Xi + D-ox A2! E) Wo = 0 

yielding Ox = E [Aal,2 + (AD-B2)/AA2] 

or hox = EIAp2n 2jl2 + (D -B2/A) (Ehja2)l2jp2n 2 

in accordance with eq. (13). 
As a matter of fact thick tubes, buckling in the plastic domain, do th is 

usually in a symmetrical way, whilst with thin tubes buckling which is 
non~symmetrical with respect to the axis usually occurs 14). This behaviour 
is in good accordance with our theory, because nOl1~symmetrical buckling 
causes twisting stresses, against which, jf e is small, as with steel, the 
resistance is only slightly diminished according to our theory. We can proof 
this directly with oureqs. (20). 

For the elastic domain TIl\lOSHENKO proofs, that, if A2 is a large number, 
the criticaI stress with non~symmetrical buckling is equal to that with 
symmetrical deformation 15). Taking into account the same terms as he 

14) TJ,MOSHENKO, loc, cito p, 443. 
15) TIMOSHENKO, loc. cito p, 456. 
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does, we find for the plastic domain, by equating the determinant of eqs. 
(20) to zero, the following equation 

[(A ,i2 + Fn2) (F A2 + D n2) - (B + F)2 n2 A2] A2 ox/E = 
(AD-B2)FA4 + 

a [A,l4+ 2(B+2F) n2A2 -+D n1] [(AV+ Fn 2) (F A2 -+ D n2)-(B +F)2n2 A2] 

or, af ter some transformation 

0x (~D-=-B2) A2 
_______ + a [A,1,4+Dn 4+2(B+2F)n2A2] (22) 

E-AA4+ Dn4+[(AD-B2)jF-2B] n2A2 A2 

In the elastic domain we have 16) A = D = m2/ (m 2 - 1), 
B = m/(m 2 -1), F = m/2(m + 1), so that (AD - B2)/F - 2B = 
= 2 (B + 2F) = 2m2/ (m 2 - 1), by which the denominator of the first 
fraction of the second member of eq. (22) is equal to the term in brackets 
of the numerator of the second fraction. If in the plastic domain this would 
be so toa, we could write eq. (22) as follows 

(23) 

value 1jJ being a function of values J, and n, that determine the number of 
waves in axial and circumferential direction. In order to make Ox a minimum, 
we then would have the condition 

lP = V~D-a--~~ 
by which eq. (23) would yield 

ox=2EVa(AD--B2) or ox=(Ehja)V(AD-B2)/3 

in accordance with the buckling stress given by eq. (14) for symmetrical 
buckling. In the plastic domain, however, considering for example buckling 
at the yield stress with mild steel, value (AD - B2)/F - 2B wiU be mllch 
Iess than value 2(B + 2F). In this case we have 17 ) A = 0,421, B = 0,426, 
D = 0,938, F = 0,322, by which (AD -_B2)/F - 2B = -0,19, whilst 
2 (B + 2F) = 2,14. Hence the first fraction of the second member of eq. 
(22) has a much higher value than with our assumption that gave eq. (23). 
Hence we may conclude that with higher values }.2 in the plastic domain 
the critical stress with non~symmetrical buckling is higher than with 
symmetrical buckling, which may explain why short and thick tubes usually , 
buckle symmetrically. In another paper we will consider these questions 
more in detail. 

As follows also from the good agreement, obtained in th is way with the 
tests of KOLLBRUNNER, wuh a give:n stress~strain graph of the material, 

16) B,JJLAARD, Iit. f'Ootnote 1. p. 739. 
17) BIJLAARD, lit.footnote 1. p. 736. 
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the buckling stresses of thin plate:s will have to be computed under the 
assumption that the entire plate deforms plastically. H, however, not the 
stress~strain graph is given, but for example the relation between slenderness 
ratio and budding stress of columns, it evidently makes little difference in 
the resulting buckling stress es whether both columns and plates are assumed 
to showelastic regions or not, the latter way being, however, the most 
simple one. Although with shells conditions are in several respects different 
from those with plates, we think that here too, with a given stress~strain 
graph, the most logical way is to assume that no elastic regions occur with 

buckling. 




