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In the first place, supposing the integral
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Mathematics, — An outer limit of nonconformalness, for which PICARD's
theorem still holds. By R. J. WILLE. (Communicated by Prof,

‘W. VAN DER WOUDE.) L0
{(Communicated at the meeting of September 27, 1947.) : divergent, we may find, as we shall prove, values
1. Let w = f(z) be a function, which involves a 1 — 1 correspondence ) '
between the finite z-plane and a, possibly multiply sheeted, mapping n<n<..<n<. oo
surface on the w-plane. By projection of this mapping surface on a sphere so, that
with radius 3, touching the w-plane at zero with its southpole and using L (r)
its northpole as centre of projection, we obtain a mapping surface F on 1}1_1':1100 O(r) =0,. N )

the sphere.

PICARD’s theorem on exceptional points does not only hold in case of
conformal mapping, in which infinitesimal circles on F correspond to
infinitesimal circles in the z-plane, but also in case of quasi~conformal

which is in contradiction with (2), so that PICARD’s theorem then holds
In order to prove the existence of the values r» we need a ;econd in~
equality, deduced by AHLFORS:

mapping, in which infinitesimal circles on F correspond to infinitesimal dr .
ellipses in the z-plane, with eccentricities uniformly bounded by e <1, ag- L (z)? " <47 K()dO @, . . .. (5)
L. AHLFORS has shown (Eindeutige Analytische Funktionen, by R. NEvan- where K (r) means:
LINNA, chapter XI1II, § 8). ‘
Let F(r) be th i f flz|=r th triciti — 1
et F(r) be the mapping surface of | z | = r; we suppose the eccentricities K (r) 5 T—e (0 o .

¢(z) of the infinitesimal ellipses, corresponding to the infinitesimal circles
at points on F(r), to have the upper bound e(r) << 1. Then we propose to
show the validity of PICARD’s theorem, when e(r) tends not too rapidly

to 1 (r tending to infinity) and to indicate also the order of rapidity, for K(r) < T_l_.:
which the theorem just holds. The precise theorem, we shall prove, is the Yi—e (r)?
following: inequality. (5) reduces to:
I} the integral
dr 1
[ L2 —— < e ,
- \‘hzﬁ__ezdo. N (4]

f Kk‘f_(ﬂf dr
r

is divergent, there are two exceptional points at the most. On the contrary,
if the integral is convergent, a mapping exists even with a whole circle of

By multiplying both sides of (7) with l/_lo_%zez and integrating from ru to

ru41, values to be defined further on, we obtain:

exceptional points, Fust ,
S wtl
2. In order to give the proof we memorise the following inequality, L2 1 —e? <4, | 49 _ 1 1
deduced by L. AHLFORS: : O r = 0z — Ol Ot (8)
2 Ty ©

RLEO+ Znn=28, . L

3 Jize r:
= As '1™€ - 0 and OF continuous, there exist values 7y, with

where h is a constant, independent of the choice of f(z); a;, as, a; three r
fixed points on the sphere; n(as, r) the number of times F(r) covers ai; .
L(r) and O(r) contourlength and area of F(r).

If there are three exceptional points, we take them as a{, as, as; the

ru =n = Tuyl,
so that

inequality (1) then reduces to: Pt rast
L 1 éﬂf_v)_gz Ji=e? (LI {iZe
———(—5 2 7;71“ . . o . . . . . . (2) O (t',,) —“r——- dt' - ._O..Z ____‘r‘h_h r.
. f‘u' ,-M
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surface called above F. An infinitesimal circle at C, with radius ds, cor-
responds to.an infinitesimal ellipse at A, with major axis a:

a={(1-+4r%ds, (lz]=1)

Introducing this in (8) we f[ind:

%L(m))izgr 47 g % 1 L

O (s At Of(ry)  Oflrus)
o2
ﬂr—e— dr and with minor axis b:
T b=7V1-+ 4rds.
As .Vl_ez dr is supposed to be divergent we may choose the values We find
r 1
ru —> o, so that ]/l_ez_w:w_1+_‘;5,
Tut1
. g hence
llm "“‘_r”“‘ dr = 00, . . . . M M (10) X 2
Uy ® ] *
l’” fﬂl_e‘ Clt' Zj “‘"‘__fl_i““—“:_ ’
r r Y1+ 4r?

From (9) and (10) follows (4).

which integral is convergent.

‘ — 1
E.g. in case of representations, for which the order of Y1—e?is Togr
We now examine a more general mapping, defined by an arbitrary

the integral (3) diverges and so PICARD’s theorem holds.
function f(r), but again depending only on r (see fig. 2).

In the second place we suppose e(r) given in such a way that

converges; then we shall show, that there exists a corresponding mapping

with a whole circle of exceptional points.
Before proving this, we give an example of a mapping for which the

above integral converges (see fig. 1).

\\.
B=fr) A=r

Fig. 2.

An infinitesimal circle at C, with radius ds, corresponds to an infini-
tesimal ellipse at A with one axis ay, along the radius r:

C
AQEN
\\ = - - ay = —}*:—f_‘ ds
'S -~ =g
B_.,f(z) A=2Z and the other axis a:
_1+£
Fig. 1. a; = —7— rds.

P ‘4 4
We project A to C on the sphere (rad. &), with its centre M as centre a2y is major or minor axis according to £ <1or cf > 1, so that:

of projection. Then we reproject C to B on the plane, but now with the f 4
northpole N as centre. The function w = f(z) will be defined as the T 1 a,  F
1 —1 correspondence A to B. It is clear that the points C form the mapping | e or Vi—ez a s
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After these preliminaries we prove the second part of our theorem. Let
e(r) <1 be a given function, with e(r) = 1 for r — o, so that ,
o Mathematics. — Non-homogeneous binary quadratic forms. IV (con-
fl/l——-ez dr tinued). By H. DavenPorT. (Communicated by Prof. J. G. vaN

r

pER CORPUT.)

1s convergent, (Communicated at the meeting of June 28, 1947.)

Putting 5. By the remarks at the beginning of § 4, and by Lemmas 4, 5, 6,

there remains for consideration only the possibility
1

Nm+1 Em+1

=V1—e?, . . . . . . .. (1)

C .. (29

we are sure of finding a mapping to which corresponds the given e(r):

From (11) follows at once (ry>0): ' _
(11) (7o ) where m is an odd positive integer. Qur aim will be to show that a, §

necessarily have the values

log £() = C Vl—e i,

To

a = Om, E:_a’m’

where am is defined by (5). That these values do in fact satisfy (29)

from which it follows, that f(r) is a bounded function. Hence the mapping,
follows from the simple inequalities

cnly depending on r, which we may construct by means of this function,

will have a whole circle of exceptional points round infinity. 4 < gr+l__q - pe
s e g’
(EVidently the mapping has no exceptional points near zero, for ‘/1____'“6_2 Lo or+1 1 {—(9 !
| | ‘ g SIS bl .
being aequivalent to -— near zero, log f(0) = — o and f(0) = 0.) t—@g-—n" 1 —6-" 1 —@-"3"
. .
If, instead of (11), we had put r f—/w ——=—2, we should have found a Lemma 7. [fa = an, f = dp, where m is an odd positive integer, then

1/1—~e—’
mapping for which a4, is the minor axis of the ellipse, and for which
infinity is the only exceptional point,

[(e&—1) (&' —1)|=1
for the followzng values of &
6, &m Emtt, —Mme et

Proof. We have to show that N (amé&—1) =— =1 for the above
values of & In fact '

260 —1) _ (2602—1)6"—(26+1) _ _, (671
an@=1="—grry— —1= on+1 =& <6”+1>

and since n is odd, this has norm 1. Similarly we find that
n__
A Em— ] = ¢ n+2 (ﬂmi> R

amémry —1 = — G771,

(=) — 1 == 67,

or— 1
am (=) — 1 = G+ (5n+ 1>

and all these have norm 1.






