
Mathematics. - An outer limit of nonconformalness, for which PICARO's 
theorem still holds. By R. J. WILLE. (Communicated by Prof. 
W. VAN OER WOUOE.) 

(Communicated at the meeting of September 27, 1947.) 

1. Let w = f (z) be a function, which involves a 1 - 1 correspondence 
between the finite z~plane and a, possibly multiply sheeted, mapping 
surface on the w~plane. By projection of this mapping surface on a sphere 
with radius -!, touching the w~plane at zero with its southpole and using 
its northpole as centre of projection, we obtain a mapping surface F on 
the sphere. 

PICARO's theorem on exceptional points do~s not only hold in case of 
conformal mapping, in which infinitesimal circ1es on F correspond to 
infinitesimal circ1es in the z~plane, but also in case of quasi~conformal 
mapping, in which infinitesimal circ1es on F correspond to infinitesimal 
e11ipses in the z~plane, with eccentricities uniformly bounded by e < 1, as 
L. AHLFORS has shown (Eindeutige Analytische Funktionen, by R. NEVAN~ 
LINNA, chapter XIII. § 8). 

Let F(r) be the mapping surface of I z I -< r; we suppose the eccentricities 
E (z) of the infinitesimal ellipses, corresponding to the infinitesimal circ1es 
at points on F (r), to have the upper bound e (r) < 1. Then we propose to 
show the validity of PICARO's theorem, when e(r) tends not too rapidly 
to 1 (r tending to infinity) and to indicate also the order of rapidity, for 
which the theorem just holds. The precise theorem, we sha11 prove, is the 
following: 

ff the integral 
<t) 

fi l re (r)2 dr 

is divergent, there are two exceptional points at the most. On the contrary, 
if the integral is convergent, a mapping exists even with a whole circle of 
exceptional points. 

2. In order to give the proof we memorise the following inequality, 
deduced by L. AHLFORS: 

hL(r) + 1: n (ai, r) ~ 0 (r). , (1) 
i=! :rr 

where h isa constant, independent of the choice of f (z); al> a2' a3 three 
fixed points on the sphere; n(ai, r) the number of times F(r) covers ai; 
L (r) and 0 (r) contourlength and area of F (r). 

If there are three exceptional points, we take them as alt a2' a3; the 
inequality (1) then reduces to: 

L (r) 1 
O(r) ~ :rrh' 

. (2) 
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In the first place, supposing the integral 

00 

J~_Y-:-1_--r-e~(r=)2 dr . 

divergent, we may find, as we sha11 prove, values 

1'1 < r2 < ... < rv < '" -> co 

sa, that 

I ' L (r,.) 
lm ---0 

"-f- C1J o (ry ) - ,. 

(3) 

. (4) 

which is in contradiction with (2), so that PICARO's theorem t~en holds. 
In ~rder to prove the existence of the values rv we need a second in~ 

equahty, deduced by AHLFORS: 

where K (r) means: 

As 

dr 
L (r)2 -;- ~ 4:rr K (r) dO (r). 

K (r) =~ ) Yl-e (rF + _J l, 
( Yl- e (r)2) 

1 
K(r)~~-= 

Yl-e(rF 
inequality (5) reduces to: 

L
2 dr ____ 1 
--::::::;4:rr:ï= dO 
r y I-e2 . 

(5) 

(6) 

. (7) 

By muItiplying both sides of (7) with Y 1 - e2 and 't t' f -(:5'2 111 eg ra lllg rom rft to 

rft+ 1 , values to be defined further on, we obtain: 

• (8) 

As yT-e2 L2, 
--r-- > 0 and 0 2 contlllUous, there exist values rv, with 

sa that 
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Introducing this in (8) we find: 

• (9) 

rl" 

AS] Y~ dr is supposed to be divergent we may choose the values 

rl" ~ 00, so that 

rl"+l . J Yl-e2 

hm ---- dl' = 00. 
I"~ 00 r 

(10) 

rl" 

Prom (9) and (10) follows (4). 

,1- 1 
E.g. in case of representations, for which the order of·v 1 - e2 is -1-- , 

ogr 
the integral (3) diverges and so PICARD'S theorem holds. 

In the second place we suppose e (r) given in such a way that 

Joo Yl-e2 
--~- dl' 

converges; th en we shall show, that there exists a corresponding mapping 
with a who Ie cirde of exceptional points. 

Before proving this, we give an example of a mapping for which the 
above integral converges (see fig. 1). 

... - .... 

Fig. 1. 

We project A to C on the sphere (rad. 1), with its centre M as centre 
of projection. Then we reproject C to B on the plane, but now with the 
northpole N as centre. The function w = f(z) will be defined as the 
1 - 1 correspondence A to B. It is dear th at the points C form the mapping 
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surface called above F; An infinitesimal circ1e at C, with radius ds, cor~ 
responds to .an infinitesimal ellipse at A, with major axis a: 

a = (1 + 4: ( 2
) ds, 

and with minor axis b: 

([z[ =r) 

We find 

,1- b 1 
V 1 - e

2 = ~ = 171+4;2 . 
hence 

JOOy~ d j~ dl' 
l' l'= l'yl+4rz' 

which integral is convergent. 

We now examine a more general mapping, defined by an arbitrary 
function [(rl, but again depending only on r (see fig. 2). 

N 

C 
'\ , , , , 

Z B: f(r) A=r 
Fig. 2. 

An infinitesimal circ1e at C, with radius ds, corresponds to an infini~ 
tesimal ellipse at A with one axis al' along the radius r: 

and the other axis a2: 

1+[2 
al =f,-ds 

1 + f2 
a2= -f- l'ds. 

a) is major or minor axis according to l' r < 1 or t' r > 1, sa that: 

,I 1 a f' 
V 1 -- e2 or = ...2 = r -- . 

YI-e2 al t 
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Af ter these pre1iminaries we prove the second part of our th'eorem. Let 
e (r) < 1 be a given function, with e (r) -i> 1 for r -i> co, sa that 

J-Y-l-r-e-
2 

dl' 

is convergent. 

Putting 

r ~= fl-e2
, . (11) 

we are sure of finding a mapping to which corresponds the given e(r). 
From (11) fo11ows at on ce (ro>O): 

r 

Jil-e2 

log {(rl = C + ~-t'- dr, 

from which it follows, that [(r) is a bounded function. Hence the mapping, 
only depending on r, which we may construct by means of this function, 
will have a whole circle of exceptional points round infinity. 

(Evidently the mapping has no exceptional points near zero, for Y 1 e
2 

t' 

being aequivalent to ~ near zero, log [(0) = - co and [(0) = 0.) 
t' 

!f, instead of (11). we had put r {{'- = :;;_.!--::, ,ve should have found a 
y l-e2 

mapping for which al> is the minor axis of the ellipse, and for which 
infinity is the only exceptional point. 

Mathematics. - N on~homogeneous binary quadratic forms. IV (con~ 

tinued). By H. DAVENPORT. (Communicated by Prof. J. G. VAN 
DER CORPUT.) 

(Communicated at the meeting of June 28, 1947.) 

5. By the remarks at the beginning of § 4, and by Lemmas 4, 5, 6, 
there remains for consideration only the possibility 

~>fi>-~, 
'iJm 17m+! 

1 1 -<a<-
~m ~m+!' 

(29) 

wh ere m is an odd positive integer. Our aim will be to show that a, (J 
necessarily have the values 

a = am, 

where am is defined by (5). That these values do in fact satisfy (29) 
follows from the simple inequalities 

fJ fJn+l-1 f) 

1 + e- n+3 < fJn + 1 < 1 + fJ-n ' 

·1 1- fJ-n-l 1 
i-==-()-n > 1 - fJ-n > 1 _~()-n-3' 

Lemma 7. ff a = am, fJ = a'm, where mis an odd positive integer, then 

I (a ~ - 1) ({J I;' - 1) I = 1 

for the following values of ~: 

Proo f. We have to show th at N (am ~ - 1) = -I- 1 for the above 
values of ~. In fact 

a fJ-1- 2fJ(f)H!_l) __ (2fJ 2 -1)fJn-(2fJ+l)_ 3 (fJn-I) 
m - fJn + 1 1 - fJn + 1 ' - f) en-tl' 

and since n is odd, this has norm 1. Similarly we Eind that 

a m ~m - 1 = fJ- n+2 ----
(

fJ
n 

- 1) 
fJ/Z+ 1 ' 

am ~m+! -1 = - f)-n-!, 

am (-'iJ'm) -1 = - fJn+!, 

(
fJ

n 
- 1) am (-'iJ'm+!)-1 = fJnH f)n +1 ' 

and all these have norm 1. 




