
Physics. _ Reflection of light by rippled water surfaces. By J. S. VAN 
WIERINGEN. (Communication from the Laboratories of the N.v. 
KEMA, Arnhem.) (Communicated by Prof. M. MINNAERT.) 

(Comm1ll1icated at the meeting of September 27, 1947.) 

In this article some results are given of an investigation concerni~g the 
reflection of light from the sun or artificial lightsources b~ the nppled 
surface of the seat canals and rivers. The following calculatlOns complete 

the observations described by Prof. MINNAERT 1) 4). . 
The reflected image of a light source in a rippled water surface :s not 

a single image of the source, as in the case of a flat surface, but a )uxta­
position of a numher of these images. They are not normal ima'ges as seen 
, 1 . but they are deformed because of thc curvature of the 
In a p ane mlrror, ' 
surface. 

We consider two simple cases. 

1. If the ripples are totally irreguiar, a light pil~ar iSd,see~, ext
1
endin9'h' 

h 'c'h generally is e10ngated in avertlcal lrectIon. n eac, over an area w 1 

h, 

--------------6-----------

/' 

O:.~ûNSTANT 

WATER SURrACE 

po 1 The light of the point souree L reaches the observer 0 via the points R of the­
~:~er 'surface, The coordinates Rare functions of the inclination ex and the azimuth q­

of the surface element at R. 

, tRof the water surface there is a definite inclination a and an azi~ 
pOlllh f h' h ll'ght from the source L can be reflected towards the~ mut q or w IC ' , ' h' 

b 0 ( fl"g 1) The observed reflection points are all lymg Wit m 
o server .' , f 
a closed contour, a limiting curve which wl1l be shown to he a curve 0 ' 

1) MINNAERT, Natuurkunde van het Vrije Veld, I, p. 20. 
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the 6th degree. If the positions of the light source and of the observer are 
fixed, th is curve is determined by the maximum angle of inclination am of 
the rippled surface. For the points within this contour, I a ! < am. 

2. If the waves are strictly parallel. al surface elements satisfy the 
condition q = const.; th is penomenon occurs in canals and rivers where 
the waves by preference move,in the direction of the canal and have their 
fronts perpendicular to the direction of propagation. The reflected images 
are now lying on a curve which generally is slanting and which wil! be 
shown to be of the 3d degree. This curve is entirely determined by the 
positions of the light souree and the observer and by the direction of 
propagation of the waves. The maximum inclination am of the waves only 
determines whether the curve is illuminated over a greater or smaller extent. 
Of course the point of normal reflection S, where a = 0, belongs to it. 

Practically, in most cases an intermediate phenomenon is seen. The 
waves have all directions but with a preferenee for one of these. The 
reflection points are then lying within a closed curve which is neither the 
contour first mentioned nor the curve mentioned in the second case. Within 
this curve a number of images of the light source are seen. Just as in the 
other cases they are deformed because of the curvature of the surface, and 
they are constantly moving as a result of the propagation of the waves. 

The light pillar observed on totally irregular waves. 

As was shown above, the limiting curves are the curves a = const. = am. 
They can be calculated as follows (fig. 1). 

If R (coordinates x and y, as in fi,g. 1) is a point which reflects light 
from the source L to the observer 0, the line normal to the reflecting 
surface element in R should intersect the line La at a point which we will 
eaU P. Besides, PR should divide L. LRO into two equal parts, or in 
othér words: 

,j---------
PR= rLR' OR-Lp· OP= 

PN 
cos am 

or 

lILR.OR- LR-OR ·L02=h +(h-h)~-= 
V (LR+OR)2 0 Z 0 LR+OR 

ho'LR+hz-OR 

LR+OR 

Expressing LR and OR in terms of x, y, b, hl and ho, hl and ho being 
the heights of Land 0 above the water surface and b their horizontal 
distance, the equation for (x, y), when a = am results in: 
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It is somewhat simplified if thc source is at an infinite distance, as in the 
case of the sun. Then the direction of all incident rays is the same. The 
curve in this case is found by taking the limit of (1 for b = CD. Then 

-V:b-X)2+ y2 + h~_ 
b sin i 

(i = ang Ie of incidence) and 
(1 is simplified to: 

cos Om V2(X2+y2+h~)-2 -V x2+y;+h~(X'sini--~~oSi) = ~ . 
=ho+cosi-V X2+y2+h6) 

(2) 

This is the limiting curve, drawn in the plane of the reflecting water 

surface. 
The limiting curves are of the 6th degree in the general case of a source 

at a fini te distance. The same result was found by PICCARD 2) for the more 
special case that the heights of observer 0 and light source L to the water 
surf ace are equal (ho = hl). In (1 and (2 thc complete 6th and 4th dcgree 
curves include negative as weU as positive roots. The negative roots des~ 
cribe the case of PR being external bissectrix of L.. LRO and consequently 
that part of the complete curve has no physical meaning: it will not be 

considered further. 
The equations (1 and (2 are toocomplicated for computation. It is much 

easier to find the curvesexperimentally. A lamp is placed above a table 
at L. A little mirror makes an angle am with the table and can be moved 
over it. By look.ing through a fixed hole at 0 we can seen the points wh ere 

reflection occurs (fig. 1). 
The curves found by this method prove to be weU approximated by an 

ellipse, as was already found by PICCAJRD 2). The obs.erver looks at this 
pillar under an angle i, and sees thc projection on a plane perpendicular 
to his direction of sight OS. The ellipse is therefore foreshortened. 

We now consider the shape of the limiting curve projected on the plane 
perpendicular to OS. For general orientation it is sufficient to consider 
the case of a sourCel at an infinite distance, the shape of the curve being 
mainly determined by i, the angle of incidence for normal reflection. The 
length of the short (horizontal) axis of the ellipse is repersented as an 

angle y in fig. 2: tg ~ y = cos i. tg 2a. The ratio 1:: of the short over the long 
Cl. 

axis is cos i, if 90 - i > 2am. If 90 - i ;;;;; 2am the pillar reaches the 

horizon and so the long axis is partIy cut oH. 

Then the ratio is 

1:,= a 
2 tg 2a 

tg 2a + _1_' 
cos i sin i 

2) PiOCARD, Arch. 51;::. phys. et nat. 21. 181 (1889). 

(fig, 3). 
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It is remarkable that in general the ratio~, that is to say the shape of the 

ellipse is independent of the maximum inclination am of the waves. How~ 
ever, if. the ellipse is cut ~ff by the horizon, am comes into account. By 
measunng the arc of the pl11ar at the horizon the maximum inclination am 

of the waves can be easily determined 3). 
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Fig. 2. The angle y under which the horizontal axis of the pillar is seen for different 
angles of incidence i. Parameter': the maximum inclination a of the water surface. The 

light source is at an infi:nite distance. 
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F.ig. 3. The ratio of the angles under which the horizorrtal and the vertical axis of the 
pdlar are se en as .a f.unction of the angle of incidence i (infinitel,y distant source). The 

dashed lmes are corrections fOtr the cutting~off effect of the hor·izon. 

Properly speaking the cutting oH does already occur before the reflected 
ra,y reaches the horizon. When grazing over the water surface, it could be 
wlthdrawn from the observer'seye by a wave top (fig. 4). This is the case 

if 90- i;;;;; 2a + f3. Owing to the smallness of R (tg R ~ 2 tg al!!. ~ 1/ t I-' I-'~ 3 n ~ 5 g am 

for sine waves, sa f3 ~ 4°), the correction due to this effect is not large. 

Fig. 4. Part of the pillar may be cut oH by wave tops. 

3) SrOONER, Corresp. du Baron de Zach, p. 331 (1822). 
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From figs. 2 and 3 it follows that in a reflected landscape the pilIars are 
al about equally high, but that these of low objects are narrower than those 
of high objects. 

The luminous line seen on plane waves. 

The symbols ho. hl and bare the same as in the preceding paragraph 
and in fig. 1; the azimuth q is the angle between the direction of propag~ 
ation of the waves and the vertical plane through Land 0 (fig. 1). The 
points R (x, y) where reflection occurs are lying on a curve with q= con~ 
stant. Of course the point S of normal reflection is one of them (a = 0). 
The terminal points of the curve are lying on the ellipse of the previous 
case. In the other points of the curve the azimuth q is the same, but 

I al <am. 
The calculation runs as follows (fig. 1): 

As RP is the bissectrix of L LRO. 

LR LP GN 
·R 0 =-PO= NV or LR.NV=RO. GN. 

By expressing these in terms of x, y and q, the result obtained is: 

(x:>inq-ycosq) V(b-x)2+y2+h1=!(b-x)sinq+ycosq! i X2+y2+h~ (3) 

This is the curve drawn in the plane of the water surf ace. 
It is a curve of the third degl'ee, for, taking the squares, the terms of 

the fourth degree disappear. 
Again the equation becomes much simpIer if we consider a light source 

at an infinite distance such as the sun. By taking the limit of (3 for b= co 

hl- ho 
and substituting b = cotg i 

it is found that: 

sin i sinqix2+y2+h~=xsinq-ycosq (4) 

If the coordinate system is rotated in its plane over the angle q, the 
equation expressed in the new coordinates ~ and 'Yj is: 

'Yj = - sin i sin q V ~2 + 'Yj2 + h~ (5) 

So the images of a source at an infinite distance over a plane~wave 
surface are lying on one branch of a hyperbola (the root in (5 being 
positive only). They are lying on a straight line (the x~axis) if q = 0, that 
is to say if the waves are running in the direction of the observer; and also 
on a straight line (the ~~axis) if i = 0°, when the sun is over the head of 
the observer. If at the same time i = 90° and q = 90° the curve consists of 
two imaginary lines of which only theintersection is observed, being the 
infinitely distant point of the x~axis. 

The curves were computed for a light source at an infinite distance and 
for i = 30° (fig. 5). From this figure it is seen that a gradual increase in 
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the azimuth q of the waves has only a small influence on the direction of 
the pillar as long as the observer is looking more or less perpendicularly 
to the waves. IE the direction of observation exceeds 45°, the influence 
rapidly increases and becomes very strong near q = 90°: Thiseffect is the 
more striking the greater the angle of inciclence i. 

Fig. 5. Dashed: computed limiting curves of the pillar seen on 
an irregularly rippled surface with maximum inclination 5°, 10°. 
and 15°. Solid: the luminous lines seen on plane waves for 
different directions of propagation (q = 0°, 15°. 30°. 45°, 60°. 
75° and 90°) for the case i = 60°. These lines are drawn in the 
plane of the reHecting water surface. The observer is at a point 0 
directly over V .at a height ho. The infinitely distant soure L is 

at a height of 30· above the horizon (i = 60°). 

However the computation is rather tedious and an experimental measure~ 
ment is much simplel'. It is easy to investi:gate the influence of the azimuth q 
by placing on the table a sheet of paranel~rippled glass, which is rotated in 
i'és plane. Here also the difference between a light source at a finite or 
an infinite distance proves to be smal!. In some cases with a source at 
at finite distance it is possible to see the inflexion point of the third degree 
curve. 

In the reflections by rippled water surfaces it is possible to discover 
a curved pillar under very favorable conditions. However in most cases 
the pillar is practically straight. because the waves are not running exactly 
in one direction and the illuminated curve is more or less blurred. Therefore 
it is ordinarily sufficient, to know the mean inclination of the pillar. The 
angle p' in the surface between the curve q = constant and the x~axis 
follows from tg p' = tg q, cos2 i, as can be easily calculated from (3 or (4. 
The observer sees this angle projected on a plöne perpendicular to his 
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direction of sight. This projection p of p' is found from tg p = tg q. cos i. 4) 
This formula describes completely the above mentioned effect: if q, the 
direction of the waves, is chang'ed at an uniform rate, the inclination p of 
the pillar changes first at a slow, then at an increasingly quick rate; the 
effect being the more pronounced the larger i. 

Summary. 

It is shown that the reflected image of a light source in a rippled water 
surface is a light pillar which generally is limited by a curve of the 
6th degree. If the source is at an infinite distance, the curve is of the 
4th degree. The shape of the limiting curve is discussed. In parallel ripples 
the light pillar is a single curve which is generally slanting. It is a curve 
of the 3d degree, in the special case of an infinitely distant source of the 
2d degree (cf. the solid lines in fig. 5). The influence of the direction of the 
ripples is discussed. 

4) MINNAERT, Physica 9, 925 (1942). 

Physical Geography. - Theory on central rectilinear recessian af slopes. 
I. By J. P. BAKKER and J. W. N. LE HEUX. (Communicated by Prof. 
F. A. VENINO MEINESZ.) 

(Communicated at thc meeting of Ma,y 31, 1947.) 

I ntroductian. 

Af ter the early publications of OSMOND FIS HER (1) 1) and LAWSON (2), 
in which a brief mathematical derivation was used, the theories of OTTO 
LEHMANN (3) and ED. GERBER (4) were the first, in which a problem of 
physionomic geomorphology was more thoroughly treated from a quan~ 
tatively exact point of view. 

LEHMANN started from parallel recession of steep mountain slopes and 
constant height. GERB ER accepted the former condition, but added a new 
one, assuming that the fault scarp due to crustal movements, or the valley~ 
slope owing to vertical erosion increased in height during parallel recession. 
For various parts of the earth, especially in regions where permeable 
resistant sand~ and limestones occur (the Dolomites in the Alps, many 
cuesta~ and mesa~landscapes) there are several reasons for assuming 
parallel retreat of slopes as a rea I condition. (See fig. 4 and 5.) 

N evertheless we may note that as early as sixty years ago geomorpholo~ 
gists based deductions on the assumption of tlle recession of steep slopes 
with decreasing slope angle, the simplest case of which we find reproduced 
in PHILIPPSON' s figure (5, 11, 2, p. 63) for the development of denudation 
landscapes (our fig. 1). This figure, therefore, indicates that the intensity 

Fi.g. 1. (Af ter PHlLIPPSQN). See text. 

of weathering~removal increases rectiliniarly with the height of the wal!, 
equalling zero at the basic point of the slope. We shall caU this type of 
wall recession "central rectilinear recession". The basic point of the steep 
slope functions in this case as recession centre. 

1) The numbers in parenthesis refer to the list of literature at the end of this artic1e. 




