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So we find for the characteristics of skewness $3,0, §2,1, §1,2. Go ¢
for the characteristics of excess E4.0, E3:1, E2,2, E1,3, F0,4;
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Mathematics, — A study of Bessel functions in connection with the pro-
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== Vﬁf;{ﬁ (592 —3y=y m —3 In this note I discuss the application of Bessel functions to the physical
' m problem of the mutual attraction of two homogeneous circular discs lying

or

in the same plane. It is assumed that the law of force, which describes the
interaction of two unit point masses, is derivable from the potential function
V(r) depending only on the distance r between the masses. So, the force
problem is reducible to a scalar problem: the calculation of the mutual
potential energy of the discs.

Special attention is paid to potential functions varying with the distance
as r—" where n is any positive number. This includes the gravitational
force (n = 1) as well as the London—Van der Waals force (n = 6).
The paper is entirely mathematical.

E%1=yE%% likewise E'“3=yE04,,

1. Formulation of the problem in terms of Bessel [unctions.

The reader is, of course, familiar with the two-dimensional, logarithmic,
potential: V(r) == log r. In this case the mutual energy of two non-over-
lapping homogeneous discs in the same plane is equal to that obtained
when the total masses of the discs are concentrated at the respective
centres, .

A somewhat more general question arises almost at once. Namely,
whether there exists a particular law of interaction such that two non-
overlapping discs (radii: a, b; distance between centres: ¢ > a™b) in
the same plane shall attract each other as if certain reduced masses were
located at the centres. More precisely, whether it is possible to choose
V(r) such that the mutual energy of the two discs is given by ¢(a, b)
V(c) where ¢(a, b) is a (symmetric) function of a and b, not depending
¢n c.

The answer to the question above is affirmative, even if the trivial case
of the logarithmic potential, for which ¢(a, b) = 1 (both discs having
unit mass), is excluded. As will be shown in due course, the modified
sessel function K (rt) serves the purpose, for all values of the parameter ¢,
Once we have succeeded to represent the potential function V (r) as a sum
ot integral (the weight function depending on ¢) of the ‘invariant’ function
Ko(rt), it is easy to calculate the interaction energy in question.
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We now proceed to the invariance — with respect to the transitio
from point mass to disc — of the function K (zt).

Let R be the distance between a unit point mass and the centre of 4
disc of radius a. The point mass is assumed in the plane of the disc and
lying outside the latter. Further, let polar coordinates (o, #) be introduced
at the centre of the disc, the polar axis being directed to the unit pojnt
mass. Then the mutual energy of the point mass and the disc, which wil]
be supposed homogeneous and of unit mass, is given by

u (a, 0; R) = /ngjﬁ@ (t Yo>—2¢Rcos 8 --R?) d
zzggquafh@ﬂam
= i 1, (a8 Ko (RY), (a < R)

whereby use is made of some well known formulae of the theory of Bessel
functions.

Therefore, the interaction between the point mass and the disc is ag
if the mass

?la,0)=21(at)

were located at the centre of the disc, for all values of the distance R> a.
This is the invariance property of the Bessel function K, as referred to
above.

It will further be obvious, by twice applying this process of reduction,
that

@(a, b) = ¢(a,0) ¢(b,0).

Hence, the energy of interaction of the two discs under consideration is
given by

us{a, b;c) = I (at) I (bt) K (cf)

b v
when V(r) = K,(rt).

Let us now assume that the given potential function V(r) can be
represented by an integral of the following type:

V(r):ff(t)f(o(rf)df.. R ¢ )

Then, since the energy is additive, the mutual potential energy of the
discs becomes

U(a,b;c):.—_gg [’11 (af) I (b8 Ko (c) F(O) =2 de. . . . (2)
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2. Expression [or the energy of two non-overlapping discs when
V(r)=r" (n>0). ,

‘The ‘generating’ function f(f) occurring in.(1) and (2) is known for
the particular potential V(r) = r-7 (n > 0), as follows from 1)

1 - %;

TG

§ f[(o (g1 dt. - (n>0)

- Consequently, the interaction energy of the two discs in response to the

law V(r) = r—" is given by
24-n
ab % 1“(2)

This function will be discussed in sections 4, 5, 6, 7 for b=0 a=~>~,
a % b0, b—> o, respectively.

U, (a, bic) — g f L@ L (b8 Ko (e =3 dt. . . (3)

3. Differential relations.

Let x; y denote rectangular cartesian coordinates in the plane of a disc
of arbitrary shape and mass distribution. Then, the potential outside the
disc under action of the law V/(r) is given by

Uy =[[DEn V()dédy  (P=(x—&>+(y—n?)
where the integration has to be carried out over the surface of the dlSC,
and where D (£, ) stands for the local mass density,
Obviously,

U azu PV 2V
Erand ffD %?"’“azgd‘f"

Furthermore,

PV RV _(PV | 1dV
o& T o :% *

de? rdr% = {8+ ly— P}
We have thus proved the following

Theorem I:

If U is the potential of an arbitrary disc in response to the potential
law V(r), then AU is the potential of the same disc in response to the
law V7 (r) + V'(r)/r. ’

Especially for centre~-symmetric discs, A U = U”(¢) + U’ (c)/c where ¢
denotes the distance from the centre. When in this case the thecrem is
applied twice in succession, we obtain

1) Cf. G. N. WATSON, A treatise on the theory of Bessel functions, Cambridge
1922/1944, p. 388, formula (2). .
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Theorem Il:

the potential law V(r), then
— ;0U) 10/ ol
U(a.bic)= 9(c?) B(CZ)g cdc(c 66)

If U(a, b; c) denotes the energy of interaction of two non~overlapping
circular discs with centre~-symmetric mass distributions under influence of
2 1
0 LzI“‘L old 4,9,_
dc? ¢ dc
“is the energy of interaction of the same discs under influence of the
potential law

&2V 1dV
v (')"“dr2 +‘r dr’

This way of reasoning I owe to Prof. N. G. DE BrRUlN. An alternative
proof of Theorem Il is based on the integral representation (2). In view
of the differential equation satisfied by K, the function II* corresponds
to the generating function ¢2f(¢) when U corresponds to f(¢), and, in its
turn, t2f(f) corresponds by (1) to the potential law V*(r). In the latter
way I originally found Theorem II.

Theorem I1 is of particular interest with respect to the potential functions
r—" since it reduces the interval of n to be investigated to 0 <n = 2. For
greater values of n the function can be found by a process of differentiation,
namely,

2 la% (>0 . . (4

Unsz (@ bic)= n2§6c2+c dc
Of course, equation (4) is also easily proved directly from (3) when use
is made of Bessel's differential equation for K(ct).

4. The potential energy of a point mass outside a circular disc when
V{r) = r-n,

The discussion of the function U, (a, b; ¢) defined by (3) is compara-
tively simple when one of the discs reduces to a point mass. In that case
we have

3—n L ' '
U, (a, 0; c):—-g—;r«2 f I (@) Ky (ch) tn=2dt. . . . (5)
g e
This integral is expressible in terms of hypergeometric functions. When
use is made of the modified WEBER-SCHAFHEITLIN integral 2) it is found
that

1 nn a?
Un(a.();c)::—c—nF<—2—.2;2; ?) B (4
In passing, it may be noted that (6) holds for all values of n, not
~ necessarily positive, as from physical considerations it is obvious that
U (a, b; c) is an analytic function of the variable n.

2) Cf. WATSON, loc, cit,, p. 410, formula (1).
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For even values of n the function U= (a, 0; ¢) is elementary. For instance,

Uz(a.O:c‘):—wa—ljlog<l——§;>, N
U (a,0:0)=(2—a)2 , . . . . . . . . (8
Ug(a,0;c)=(c?-+%ta)(P=ad)™". . . . . . (9

Further, the function is expressible in terms of complete elliptic integrals
of the first and second kinds when n is an odd integer. For example, let

us take n = 1; then

F b 2K = ,F({;)(ZF)E_ o} b (l—a)f (1—k2 @)} du
__ji_jlg cos’pde
T Y1—k?sin? @
)2 ’ 2
At o]
4(( 1 1

in the usual notation of elliptic integrals. Consequently,

2
wa? c c \e¢
This result is not new 3).

In a similar way one can evaluate the function U» when n = 3, viz.:

U, (a,0;0)=

1
F(g’%‘z'kz):r()f) of”* (1 —u)y4(l —Kk*u)"* du
af
_4 [ sinpdp _ 4 dK(®¥
Ta ) (I —Ksin?efh 2k dk
[
p— 4 2\ - .
= [l — k) E (k) — K (K)].

We therefore obtain that

U3(a,0;c)::n

), we see that

(2—a?)Us(a,0:¢), . . . .« .

When comparing (10) with (11

U (a 0= (12)

3) Cf. H. BATEMAN, Partial differential equations of mathematical physics, Cambridge
1932 — New York 1944, p. 417, example 2.
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which might also have been obtained by EULER’s transformation of hyper

geometric functi which leads to the relation
metric runctions: »

Ua,0; 0 =(?—a?)i Ui(a, 0;¢). . . . . . (19

T S — e —~a—b - __ ‘e ,
F(a, b;c;x)=(1 — x) Flc—ac—bicix). . . (13) On the ofher hand, we have by (4)

‘The result I found when taking n = 5 is

2 2 2 19
» 172 L3 ; U;<a,0:c>:s§&a+;5;§U;(a,o:c»
4 a c a
Us@ 0=y 35| 7 E| o | == K| 2| (19 ' ,
: : ratc <1~_5’_> ¢ (1,;f_) ¢ Consequently, both U, and U, are expressible in terms of elementary
c? c? . functions and complete elliptic integrals; and so is Un—; (a, 0; c) for any

Generally, Usm.1 (a, 0; ¢) (m = non-negative integer) is expressible as positive integer m in virtue of (4).

a linear combination of E(a/c) and K (afc) with coefficients rational in aje;

It is very interesting that also for half-integral values of n the function
Ur (a,0; ¢) is expressible in terms of elementary functions and complete
elliptic integrals. This is easily proved with the aid of KUMMER's relation 4);

F(},3:2; sin?6)=F(4,4:2; sin?{ 6) . . . . (15

The hypergeometric function on the right has already been evaluated;
therefore we have at once:

5. The case of equal radii.

In the second place I shall consider the function U, for discs of equal
radii: @ = b. Thus

é——n o
Uy (@, ai =2 f @ Ky (ct) =3de. . . (20)
0

32%F<;>§

U.g(a,O;c):--I;%? [1:3V%<1-VL§> _
(1) =2) V3= =5)]]

Moreover, the relation (15) immediately leads to the following interesting
equation : :

geometric function 3F,. To prove this, let us expand 5) the square of the
Bessel function into ascending powers of ¢, viz.:
2 _m far\rtEm 'Zm--3)
fi(aty=2 <2> py

m==0

I'(m+2)2(m+3)

and integrate term by term. One then finds that

2

U3(a,0;c):C‘3Ug(2aV1-—%, 0;c. . . . . (17)

When 7 == § the calculation runs as follows. First, by EULER’s trans-
formation (13),

2 2\—1% 2
B o5.9.8 ) a s, a
F(‘“"’Z'E?) "‘(1'—?) F('Ii‘r'f:i%g;).

and, consequently,

RO

That is to say,

1 I'(l)f(zw(s) j r m+§> F(’"jz;? F<m+'2) <:132>m.

| U;(a,0;c)=(c*~a?)"tU;(a, 0;c), . . . . . (18
which is known by (16). )
To determine Uy (a, 0; ¢), 1 once more apply BULER's transformation

1 3 n n’ 4a?
(13): Un(a,a,c)—z-—3F2< vvvvv ,*.~.2,3,—C§~>,. ..o 21
a? a’\t ' a?
_F(i"k‘Z;;?):(l,—‘g) F(%'%;Z:?>

which, as (6), is true for all values of n not necessarily positive.
As in the preceding section, the function is elementary when n is an even
integer. Particularly simple are the cases n =4, n = 6, since then the

A

4) Cf E. T, WHITTAKER-G. N. WATSON, A course of modern analysis, Cambridge

1935, p. 298, example 12. 5) Cf, WATSDON, loc. cit., p. 147, formula (6).

The function (20) can be evaluated in terms of the generalized hyper-

%
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generalized hypergeometric function (21) reduces to an ordinary hyper-

geometric function, namely,

1 4a
wwmdng@za—ﬁ

/

1 43?2
Ué(a,a;c)::—ch<%.3;2;-CT).
Now,

—

F(3,23;,0=2[u(l—xu* du,

0

which is easily integrated. The result is found to be

U,(a a;c)=

Moreover, by EULER's formula (13),
F(3,3:2;x)=(1—x)tF(}—1;2; x).

The hypergeometric series on the right consists of two terms; accordingly,

1 c? . (23

] — ——
C

Ué(a,a;c)::—c-g (—T—a—>

The evaluation of Uy(a, a;c) can be accomplished by an integration,
either by means of (4) or more directly as follows. First, it is easily
verified that

%{ngz(g. L1:2,3; %)} =F (3 1: 3 x)

2 2
d
= - log (1 + V1) %
8dx%1+V1-— +legl

Therefore, upon integrating while suitably accounting for the constant of

integration, we obtain

8 Y
: . PG J T — Ay
3F2(1},1,1,2,3,x)—-x§; 1+’/1_‘x 09(_ 3 )g

from which it follows that

1 2 o 4a’ Gl
| Uz(a.a;c):?[lww_-—li—-;~—210gg 1+V1_- = ﬂ . (29
1

The analy51s is much more complicated when n is an odd integer. AS 4

/. 4a 1/, _4a¢. . . (22
c Vl—-—?‘a* 1+‘/ __d%ﬁ ( )
c? C
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matter of fact, only the case n == 3 seems tractable; that is to say, I have
not been able to sum the series (21) when n =1, this of course being
possible for n = 5,7, ..., in virtue of (4), once Uj;(a, a; ¢) is known.
To evaluate Us(a, a; c), I use a relation due to CLAUSEN 8); it follows
from this relation that
Fr54:2,310={F(& {:2; 0%
Therefore,

Uy .19 = 5 A F(1.4:2: 75 )

On comparing this with (6) we see that

Us(a,a;c)= {U;(2a,0;¢)}>2 . . . . . . (25
Consequently, from (16),

U, (2,20 = o [ER—(—RK®P . . . . (26)

where the modulus of the complete elliptic integrals is given by

k:%31~]/1—353%. @

It may be remarked that (26) is equivalent to

71f(xt)1(o(zt)dt—_—-l’ggp:;(Vl-—?%z. Co L (28)
0
(=1 <x<])

which is closely related to MEIJER's integral representations of the product
of two Legendre functions 7).

6. The case of unequal discs.

In this section, the function U. will be investigated for general values
of a and b. However, n will again be restricted to integers since 1 have not
succeeded to evaluate the integral (3) for other values of n, apart from
the fact that (3) is expressible in terms of APPELL's hypergeometric
function F, viz.:

a? p?

Un(a'b;C) F4<22 , 2; 2.‘;5). o e e (29)

which is readily proved by expanding I,(at) I,(bt) into ascending
powers of ¢ and integrating term by term 8).
To begin with, let us take n == 4. Then from (3),

U, (a b; o) :;15071, (a) 1, (bt) Ko (cf) £ .

6)  Cf. WHITTAKER-WATSON, loc. cit., p. 298, example 11,
) Cf. C. S. MEIER, Nieuw Arch, Wiskunde 19, 207—234, 1938,
8) For the definition of APPELL's function, c¢f. P. APPELL-]. KAMPE DE FERIET,

" Fonctions hypergéométriques et hypersphériques — Polynomes d'Hermite, Paris 1926,
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This integral can be evaluated with the aid of a result due to MACDONALD
at cos v (X2—1)"irt '
V27 (be)#+ sin (u—+»)

in which 2bcX —ma2+ b2+ c2 and Re (a==ib=x=ic)>0; Q is ¢t
Legendre function of the second kind in the sense of BARNES.

Tt (68 ], (et 041 de =

As is well known, the right-hand side of (30) can be written in termg‘

of hypergeometric functions. The result is found to be

a*T'(p+v-+-1) >/A+v+2 ptr41 -
v (bc)uﬂp(,,)waﬂF( 5 , 5 v+ 1 X 2).

Upon taking u = 0, v = 1 we obtain
1
4bcX?

1

;fKo (ad) J, (b8) ], (ct) tlt = F1:2; X

1 u _ 1\-¢ )
““%“BT)?Z[(“"B@) T 3(1“3?) —1§.
0 }

Now rep‘lac‘e ab,c By é, ia, i b respectively: It has thus been proved that

71, (@) T (60 Ky (et it =5 [

4a20? b
R v ey ; —~1J,

and, consequently,

1 c?—a?—b? g
Uia bid=75p [M{ c?—(a—Db)?{t {c?—(a+ b)* 11 ——1] - B ‘:

As is easily verified, formula (31) is in accordance with the special case

a == b given before at (22).
- For greater, even, values of n the function U (a, b; ¢) can be calculated
by differentiation of (31) in virtue of (4). Omitting the rather tedious,
though elementary, intermediate computations, I merely state the final
result when n'—= 6: ‘

? (2c2—a?—b?)—(a?—b?)?
A e U L CE UL

Ugs(a, b;c)= (32)
which, by the way, is in complete agreement with the result obtamed by
DuBg and DascupTaA 10},

Whereas U has been obtained by differentiation of U, the function
U, can be calculated by the inverse process, that is, by integration of

U, (a, b;c)== 0 gzauz(a,b:c);

0 (c? 3 (c?

9)  CL WATSON, loc. cit., p. 412, formula (6).
) G, P. DUBE and H. K. DAsSGUPTA, On the London=Van der Waals forces between
two disc-like particles, Indian J, Phys. 13, 411416, 1939,
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For this purpose, let

u=c?; Wilu)=Yu2—2 (a?-+b?) u-+(a’—b?".

Then, by integrating once,

.
aU2 1 t'—‘az'—‘b2_
"D 2a2b2f§ Wi 1%‘“

= b a7 bt W ()]

oll,

where the constant of integration has been chosen so as to make u Sa
vanish at infinity (as a matter of fact, this condition is sufficient; the
more stringent, and phvysically necessary, condition u’ﬁ%gfw> —1 (u — )
is then automatically fulfilled).

Further, a second integration yields:
W (u)+ u—a?—b?

2222 U, = W (u)—u -+ a® -} b*—(a? -+ b?) log Zu

o [ At
+(a? b)ftW”

where the constant of integration is taken such that Uy( o) == 0.
Moreover we have
‘e (a2 4 b) — (a*—bY— | a?—b?| Wia)
g2 Gt 2 g2 .
(a’—b? ftW(t)w‘ |a?—b “09% u(a? + b'—|a’—b?))

o

Accordingly, the final result is found to be:
W L c2—g? b2
Uy (a, bi o) =5 373 {W c?-+a? + b*—(a® -+ b?) 1093-4%-—m g

& (a? -+ b?) — (22— b2 — | a>—b2 | W
Cz(az - bz__!az__,bzy) %]

. (33)

a1 log %

in which W is an abbreviation for
W= W (=7 {c—@a—b?} {—(a-FbF}. . . . (3%
As may have been anticipated from section 5, the function U (a, b; c)
is expressible in terms of complete elliptic integrals when n is an odd
integer greater than 1.
To begin with, let us take n == 3. Then, the fourth type of ApPPLLL’s

hypergeometric function of two variables reduces to a product of two
ordinary hypergeometric functions, as follows from BAILEY's formula 11)

Fya,bic,a+b—c+1; x(1—y), y(l —x)) =
=F(a, b;c;x) Fla,bja-+-b—c+ L;y);

11y W, N. BAILEY, Generalized hypergeometric series, Cambridge 1935, p. gl.
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namely,
Fi($ 32,2 x(1—y) y(I—x) =F(} & 2 x) F(3 §: 2Zi y).

Since the remaining ordinary hypergeometric function is known from the
preceding section, we at once have

16¢

aibt |

Us (a, by )= E(k)—(1—k?) K (k)} { E(k)—(1—k2) K (k2)}, (35)

in which the moduli of the complete elliptic integrals are defined by

K (1—k3) = a2/,
K (1—k}) = b2/ &
thus

where W is as defined in (34).
It is to be remarked that (35) is completely symmetric in a and b:
further, it reduces to (26) when a = b.
By means of (4), the functions U, Uy, ..., can be expressed in terms
of elliptic integrals also. Unfortunately, I have not succeeded to sum the
series (29) in the newtonian case n —= 1.

7. Energy of interaction between a circular disc and a half-plane.

In conclusion, it may be worth while to consider briefly the degenerated
problem of one of the discs becoming infinitely large. Thus, let us calculate
the mutual energy of a disc of radius &, of homogeneous mass distribution
and fotal mass equal to 1, and a homogeneous half-plane of mass density
equal to 1.

Let A denote the distance between the centre of the disc and the
boundary of the half-plane. Confining ourselves to the work function
V(r) = ¢~ (n>2), we have for the energy in question

uy(a; Ay==lim {ab*U,(a,b; A+b)} . . . . (37)

brwo
This limit is most easily evaluated by replacing the functions I{(b¢) and
Ky(ct) in (3) by their asymptotic expressions for b¢-—» . The result is
found to be

23— g

un(a;A):“ﬁ-wfe““I, (at) en—4dt . . . (38)

T
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The analogue of the differential relation (4) is very simple; it now
onnects the functions of orders n and n + 1, namely,

I‘<2> 2
2 dun (a; D)
11/1+1(3:A):—*‘i Iw<n+1> A e (39)

C

as is readily verified by differentiation of (38) with respect to A.
The integral (38) is generally expressible in terms of Legendre func-
tions:
7 n

T Az___az)i’z
Un (a;A):*— 2}:_?;2 ( N\ )2
sin nz 3 r <§> ;

In terms of hypergeometric functions, one has

‘ 7 I'(n—2) n—2 n—1 _ a?
(e D)= (o m P F( 2 '2’A2>’ Y
(2

Q;’”;(A/a) .. (40)

or, alternatively,

= T2 g n—-z's-—n;z;___;j,)’(éz)
(2 Y D2 —a?)-? %r(§>% ( 2" 2 pi—a

unlas A)=

by means of which the function uq(a; M) is easily evaluated for integral
values of n. The latter functions are elementary; for instance,

4
us (a: A) = Zt{:’]/t&—z'i—jz s e e e e e e (43)
JAN
Uy (a,A):%%ﬁ?_—_-a:z“—l%, . . . . . (44)
4 1
Us (a, A) jussond § m;, . . . N . P (45)

3 A
u6(a;A):§%<~m, e e e e e e (46)

_ 4 4pta? 7)
— '7_5 ’(‘Z&—z:az)pllz . . ° * 0 . . .
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