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So we find for the characteristics of skewness S3,0, S2,1, Sl,2, SO,3 
for the characteristics of excess E4,o, E3,1, E2,2, El,3, EO,4: 

mI,! m3,O 

m2, I m2,o mI, I m3,O 
S2,I = m?'O (mO,2)'!, = m2,o (mO,2)'!, = ym], ° mo,i . (m2,O)'!,' 

or 

likewise Sl,2 = y so, 3 : 

mI, \ mi,O ( mi,O ) 
=Ym2,OmO,2'(m2,O)2-3y=y (m2,0)2-3 , 

or 

likewise E\,3 = i' EO," .. 

Mathematics. - A study of Bessel functians in connection with the pro~ 
blem of two mutually attracting circular discs. By C. J. BOUWKAMP. 

(Natuurkundig Laboratorium der N.V. Philips' Gloeilampenfabrie~ 
ken, Eindhoven, N etherlands.) (Communicated by Prof. J. G. VAN 

DER CORPUT.) 

(Communicateà at the meeting of October 25. 1947.) 

Summary. 

In this note I discuss the application of Besse1 functions to the physical 
problem of the mutual attraction of two homogeneous circular dis cs lying 
in the same plane. It is assumed th at the law of force, which describes the 
interaction of ,two unit point masses, is derivable from the potential function 
V (r) dep en ding only on the distance r between the masses. So, the force 
problem is reducible to a scalar problem: ,the calculation of the mutual 
potential energy of the: discs. 

Special attention is paid to potential functions varying with the distance 
as r- n where n is any positive number. This includes the gravitational 
force (n = 1) as weIl as the London-V an der Waals force (n = 6). 

The paper is entirely mathematica!. 

1. Farmulation of the problem in terms of Bessel functians. 

The reader is, of course, familiar with the two~dimensionaI. logarithmic, 
potential: V (r) = Jog r. In th is case the mutual energy of two non~over~ 
lapping homogeneous discs in the same plane is equal to that obtained 
wh en the tota! masses of the discs are concentrated at the respective 
centres. 

A somewhat more general question arises almost at once. Namely, 
whether there exists a particular law of interaction su eh th at two non~ 
overlapping discs (radii: a, b; distance between centres: c> a,+ b) in 
the same plane shall attract each other as if certain reduced masses were 
located at the centres. More precisely, whether it is possible to choose 
V (r) such that the mutual energy of the two dis cs is given by cp (a, b) 
V (c) where cp (a, b) is a (symmetrie) function of a and b, not dependtng 
en c. 

The answer to the question above is affirmative, even if the trivial case 
of the Iogarithmic potential, for which cp (a, b) = 1 (both discs having 
unit mass), is exc1uded. As will be shown in due course, the modified 
Bessel function K 0 (rt) serves the purpose, for all values of the parameter t. 
Once we have succeeded to represent the potential functian V (r) as asurn 
or integral (the weight functian depending on t) of the 'invariant' function 
/(0 (rt), it is easy to calculate the interaction energy in question. 
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We now proceed to the invar.iance - with respect to the transition 
from point mass to disc - of the function K 0 (rt). 

Let R be the distance between a unit point mass and the centre of a 
disc of radius a. The point mass is assumed in the plane of the disc and 
lying outside the Jatter. Further, let polar coordinates (e, ()) be introduced 
at the centre of the disc, the polar axis being directed to the unit point 
mass. Then the mutual energy of the point mass and the disc, which wiJl 
be supposed homogeneous and of unit mass, is given by 

Ut (a, 0; R) = -4 J ede r Ko (t V e2~-2eR-cos () -+- R2) d () 
:na 0 0 

2 a 
= -2 Ko (Rt) f 10 (et) ede 

a 0 

2 = -- 11 (at) Ko (Rt), (a < R) 
at 

whereby use is made of some wel1~known formulae of the theory of Bessel 
functions. 

Therefore, the interaction between thc point mass and the disc is as 
if the mass 

2 
q; (a, 0) = - 11 (at) 

at 

were located at thecentre of the disco for all values of the distance R> a. 
This is the invarianee property of the Besse1 function K 0 as referred to 
above. 

It will further be obvious, by twice applying this process of reduction, 
that 

q;(a, b) =q;(a, 0) q;(b,O). 

Hence, the energy of interaction of the two discs under consideration is 
given by 

4 
Ut (a. b: c) = --b 2- 11 (at) 11 (bt) Ko (ct) 

a t 

wh en V(r) = Ko(rt). 
Let us now assume that the given potential function V (r) can be 

represented by an integral of the following type: 

00 

V(r) = I {(tl Ko (rt) dt .. (1) 
o 

Then, since the energy is additive, the mutual potential energy of the 
discs becomes 

4 00 

U (a. b; c) = -b- f 11 (at) 11 (blJ Ko (ct) {(tl t- 2 dt. 
a 0 

(2) 
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2. Expression tor the energy ol two non~o()erlapping discs when 
V(r)= r- n (n > 0). 

The 'generating' function [(tl occurring in (1) and (2) is known for 
the particular potential V (r) = r- n (n > 0), as follows from 1 ) 

1 22- n fCl) 
7 = ~--7 n)-~2 Ko (rt) t

ll-I dt. 
Ti - ~ 

\2 0 

(11)0) 

Consequently, the interaction energy of the two discs in response to the 
law V(r)= r- Il is given by 

, 24- n JOO 
Un (a, b; c) = --~---(~-)·~~2 /1 (at) / 1 (bt) Ko (ct) tn- 3 

dt. (3) 
ab r --2 0 

This function will be discusscd in sections 4, 5, 6, 7 for b = 0, a = b, 
a ~ b 0, b -0 CD, respectively. 

3. Dif.ferential relations. 

Let x, y denote rectangular cartesian coordinates in the plane of a disc 
of arbitrary shape and mass distribution. Then, the potential outsidc the 
disc under action of the Iaw V (r) is given by 

U (x, y) = ff D (~, 1)) V (r) de d1) (r2 = (x- e)2 + (y - YJ)2) 

where the integration has to be carried out over thc surfacc of thc disc, 
and where D(!;, 1)} stands for the 10cal mass density. 

Obviausly, 

Furthermore, 

èJ2 V èJ2 V ~ d2 V 1 dV l 
--Ö$2- + -w = (-dr 2 + ~ dr-) r= l(x-~)2+(Y-YJ)21'1; 

We have thus proved the following 

Theorem I: 

If U is the potentialof an arbitrary disc in response to the potential 
law V (r), then 6 U is the potentialof the same disc in response to the 
law V"(r) -I- V'(r)/r. 

Especially for centre~symmetric discs, 6 U = Uf! (c) + U' (c) / c where c 
denotes the distance from the centre. Wh en in this case the theorem is 
applied twice in successioll, we obtain 

1) Cf. G. N. WATSION, A treatise on the theo~y of Bessel functions, Cambridge 
1922/1944, p. 388, formula (2). 
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Theorem 11: 
If U(a, b; c) denotes the energy of interaction of two non~overlapping 

circular dis cs with centre~symmetric mass distributions under influence of 
the potential law V (r), th en 

• 02U laU 0 ~ 2 0 U ~ 1 0 ( à U) 
U (a,b;c)= oc2 +cac-=4(}(c2nC a(ci)~=~èlc c~ 

is the energy of interaction of the same discs under influence of the 
potential law 

d 2 V 1 dV 
V* (r) = d r 2 + -r- dr' 

This way of reasoning I owe to Prof. N. G. DE BRUIJN. An alternative 
proof of Theorem II is based on the integral representation (2). In view 
of the differential equation satisfied by Ko, the function U* corresponds 
to the generating function t2f (t) when U corresponds to f (t), and, in its 
turn, t 2f(t)corresponds by (1) to the potentiallaw V*(r). In the latter 
way I originally found Theorem 11. 

Theorem II is of particular interest with respect to the potential functions 
r- n since it reduces the interval of n to be investigated to 0 < n <:: 2. For 
greater values of n the function can be found by a process of differentiatlon, 
namely, 

1 ~ 02 lal 
U n +2 (a. b; c)= n 2 (oC2+cac~ U n (a, b; c). (n > 0) . . (4) 

Of course, equation (4) is also easily proved directly from (3) when use 
is made of Bessel's differential equation for K 0 (ct). 

1. The potential energy of a point mass outside a circular disc when 
V(r) = r- n• 

The discussion of the function U n (a, b; c) defined by (3) is compara~ 
tively simple when one of the dis cs reduces to a point mass. In that case 
we have 

23
-

n Joo 
U" (a: 0: c) = al; (i) r, I, (at) K, (ct) "'-, dt. . . . (5) 

This integral is expressible in terms of hypergeometric functions. Wh en 
use is made of the modified WEBER-SCHAFHEITLIN integral 2) it is found 
that 

Un(a.o;c)=c~F(~.~; 2; ::). .• , ... (6) 

In passing, it may be noted th at (6) holds for all values of n, not 
necessarily positive. as from physical considerations it is obvious that 
U n (a. b; c) is an analytic fUl1ction of the variabIe n. 

2) Cf. WATSON, loc. cit., p. 410, formuia (1). 
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For even values of n the function U n (a, 0; c) is elementary. For instanee. 

Uz (a. 0; c) = - ~ log (1-::} . 
Ui (a. 0; c) = (c2_a2)-2 • • • 

U 6 (a. 0; c) = (c2 + l a2
) (cZ-a2t i 

• 

(7) 

(8) 

(9) 

Further, the function is expressible in terms of complete elliptic integrals 
of the first and second kinds when n is an odd integer. For example, let 

us take n = 1; then 

"/2 ":\ j' cos2 g;dg; 
=; -Yl-k2 sin2 g; 

o 
"/2 ,,/2 _ 

= i [(1-- k\)J ,j- dg;. -+ k\Jfï-k2 sTn2 g; dg;] 
n r I-k 2 sm2 g; 

o o. 

= ! ~ ( 1- ~2) K (k) + ~2 E (k) ~ • 
in the usual notation of elliptic integrals. Consequently, 

This result is not new 3 ). 

In a similar way one can evaluate the function Un when n = 3, viz.: 

F( 3 3'2'k2)-~~-JI i(l- )-t(1-k2 tt)-; du ~. -lr·· - r(ï) rm 0 u u 

= n ~ [ (1 - k2)-I E (k) - K (k) ]. 

We therefore obtain that 

When comparing (10) with (11), we see that 

UI (a, 0; c) = (e2 - a2) U 3 (a, 0; c). . • . • • (12) 

3) Cf.. H. BATEMA'N, Partial differential eguations of mathematical physics, Cambridge 
1932 - New York 1944, p. 417, example 2. 



1076 

which might also have been obtained by EULER's transformation of hyper_ 
geometrie functions: 

F(a, b; c; x) = (1 - x)C-a-b F(c - a, C -- b; c; x). . (13) 
The result I found when taking n = 5 is 

. . r 1 + 7·<:: 1 + 3 a
2

. l 
U, (a. 0, c) =9-;, 1, cf I (1 =-::),E (:) -(l~i) , K (:) J (11) 

Generally, 112m+l (a, 0; c) (m = non-negative integer) is expressible as 
a linear combination of E (ale) and K (ale) with coefficients rational in alc. 

It is very interesting th at also for half-integral values of n the function 
U n (a, 0; c) is expressible in terms of elementary functions and complete 
elliptie integrals. This is easily proved with the aid of KUMMER'S relation4): 

F(t,-~;2; sin28)=F(·~,~·;2; sin2·~8) . . (15) 

The hypergeometric function on the right has already been evaluated; 
therefore we have at onee: 

. (16) 

Moreover, the relation (15) immcdiately leads to thc following interesting 
equation 

. . (17) 

When n = '1- the ca1culation runs as follows. First, by EULER'S trans­
formation (U), 

and, consequently, 

Uda. 0; c)=(c2-a2)-~ U: (a. 0; c) .. .... (18) 

which is known by (16). 

Ta determine Ut (a. 0; cl, 1 ance more apply EULER's transformation 
(13) : 

4) Cf. E. T. WHITTAKER-G. N. WATSON, A course of modern analysis, Cambridge 
1935. p. 298. example 12. 
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whieh leads to the relation 

U:(a, 0; c) = (eZ - a2): Uf(a. 0; cl. . . . . . (19) 

On the other hand, we have by (4) 

U~ (a. 0; e) = ~ ~ àà~ +~. Cl~ë~ U~ (a. 0; cl· 

ConsequentIy. both U} and U t are expressible in terms of elementary 
functions and complete elliptic integraIs; and sa is Um_} (a, 0; c) for any 
positive integer m in virtue of (4). 

5. The case of equal radii. 

In the se<wnd place 1 sha11 eonsider the function U n for discs of equal 
radii: a = b. Thus 

24- n [m 
U, (a. a, c) = :;V( i) r ; Il (at) K. (ct) eH dt. . (20) 

The function (20) ean be evaluated in terms of the generalized hyper­
geometrie function 3F2' To prove this, Iet us expand 5) the square of the 
Bessel function into aseending powers of t, viz.: 

and integrate term by term. One th en finds that 

That is to say. 

Uf! (a. a; c) = In 3F2 (~. ~.~; 2. 3; 4c~2) •. ... (21) 

w hieh. as (6). is true for all values of n not necessarily positive. 
As in the preceding seetion, the function is elementary when n is an even 

integer. Partieularly simple are the cases n = 4, n = 6, since thcn the 

5) Cf. WATSON. loc. cit., p. 147, formula (6). 
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generalized hyper geometrie function (21) reduces to an ordinary hyper~ 
geometrie function, namely, 

Now, 

Ui (a, a; c)=~' FC~, 2; 3: 4;2), 

1 

F(~, 2, 3; x)= 2J u (l-xu)-~ du, 
o 

whieh is easily integrated. The result is found to be 

U. (a, a; c) = ;. V 1_1-4_c-a_22=- j 1 + /1_ i?~ r 
Moreover, by EULER's formula (13), 

F(~. 3; 2; x) = (1- x)-! F(}. -1; 2; x). 

• . (22) 

The hypergeometrie series onthe right consists of two terms; accordingly, 

a 2 
1--

1 c2 

U6 (a. a: c) = ~ ( -4 a2_)';' • • • • • • (23) 
1---

c2 

The evaluation of U 2 (a, a; c) can be accomplished by an integration, 
either by means of (4:) or more directly as follows. First, it is easily 

verWed that 

~ I X 3F2 (~. 1. 1; 2. 3; x) 1 = F (~" 1: 3; x) 
dx 

=(1-X)tF(~,2;3;X)=L -+ ~l-Xr 
= _ 8~· ~ _-.l-= + log (1 + V i-x)~. 

dxU+Vi-x ) 

Therefore, upon integrating while suitably accounting for the constant of 

integration, we obtain 

, 8 ~ 1 (1 + VI=- x) l 
3F2(4. 1.1: 2. 3; x)=x{t-l+71~;-IOg --T- ~ 

from whieh it follows th at 

Uz (a. a: c) = ~2[ 1---~ 4~2- 2109~ 1 + V~-4;~n· . (24) 
1+ VI-ez -----2-

The analysis is much more complicated when n is an odd integer. As a 
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matter of Eact, only the case n = 3 seems tractable; that is to say, I have 
not been able to sum the series (21) wh en n = 1, this of course being 
possible for n = 5, 7, ... , in virtue of (4), on ce U 3 (a, a; c) is known. 

To evaluate U 3 (a, a; c), I use a relation due to CLAUSEN 6); it follows 
Erom this relation that 

F (8;1 3·2 3'x)-IF(3 ~'2·x)!2 3 2 -2' 2-' -2- ~ , t - 4 t '4' , S· 

Therefore, 

U3 (a. a: c) = ë~ ~ F ( {. i; 2: ~~2) r. 
On comparing ,this with (6) we see that 

U3 (a. a: c) = I Ud2a. 0; c) 12 
• • • • • • (25) 

Consequently, Erom (16), 

U 3 (a. a; c) = -;6~ [E (k)-(I-P) K(k)F. .. . (26) 
na 

wh ere the modulus of the complete elliptie integrals is given by 

k = }2 ~ 1-V 1- 4C~2 r. . . . . . . (27) 

It may be remarked that (26) is equivalent to 

]Iî(xt)Ko(2t)dt=1~~P=HVl-x2( .... (28) 

(-l<x<l) 
whieh is c10sely related to MEijER' sintegral representations of the product 
of two ~egendre functions 7). 

6. The case of unequal discs. 

In this section, the function U n will be investigated for general values 
of a and b. However, n will again be restricted to integers since I have not 
succeeded to evaluate the integral (3) for other values of n, apart from 
the fact that (3) is expressible in terms of ApPEL L'S hypergeometrie 
function F4' viz.: 

U n (a. b; c) = ~ Fi (~. ~; 2. 2; :: .~~ ). . (29) 

whieh is readily proved by expanding 11 (a t) 11 (b t) into ascending 
powers of tand integrating term by term 8) . 

To begin with, let us take n = 4. Then from (3), 

1 00 

Ui (a. b; c) = -b J 11 (at) 11 (bt) Ko (ct) t dt. 
a 0 

6) Cf. WHITTAKER-vVATSON, loc. cit., p. 298, example 11. 
7) Cf. C. S. MEIJER, Nieuw Areh. Wiskunde 19, 207-234, 1938. 
8) For the definition of ApPELL's funetion. cf. P. ApPELL-J. KAMPÉ DE FÉRIET. 

Fonetions hypergéométriques et hypersphériques - ,Polynomes d'Hermite, Paris 1926. 
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This integral can be evaluated with the aid of aresult due to MACDONALD 9)1 

J KI' (at) Jv (bt) I,. (et) tf<+l dt = - ~I" cos y n (Xl -l)-i 1'-* Q~:t:t (A) (30)·· 
o y2n(be)f<+lsin(,u+Y)n' 

in which 2 b eX = a2 + b2 + e2 and Re (a + i b + ic) > 0; Q is the 
Legendre functionof the second kind in the sense of BARNES. 

As is wel! known, the right~hand side of (30) can be: written in terms 
of hypergeometrie functions. The result is found to be . 

Upon taking ,u = 0, 'jJ = 1 we obtain 

00 1 t Ko (at) 11 (bt) Jl (et) tdt = 4 bcX2 F (~, 1; 2; X-2) 

1 

= -4b~X2,[ (1--;2 f! dl1 =2~d (1- ~2 ft-l ~ . 
o 

Now replace a, b, c by c, i a, i b respcctively. It has thus been proved th at 

f I 1 (at) 11 (bt) Ko (et) tdt = 2~b [ ~ 1- (C2 4:~~~ b2)2 - fl_l ] ' 
and, consequently. 

As is easily verified, formula (31) is in accordance with the special case 
a = b given before at (22). 

For greater, even, values of in the function U n (a, b; c) can be calculated 
by differentiation of (31) in virtue of (4). Omitting the rather tedious, 
though elementary, intermediate computations, I merely state the Hna! 
result when n 1= 6: 

. . (32) 

which, by the way, is in complete agreement with the result obtained by 
DUBE and DASGUPTA 10). 

Whereas U G has been obtained by differentiation of U 4 , the function 
U 2 can be calculated by the inverse process, that is, by integration of 

u ( b. ) - à ~ 2 àU2 (a, b; en 
4 a, ,e - (f(e2) ( -0-(c2) - f 

9) Cf .. WATOON, loc. cit., p. 412, formula (6). 
10) G. P. DUBE and H. K. DASGUPTA, On the London-Van der Waals forces between 

two disc-like particles, lndian J. Phys. 13,411-416, 1939. 
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For this purpose, let 

u=c2 ; W(I1) = YI1 2-=} (a 2 + b2) 11 + (a 2-b2f. 
Then, by integrating on ce, 

u 

a i) Uz - ~l __ -J ~ ~-a2-b2 -1 ( dt 
à u - 2a2 b" ~ W(t) ~ 

= 2a! b2 [a 2 + b2-u + W (a)]. 

where thc constant of integration has been chosen so as to make u àà~2 
vanish at infinity (as a matter of fact, this condition is sufficient; the 

more stringent, and physically necessary, condition 11/!(j~2_) - 1 (11 -) co) 

is then automatically fulfilled). 
Further, a second integration yields: 

2 2b2 U W() + 2+b2 (2' b2)1 ~W(u)+u-a2-b2l a 2 = U -/1, a - a T og f----zu---~ 

where the constant of integration is taken such thai U 2 ( co) = O. 
l\IIoreover we have 

(a 2_b2)2 J ~i_ = _I aZ-b2lIog ~ ~(a2+ b:L-(a2-b2)2=-J~-b2U;V(I1) <. 
00 t W(t) (U (a2 + b2 -I aZ_b2 !) ~ 

Accordingly, the final result is found to be: 

U2 (a. b; e) =} a!Z;:Z [ W -e2 + a 2 + b2_(a2 + b2
) log ~ W + c;~a2=b2 ~ -

2 2 ~ c2 (a 2 + b2
) - (a 2_b2

)2 ---I aZ-b2
1 W ~ J 

-Ia-b Ilog{ c2(a2+b2-la2_b21) ~ 
, (33) 

in which W is an abbreviation for 

. (31) 

As may have been anticipated hom sectio11 5, the function Un (a, b; c) 
is expressible in terrns of complete elliptic integrals when n is 311 
integer greater than 1. 

To begin with, let us take n = 3. Then, the fourth type of ApPELL's 
hypergeometric function of two variables reduces to a product of two 
ordinary hypergeometric functions. as follows from BAILEY's formula 11) 

F4 (a.b;e,a+b-e+ 1; x(l-:-y), y(l-x)) = 
:= F(a, b; c; x) F(a, b; a + b-c + 1; y); 

11) W. N. BAILEY, Generalized hypergeometric series, Cambridge 1935, p. 81. 
4{1 
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namely, 

F~ (t, ~-; 2, 2; x (l-y), y(l-x)) = F(ï,~-; 2; x) F(t, i: 2: y). 

Since the remaining ordinary hypergeometric function is known from the 
preceding section, we at once have 

in whieh ithe moduli of the complete elliptie integrals are defined by 

ki (l-k~) = lJ,2/ c2, 

k~ (i-kÎ) = b2 f c2
; 

thus 

• • (36) 

where W is as defined in (34). 
It is to be remarked th at (35) is completely symmetrie in a and b; 

further, it reduces to (26) when a = b. 
By means of (4), the functions U 5' U 7' ... , can be expressed in terms 

of elliptie integrals also. Unfortunately, I have not succeeded to sum the 
series (29) in the newtonian case n = 1. 

7. Energy af interactian between a circular disc and a half~plane. 

In conclusion, it may be worth while to consider briefly the degenerated 
problem of one of the discs becoming infinitely large. Thus, let us calculate 
the mutual energy of a disc of radius a, of homogeneaus mass distribution 
and tatal mass equal ta 1, and a homogeneous half~plane of mass density 
equal to 1. 

Let 6 denote the distance between the centre of the disc and the 
boundary of the half~plane. Confining ourselves to the warle function 
V(r) = r- n (n > 2), we have for the energy in question 

Uil (a; 6) = lim I :rIN Uil (a, b; 6 + b) I (37) 
b-+oo 

This limit is most easily evaluated by replacing the functions 11 (b t) and 
J( 0 (c t) in (3) by their asymptatic expressians for b t -'" co. The result is 
found to be 

23- 11 n 00 

", (a: 6) = a )1' (~) r [ CM I, (at) t'---' dt (38) 
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The analogue of the differential relation (4) is very simpIe; it now 

cannects the functions of orders n and n + 1, namely, 

• _ 1~ T(~) r~~ 
un+t{a, 6)--, (T(n~~) ~ 06 

. . . (39) 

as is readily verified by differentiation of (38) with respect to 6. 
The integral (38) is generally expressible in terms of Legendre func~ 

tions: 

In terms of hypergeometric functions, one has 

",(a: 6) = (2Á)H !~((~ )21'- F (" /. "ZI: 2: ~:), . (41) 

or, aIternatively, 

n T(n-2) F (n-2 ~_=-n. 2- _ a
2 

) (12) 
un(a:6)=(2(62_a2)n-2 ~T(~)f 2' 2 • , 6

2
-a

2 
I 

Iby means of whieh the function Un (a; 6) is easily evaluated for integral 
values of n. The latter functions are elementary; for instance, 

U3 (a; 6) = 6+ -V li 2_82' 
(13) 

Ui (a; 6) = ;':2 ~ -VL~ a 2 -1 ~. (44) 

4: 1 ) 
Us (a; 6) ="9 (62-a2)'/;' • • • • • • • • (15 

3n 6 
U6 (a: 6) = 32 (62-a2.)5/, • 

4 162 +a2 

U7 (8; 6) = 75 (62-a2)'/,' 

. • (46) 

(47) 
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