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dently had a swelling influence) in a NaCl diffusion field. The assumption 
is made here that the addition of urea and résorcino1 in these experiments 
did not inf1u~nce the qualitative behaviour. This appears to be justified by 
the fact that the pres en ce of these non electrolytes did not qualitatively 
alter 11) the general characterisNcs of the complex coacervation, the lat ter 
depending so1eIy on the interaction of the electric charges of both macro~ 
molecular colloids. 

Summary. 

1. Drops OL complex coacervates, suspended in their equilibrium liquids. 
show a number of morphological phenomena in the electric field. These 
phenomena are described in greater detail than hitherto published. 

2. In a previous article it was supposed that in the explanation of the 
motory phenomena 10ca1 changes of the interfacial ten sion (a) coacervate 
medium might play an essential part. It was assumed that these changes 
of a would be due to pH changes by polarisation of the surface of the 
drops. Experiments were therefore carried out in order to demonstrate 
these pH changes in gum arabic (A) ~gelatine (G) coacervates. 

3. No changes in pH could be proved, which may be due to the use of 
buffered stock sols. These experiments however indicated th at in the electric 
field gum arabic is accumulated at the anodal and gelatine at the cathodal 
side of the drop in consequence of e1ectrophoresis of these components 
within the drop. As most of the indicators we used in these experiments 
were found to have "protein errors"·, on account of which systems rkh in G 
had another colour than those rkh in A, these shifts of the mixing propor~ 
Hon on bath sides of a drop manifested themselves in slight colour differ~ 
ences of the parts of the drops facing the electrodes. 

4. It appears from now available data concerning a that these changes, 
and not, as far as is now known, changes in pH, can be held responsible 
for the a~variations postulated for the explanation of the motory 
phenomena. 

5. Moreover it is demonstrated that the changes in mixing proportion 
themsclves are a1so important factors in thc explanation of a number of 
the socalIed desintegration phenomena. 

6. Starting from the results of these experiments and the data on a 
exp1anations have been given for the greater part of the morphological 
phenomena that have been described. 

Laboratory tor Medical Chemistry ot the University, Leiden. 

11) H. G. BUNGENB'ERG DE JONG and E. G. HOSKAM, loc. eit. (1942). 

Mathematics. - The GfOwth~Curve. By J. W. N. LE HEux. (Com~ 

municated by Prof. A. PANNEKOEK. ) 

(Communica!ed at the meeting of October 25, 1917.) 

1. In T. BRAILSFORD ROBERTSON'S "Chemical basis of Growth and 

Senescence" (No. 1) the growth ~~ of an organism N in a time t is given 

by an equation of the form 

dN 
dt =N(b-aN) 

where a and bare constants. Introducing the maximum value of 
b N = ~ = A, we get 
a 

with the solution 

or 

cid~ =aN(A-N)= bN (1-~) 

eb (f.-l,) 

N = A 1 + eb(t-t,l 

ti is the time, corresponding to N = 0.5 A. 
Now, sets of values 'for N and t being given by experiment and 

admitting, that the given relation holds true, the most probable values of 
the constants A, band t1 , may be calculated by ,the method of least squares. 

In this way and using ordinary logarithms, ROBERTSON finds f.i. the 
equation 

1°10g 320~ N = 0.127 (t-1.57) 

from the following experimental data: 

weight of male British infants in ounces 

148 169 194 219 234 252 269 276 283 300 303 314 

time in months 

2 3 4 5 6 7 8 9 10 11 12 

If - as aften occurs - 0111y an approximate comparison of theory and 
observation is required, the constants may be found in a much shorter way 
by using a graphical method, that will be described in the following lines. 
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This method procures a quick and easy way to test a given graph (if a 
relation of the foregoing form is suggested) by the construction of the 
growth~curve or sigmoïd 

eb (f-f,) 

N = A 1 + eb (f-f,) 

in form well~known from different publications on biological and chemical 
subjects, but whose application seems largely to have been overlooked. 

In a recent work on empirical equations (No. 2) the author says: "Some 
data take the form of an elongated S when plotted, thecurve being 
characterized by a very small initial slope followed by a period of rapidly 
increasing slope which gives way to an interval of nearly constant slope 
succeeded by aperiod when the rapidly decreasing slope approaches zero. 
The growth of population and production statistics for iron and steel and 
for rayon are typical of this c1ass. In the case of the manufacture and sale 
of some new product, con su mer acceptance is slow at first, as shown by 
the small slope of the sales~time curve. Advertising increases the slope 
greatly. Later a period of stabilization is encountered and the sales~time 
curve levels oH. The Gompertz equation 

y = abcx (or y = a + abCX
) 

has been found to be satisfactory in representing such data ". 
Especially in questions of growth of living organisms, the sigmoïd, that 

is not at all mentionned here, should be preferred to the Gompertz curve. 

. eb(t-t" 
2. ConstructIOn of the curve N = A 1+ eb (f-f,) • 

The plotting of the scale ~. (growth~scale) with modulus A ag ainst 
1 +en 

a regular t~scale ( n~scale with modulus i) on ordinary coordinate paper 

results in a S~shaped curve, well~known as "sigmoi:d" or "logistic" or 
"growth~curve" . 

Raising the horizontal t~axis over 0,5 A, the equation becomes 

ebt -1 bt 
N' = 0.5 A ebt + 1 = 0.5 A th 2 

proving, that growth, as defined by the equation 

dN 
-dt- =N(b-aN) 

may be expressed by a tangens hyperbolicus. 

Prom a nomographical point of view, the scale A -1 el! is a projective +en 

scale. It may be obtained by projecting the graduations of the scale en 
(n from - co to + co) on a horizontal axis 0 X from the centrum (-1. A) 
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on a vertical axis 0 Y (fig. 1). The result is a symmetric scale, for the 
eP e-P 

graduations 1 +e
P 

and --- are equidistant from the centre of the 
1 +e-P 

scale, because 

eP 1 e- P 

A 1+ep =Ae-P +l =A-A l+ép' 

Consequently, to construct this scale only the part 0 -1 (n from - co 
to 0) needs to be projected. 

A plot of this symmetric scale against the regular t~scale shows a curve, 
that being turned about itscentre through an angle of 1800

, is in~ 

distinguishable from the original curve. 
The sigmoïd is of use in the two following problems: 

Ie. The testing of an experimental smooth curve through plotted points 
and the determining of its equation. 

2e. The construction of the curve, given by an equation of ROBERTSON 

1010g A N-N = b (t- tI)' 

3. In the first pI ace, we suppose, that a rather great number of data is 
known, as in the case already mentionned: 

weight of male Brit~sh infants in ounces 

148 169 194 219 234 252 269 276 283 300 303 314 

time in months 

2 3 4 5 6 7 8 9 10 11 12 

These data refer to the first or infantile cyc1e - the second or juvenile 
and thethird or adolescent cyc1es of human growth are partially fused 
with one another and do not permit of such precise formulation as the 
infantile cyc1e. The analysis of such a complex curve into its constituent 
cyc1es, each defined by three mutually independant parameters Al' b 
and tI is - as ROBERTSON remarks - a matter of considerable difficulty 
and tedium. 

The conclusion of the first year of post~natal growth in man coïncides 
approximately with the conclusion of a cyc1e of growth and therefore, the 

existence of the relation ~~ = N (b - a N) may be suggested. 

The average weight of British male infants at 12 months of age is 314.3 
ounces, hence we may take A as being 320 ounces. 

0.5 A = 160 ounces is reached in a time tI 
160 lies between 149 (1 month) and 169 (2 months). so 

160-148 
tI = 1 + 169-.148 = 1.57 months. 

On rectangular axes 0 X and 0 Y (fig. 2) a line P Q parallel to 0 Y is 
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10cated at a distance tI = 1,57'lcm from O. The length of P Q = A = 320 
(16 cm). Now a growth~scale 1:$ laid oH along P Q. This growth~scale is 
taken from a "modulus~chart", which must be prepared beforehand in the 
same mannel' as a logarithmic moduIus~chart in nomography. The con~ 
struction is as follows. Because the growth scale is symmetrie, mark oH 
half such a scale with a modulus of 40 cm along the line AB (fig,. 3). 

The graduations are found by construction or by calculation from 
e-n e-6 

N = 40 -1 -- and for values of n from 0 - 5 (because 40 1 + 
+e-n e-6 

'" 1 mm) with subdivisions of 0.1. 
Project a penciI of lines from the graduations on AB to the point C, 

20 cm from A B on a line at right angles to A B in B, bearing a haIf~ 
centimeter scale. The slant lines wil! cut the vertical modulus lines in scales 
of moduli between 0 and 40 cm. 

For practical use, the chart is cut into two parts, whieh are rejoined as 
in fig. 3. 

When no modulus~chart is disposable, the points numbered - 5, - 4 
...... 0 ...... + 4, + 5 are sufficiently located by the distances 1, 2, 5, 12, 
27,50,73, 88, 95, 98, 99 from the point (- CD) for a modulus of 100 mmo 

Through the dividing~points of the growth scale on the line P Q lines 
are drawn parallel to the X axis. 

. 1 
The regular t scale on the X axis has a modulûs b' 
Suppose that B (t - tI) = 1 for t = t2 • 

e 
Then N = A l+e = 0.731 A = 0.731. 320 ounces = 234.24 ounces 

( 11.7 cm). 

t2 is calculated from the data in the same manner as tI' 
234.24 lies between 234 (5 months) and 252 (6 months). 

234.24 - 234 1 
So t2 = 5 + --------- = 5 013 months and t2-t1 = 3 44 months =-252-234 . . b' 
Now, the X axis must be divided in equal parts of 3.44 cm with the 

zero~point in Q. 

Drawing lines through the dividing points paralIel to 0 Y and joining 
up the interseèting points of corresponding lines by a smooth curve, the 
sigmoïd, corresponding to the data, appears. Fig. 2 gives a comparison 
between thc observed and the constructed values of N. 

Extrapolation is not permitted: about the epoch of birth, there is a 
slight arrest in growth and for the pre~natal months, this curve has no 
,significance. 

From ~ = 3.44 it follows, th at b = 0.29 and as we have found A = 320 

and tI = 1.57, thc equation becomes 

elog 320
N 

N = 0.29 (t-1.57) 

Fig. 3. Modulus-chart for growth"scale. 
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or 

101 N og 320-N = 0.434 X 0.29 (t-1.57) = 0.128 (t-1.57). 

ROBERTSON finds with the methad of least squares for b = 0.127. 
Instead of calcu1ating the values of N from the equation. the lengths of 
the ordinates may be measured in the carefully drawn curve, using the 
growth~scale with graduations of O.l. 

4. In the second place we suppose, that a given graph gives rise to 
the question, wh ether this curve may be a sigmoïd? 

The S shaped curve has two parallel (horizontal) parts with a di stance 
A. If the (shortened) parts are nearly parallel. we must take in this "trial 
and error" method a possible value of A. 

The X axis is laid along the lower part and a vertical axis through the 
intersecting point of the curve with the line Y = 05 A. 

A growth~scale with the modulus A is laid oH along the vertical axis 
and through the dividing points 1,2,3,4 and 5, horizontallines are drawn 
till they meet the curve. If the lengths of these lines are also in ratio 
I, 2, 3, 4 and 5, the curve will be a sigmoïd. In fig. 4, this method is 
applied to the curve of pre~natal growth (length) of child in THOMPSON's 
"on Growth and Form", according to HIS'S dates (the same curve in Ency~ 
elopaedia Britannica, 14th ed. vol. 10) (No. 3 and 4). 

THOMPSON writes: "a beautifully regular one, nearly symmetrical on 
either side of the point of inflexion. A curve, for which we might weIl 
hope to Eind a simple mathematical expression" . 

This hope can be realized. Fig. 4 shows, that the lower part fits exactly 

a sigmoïd with a time~unity measured in the figure ~ = 1.2. It is impossible, 

to find a combination of the same growth~scale with a regular t~scale for 
the upper part of the given curve (points 5 - 10), but WE7 see that, omitting 
point 5, the points 6 and ~4 belong to the same curve as points 1 - 4, while 
the points 7, 8 and 9 fit another (dotted) sigmoïd with a time unity 
1 IJ = 1.4. So this graphical method suggests the idea of a variabIe b: by 

one reason or another, its value may change into another during a certain 
interval and return to the initial value. 

In fig. 4, A = 500 mm, ti = 5 months, i = 1.2 months, b = 0.83 

1 
(for IJ 1.4, b = 0.71). The general equation is 

eO. 83 (f-') 

N = 500 1 + eO•83(f-,j 

with the restriction, th at 0.71 must be taken instead of 0.83 in the interval 
t = 6 to t = 10. Fit for calculation: 

101 N _ ( og 500_N-0.36 0.31)(t-5). 

1207 

Another instance is the graph for pre~natal growth of child in weight 

(af ter Vignes, fig. 5). 
The modulus of the growth~scale A = 3500 gram, ti = 7 months. 

or 

The lower part is exactly a sigmoïd with i = 1 month, b = 1. 

1 
The upper part is nearly a sigmoïd with IJ = 0.7, b = 1.43. 

The equation is: 
e(t-7) 

N=3500 1 +e(H) 

1010g 350~-N = 0.434 (t-7) 

with 1.43 t instead of tand 0.621 instead of 0.434 for the last th ree months. 
An inquiry into the growth of Phycomyces (fig. 6a after ERRERA, 

Nr. 6) shows a complex curve with a first cyele of slow growth ending 
when the production of a sporangium beg ins and a second cycle of very 
rapid growth 1) . 

We will try to find a sigmoïd, corresponding to each cyele. 
According to the given numbers, the first curve may have a maximum 

value A = 85 mmo Now the second sigmoïd is plotted by diminishing 
the ordinates of the original curve with 85 beginning with t = 24. We 
find A 2 = 125 -.:...... 85 = 1165 mmo 

On a vertical axis through the intersection~point of the dotted curve 
with the line y = 05 A 2 = 57.3, a growth~scale is laid oH with a modulus 
1165 and horizontal lines are drawn through the dividing points till they 
meet the dotted curve. Evidently, it is impossible to get a regular t~scale 
for the whole curve, but here also the graphical method enables us to 
see, what is not revealed by calculation. The dividing point 1 of the 

1 
growth~scale suggests a modulus IJ = 7.2 for the t~scale (above the point 

of inflexion) and this modulus fits the inner part of the dotted curve, 

while the outer part corresponds to a modulus i = 6 (below the point of 

inflexion) . 

For the first sigmoïd Al = 85, ti = 12, ~l = 3 (as read from the 

graph), bi = 0.33. 

For the second sigmoïd A 2 = 1165, ti = 53.4, ! = 6 (7.2), b2 = 0.167 
b2 

(0.139). 

~) I am indebted to Prof. Dr. V. J. KONINGSBERGER for in forma ti ons about 

Phycomyces. 
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Fig. 6b shows the two curves 

e O•33 (t-12) e O. 167 (t-53.4) 

Np = 8.5 l-t=-;o.33(t-li) + 116.5 1 + e O. 167 (t-53.4) 

and 
eO•33 (t-12) e O•ll9 (t-53.<) 

N q = 8.5 1+ eO.33(t.-12) + 1,16.5 1+ eO.139(t-53.1) 

with the experimental data, partly belonging to each curve. For cakulation, 
we have: 

101 NI 
og S:S-="-N

I 
= 0.143 (t-12) 101 NI - 43 ( . og 8.5-N

I 
-0.1 t-12) 

1010g IT6.f2 N
z 
= 0.07 (t-53.4) 

Np=N I +Nz 

1010g 116.~~ N
z 
= 0.06 (t- 53.4) 

Nq=N I +N2 • 

0.143 = 0.434 X 0.33 
0.434 = IOlog e. 

0.07 = 0.434 X 0.167 0.06 = 0.434 X 0.139. 
A comparison between calculated and observed lengths of Phycomyces 

gives: 

first day second day 

hours 6 12 18 24 6 12 18 24 

1 b! b = 0.
07 11.1 4.5 7.8 9.5 11.1 15.2~ 21.1 42.9 engt 

. observed 1.25 '4 7 10 10.5 14 ~ 28 48~ 111 mmo b = 0.06 1.2 4.8 8.3 10.5 12.9 18.1 28.4 46 

third day 

---- --.... 
hours 6 12 18 24 6 

len tb j b = 0.07 69.6 95.1 111.5 ~ 119.4 122.8 ~ 
. 9 observed ~ 69 90 107 ~ 120 124 
111 mmo b = 0.06 69.2 91.6 107.6 116.7 121.1 

5. The construction of the complex curve 

101 NI 0 ( og 185-1V~ = .0252 t-69) 

l0l N 2 _ ( ) og 90.5-N
2 

-0.01125 t-170 

N=N I +N2 

found by ROBERTSON for the growth in weight of male, unmated white 
rats, measured by DONALoSON, runs as follows: 

e10g 18:'7v;- = 2.3 X 0.0252 (t-69) = 0.058 (t-69). 
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1 
bi = 0.058 b; = 1725. 

elog -90.~2 N
2 
= 2.3 X 0.01125 (t'-170) = 0.026 (t-170). 

b2 = 0.026 
1 

b'; = 38.6. 

Axes 0 X and 0 Y at right angles. 
Construct the growth~scales with moduli Al = 185 and A 2 = 90.5 on 

lines P1Q 1 and P2Q2 parallel to 0 Y on distances of 69 and 170 from O. 
1 1 

Construct regular scales on 0 X with moduli b; = 17.25 and b; = 38.6 

with zero~point resp. in Q1 and Q2' Draw the curves by joining up points 
of intersection of corresponding lines through the graduations on 0 X 
and 0 Y and add the ordinates with the same abscissae. 

Of course, one cm of the X axis may represent another number than 
one cm of the Y axis. 

6. Conclusion. 

In man)' cases, growth may be defined by the equation 

A is the constant maximum value of N, dependent upon nutritional 
and other conditions, constituting the environment of the growing organism. 

B expresses the specific velocity of the growth~process itself. Commonly, 
it has the constant value b but sometimes a slight alteration is possible 
during a certain period of the growth~process. 

Thc. relation between N and t (b constant) is 

eb (f-til 

N = A 1 + eb(t...:.t;) 

t, is the time for reaching half the maximum. 
To construct this "growth~curve", plot a growth~scale with a modulus A 

, 1 
from a modulus~chart against a regular scale with a modulus b' 

The coordinates of the point of inflexion are (tI' 0.5 A). 
To calculate the constants hom the experimental data for N and t, the 

following scheme may be used 

O.5A= .. . 

O.731A= .. . 

1 
tz-tl =t; b= ... 
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Ta cakulate N far a given t: 
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Fig. 1. The symmetrie growth-scale. 
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Fig. 2. Post-natal growth in weight. 
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Fig. 6. Growth of Phycomyces. 
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