FMathematics. Extension of PEARSON's Probability Distributions to tiwo
Variables. II. By M. J. van UVEN. (Communicated by Prof. W, vay
DER WOUDE.) '

(Communicated at the meeting of October 25, 1947.)

§ 2. Classification of the probability density functions.
The nature of the solution of eq. (1) depends mainly on the structure
of the denominators G and H, especially on their having common factors
or not,
So the density functions ¢ will be classified according to the degree
and the mutual divisibility of G and H. Thus we can distinguish:

I. G and H have no common factors, with the subdivision:

a) Both G and H indecomposable; b) G indecomposable, H == BC
(resp. G = AC, H indecomp.); ¢} G indecomp., H = B2 (resp. G = Az,
H indecomp.); d) G=AC, H=BD; ¢) G=A2 H=BD (resp.
G =AC H=B2);1{) G=A2 H =582 g) G indecomp., H =B (resp.,
G = A, H indecomp.); h) G =AC, H=DB (resp. G = A, H = BC);
i) G=A2 H=DB (resp. G=A, H=B2); j) G=A, H=8B; k) G
indecomp.,, H=1 (resp. G =1, H indecomp.); 1) G=AC, H=
(resp. G=1, H=BC); m) G=A2 H=1 (resp. G =1, H = B2);
n) G=A H=1 (resp. G = 1, H = B).

II. Both G and H quadratic with one common factor:

a) G=ACH=BC;b)G =A2 H=AB (tresp. G=AB H =
III. G and H quadratic and identical:

a) G =H indecomp.; b) G=H = AG;

IV. G quadratic, H linear factor of G (resp. H quadratic, G linear
factor of H) .

a) G=AC, H=C (resp. G =C, H=BC);
(resp. G = B, H = B2).

V. G and H linear and identical: G=H —= C.

- Be),

c) G=H = Az,

b) G=A2, H=A

VI. Both G and H of degree zero: G=H = 1.
The above types will be submitted to condition (2):
op 0@ H_,0G G . oH
Hay Gax G:Pag Han

of which the left member is a whole function. The demand that also the
right member shall be whole therefore restricts the possibilities for G, H,

P, Q
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~ In many cases it is simpler to integrate algiq) g directly over x and
. - . : Q .dloge
to determine the additive function of y from the shape = of 5 .
y

Type I. As G and H have no common factors, condition (2) can only be
satisfied by

oG o
o 0 (orG=G)), P (or H=H,)
oP 0Q . .
whence H EE—GB—; = pH—q,G = 0.
As g‘— —=P2 — (onst. has been excluded, there remains
H ¢
opP 0
92:5"520(01' P=P) Q1:’(3%:0(01'Q:Q2)’
So we obtain
dlogp P, Odloge _ 92
ox = Gy’ dy T H,’
whence
1og<p—fG‘ dx+f dy =log ¢, (x) + log @, (y)
and

pxy) = (x) 9y (20)
Here x and y are mutually independent (their correlation coefficient is
zero). According to the subdivision a) ... n) ¢, and ¢, are of various
Pearsonian types.
Type Ila) G = AC, H=BC.
Here condition {2) is reduced to
oP ) _A ( COQ

B(C —«—-P BC 0A AC
ox

dy T Ay B an

oG\ _
ox

Since the left member is a whole function, the right member must also
be whole.

Therefore:
%:O, or A=A, =a, -} ax and gB—“O or B=B,=b,+b,y.
We now get
p:C—c, P=14,, ¢ C—c,Q=1B8,
whence
—Prg_* =gt
P__CZC CzAl, Q_.CIC cle.
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So putting
__ D _ —
/ul—aICZ’ ILLZ_szl’ {u‘?’—‘CICz’
alogtp P a ¢ Ologey  Q b cy
whence

log ¢ = py log A -+ palog B, + 3 log € 4 log K, or
Type l1a)G =A,C, H=B,C: ¢=K,A,“B,*C" . . (20)ns))
Type IIb) G = A2, H = AB. '

For condition (2) we can now write

oP oQ B ,0A A 0B
B__ ey e
5 Pox '*“Qa 22 P53 78 s
Consequeritly
0A oB
6;-—-0 or A= AI__ao+a1x, 6—x:O' or B==B; = b, + byy,

— — —b b
andQ:q°+q1x+q2y:%A1ﬂg—fB2, orqozaoq#@, qzz—wf—f—z.
1 1

Writing P = po + pyx -+ poy in the form P = usa;A; + a;Dy (whence
pe = aydy) and putting up =

b (whence Q = uobyA~—dsBo),
a
obtain i .
dlogg P dlogA, 9 (D,
ox A MTde T ox Al)
aloggu: Q :,uzbz d2 dlogB;_i D,
% AB, B, A, P gy 3y \A, |-
Sé
_ D,
log ¢ = uy log A, + u, log B;—-—X +log K, or
1
D,
Type I b) G=A2ZH=AB,: ¢=K,A*Bye . . (20w

To Dy any multiple of A; (say ¢A;) may be added (by which K, is
multiplied by e?),

Type Il a): G = H indecomposable.

Condition (2) now becomes

1} This density function has been derived by L. N, G. FILON and L. ISSERLISS, and

published by K. PEARSON in his paper: Notes on Skew Frequency Surfaces. Biometrika
vol. V' (1923), p. 224. '
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1. If po—aqy 75: 0, the conic G = 0 passes through the point of inter~

section of ZG and %@ = 0, so through its own centre. Then, however,
x y

it degenerates into a pair of straight lines, which implies that G is decom-

posable, contrary to the assumption. The only admissible solution, there-

fore, is:

2, p;=q,, and 6?(1 6% 4 (const.), or P == ,uaaG Q=un a@? |
dx ég
this gives logp =unlogG +log K, or
Type Il a): G = H indecomposable:
p=K,G*. . . . . . . . (20m?)

This type can be subdivided into two classes (see § 3).
Type lll ba): G=H = AC (A and C real).

Here condition (2) leads to

oPea Q) CcoP—0c Q)
pr—qy = T SO

whence
a,P—a Q = oA, coP—c;Q = oC (@+o = Pr—qi)
Putting

— o _ 0
» ‘ = a;c;—azcy = axcz'—a"
we find
P = ua,C+ pgciA, Q= pa:C + pgc.
So :
algjtp: A% :M%"*‘M%, v algg(p: ]?C :/11%2.“{‘#3%,
log ¢ = uy log A + uglog C + log K.
Hence

Type Il ba)
G=H=AGC @ = KoAnCnm, o o . (20)ms
Type IlIbf): G=H = AC (A and C complex).
Starting from G == ggo + 2g01x + 2goy + g11%2 + 2g19xy -+ go2y?,
we put

goor Hor» ZGoz2 A
A=\g10 G110 Grz)» Aij:‘“—“a T ]25”A00y2+2Aozy_A22' (21)
gij .
g2+ G211+ g22

2)  This type has been studied by K. PEARSON: On Non-skew Frequency Surfaces,
Biometrika vol. V (1923) p. 231.
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Since G = AC, we have

V 2
A =0, so g A= NooDos—Ny2= 0, and Jo=— Dy (y__g_og) .

00

For G we can write G = g4 (x—=xy) (x—x5), where

1 _ 1 —
=g f—(go1 +9129) + V1), = P {—(g01 + g129)—V]24.
A and C being complex, J, is negative, so Agy > 0. Putting J, = —1,2,

we have L=V " (y—%ﬂ) and gy, (% —x) = 2i{1,.
00

Thus

gu (v—x1) =(go1 +gu x+ gray)—il, =pe ¥,
g (x——xz) (901 +911x+912y) + il,=ge*?,

XXy e 200, cot 0_g01+g11x+912y
x‘_xz IZ

Integrating

aloqu:P po—[—plvx-f—pzy over x, we find

0x G gnle—x)(x—ax,)

logq):Zg log G +(911P0 go1P1) — (9121?12911?2)!].log(x—_—x;>+f(y)‘
21911VA00 (y—ﬁi)

dloge Q_ Q X2
A fadunad}
s oy —H-G must be algebraic, the factor of log <x—x2) must

be a constant, hence also

(Qn Po—go1 P1) — (912P1‘“911Pz) y
w(y) = A
02

T Do
w = —(g1201—g 11 P2)-

== constant, namely

So we arrive at

log ¢ == 2g log G + (g”pr‘gl_’f:”)log(x x1>+f()

2g1 VAoq‘ XX
and
| 0G  3log (x;gﬁ)
9 log g — b 9!_]_ i(gnpl‘"gl_x_pz) . X0 +F (y).
9y 2gu G 2g1 VAoo ay
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Since
d log <x—x1> g (e—ax1)}  0fgu (x—2x)}
X0 Oy . dy
Oy o g (x—x1) 911 (o—2x,)
— gio—i Vm__gu +i VZ;;:(QLZ_”/Z&;;) (x“xz)"“(gxz‘Jr‘ﬂ/E) (x—xy)
g1 (x—xy) g1t (e—2x3) G ’
f'(y) is zero. Hence
logcp__ logG—}— gQE&-—E‘_—IPQ><—~2i<9—{—elc,g]{o—_:
911 VAOO
— logG_*_glzPl"‘gliPz arccotg°1+g“x+g12y +log K=
29“ g VA, L,
= P1 1og G 4 FUPZTI12PL o gy Fo1 Touxtguy + log Ky,
291 g1 VDo IZ,
cr, putting

P 1= griP2—g12F Pl

M= .
291 g VAoo

go1 + gux+gi2y +log Ky

Aoz)
VAOO ( AOO |
whence

Type II1b B) G =H = AC (A and C complex):

log p = plog G 4 1 arc tan

Lot GuX +Lu)

A arc‘ tan Ao
p=Ky/Gee V() L (200
Type 111 ¢) G=H = Az,
2{asP—
Here condition (2) furnishes po—q; = _ELA__@QL'
So
2a,P—(po—qq ) A —
Q = do + q1x + Qo — a2 (2p2 ql) s Whence q x,a.gg_l J— p_z-w,q_}_'
a4 a, a,
2a 2a
or q = <8101 —p2 P =" 2P1 24,.
a; a,

Putting for P =p, + pix + psy P = oA + a;D,, whence p; = ga;,
p2 - Qag '*‘ a1d2, and

qi=20a;—(ea,+ aid)) =e¢a,—aid;, p,—qi=2a d,
we get Q= 2‘2 oA + a;Dy—dyA,
1
83
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g S0 _0 or A=A + d A, =
and with p= = 311'2’ Fy_ or 1 = ay + ayx, and py—qiA; = —a;Q, whence
1
. 0Q
dlogep P #al + aD, Odlogp __Q _ Maz + azDz d By =0,0rQ = Q; = qo + qyx, and po—q;(ag + ayx) = —ay(qo + q1%),
ox T AT AT Ty A A or p—q1dp T a;qo = 0.
whence Writing P = py + pyx -+ poy in the form
P — oA, + a;D,,
10g<p:ulogA——%+logKo. 08 ‘al 2
we get po = gag + aidy, py = gay, pz = aydy.
Therefore Further
p
_ ‘ -y dlogyp __ P ) D, dlogp Qi —pst+qiA d
= H = A2 = e B, 30)me CIYY . 8 2 1 2 T Qi _ Gy
Type Il c) G=H=Ax Koh ¢ (30 Ox A2 Ay T A2’ 9y AT a A, T A Ta
To Dy any multiple of A may be added. .
Type IV a) G=AC H=C. ence
Condition (2) becomes log =2 log A, _£l+ £(0), Glggqa Kd}_ L)
oP 0Q PC %A oC oC 1 1 y 1
CBMWACG _K—*BE"-{—P Aan
y O f’(y):;%:-——/h, or f(y)=— Ay + log K.
whence LS =0, or A=A =ay+ ax
Oy Consequently, putting u; = <,
a
So (2) leads to paC—cP = A4(q:C—c Q). 1 D
Consequently q,C—c;Q=0¢/(const.), or log @ = py log Ay — —A’f ~l,y -+ log K,, and
Q=2¢c—2% and p=PicC CQA ~ 2,
v o a e @ Type IVh) G=A.;2, H=A;: ¢=KAke b 7, (20)1vs
This gives Type V. G=H =C.
Jdlogeo P p. 1 o 1 dloge _Q _q1 _,l Condition (2) becomes
P e =t — =, =c = o C
ox  AC o A oG Y o %P _0Q_pdC o€ c=
So ‘ oy Ox "é’y””— P or (pe—q1)C = CZP_ClQ:
dlogp._ o1 y . . o
log @ = ——wlog Al-—-' El—‘— lOg C e ( ) "“ay — a '("]” + f ( ) PUttlng P= —""/{10 + 01, Q p— '—"/12(: -+ @9, WE get
(p2—q1) C=(—A4ic; + 4¢1) C + (c201—c10;), whence ¢, = ucy, 02 = pcy,
whence y) :Z—::——lzr f(y) =—ly +log K, So |
dlogep P ¢ dloge  Q c
. _p =P 1 4l Qo4 yuC
and, with m=2 e o G MTRE T —eT hteg
log ¢ = py log A; + uz log C-—7oy -+ log Ko. This gives
Therefore lo e uloa C £ d log @ Mcz , ,
o g @ = —A1x T plog (), + £(y), whence f'(y)==—1,,
Type IVa) G =2A,C, H=C: =K Che. (20)1va () 2
Type IV b) G=A2H=A. ~or f(y) = — Ay + log K.
Here condition (2) is reduced to
: Consequently

oP__,0Q_,P A 0A

b P 2Ry Nox

logp=—Ax-+u log C—4y + log K,
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or

Type V. G=H=0C p=KyCre ™. . . . . . (20)v
Type VI. G=H=1.

Here 0 lca)g ? = po -+ pix + p2y, log ¢ = pox + % p1X* -+ paxy + £ (y),
x

'a—%g'qz:pzx+ f' (y) = qo + qux + quy.
Y

Consequently
g =p» ¥y =q+qy £y =qy + 1% q2y° + log Ko,
and

log<P:109Ko+pox+qc>y+%plx2+pzxy+%qzy2: 2‘
=log K/ — (oo + 2¥orx -+ 2y02y -+ W X2+ 2y Xy -+ way?),

whence

Type VI G=H=1:
p=K, e, where ¥=yqo+ 27/)0135’1'2%2!1+‘P11x2+21l)12xy‘1“l’22y2' (20)vr

1

Summary of the different types:
I G and H have no common factors: ¢ = p1(x), p2(y), where ¢y and

@y are Pearsonian types.

Ila) G=A,C H= B,C, ¢ = KoA* By C.

D

II b) G e Alz, H = A1B2, @ = KO, Alxu’l B2:”’2 e_‘Ax’ D

resp. G = ABy, H=B,2, ¢ = KQ’Alf‘l By=e B,

Illa) G = H indecomposable, ¢ = K G*.
lilbe) GEH=AC A and C real, ¢ = KoA# G

Gt uX+ gy
Aarc tan

lbg) G=H=AC AandC complex, p=K,'G"e :

D
lc) G=H=A2 ¢g=KA’e 2.
v a) G = AIC, H= C, QY = KO 6_22)} Allﬁ C[Ll's’

resp. G =C, H=B,C, ¢ = K, e+ Byt G

D
Ay
IVh) G=A2 H=A, o =K/Apme = M, e
resp. G = By, H=1By2, ¢ = Ky By=e
V G=H=C, p=K,e " C~
VI G=H=1, g=K,e %

W= gy + 2001 X+ 2Wery W X+ 2v2 %y + Yy’

s here found

As we shall see in the next section, only part of the function

have natural boun
in a proper sense.

G

b
B

daries and so can be considered as probability functions
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§ 3. Standard forms for the probability density functions.

By a suitable choice of zero-point and scale we can reduce the general
expressions for ¢ in § 2 to simple standard forms with a minimal number
of parameters.

As to type It ¢ == @1 (x) - 92(y)., we may refer to the standardization
of PEARSON’s types for one variable. .

Type Ila). G = A;C, H=B,C, ¢ = KA* B, Ct,

Putting A; = ay + ayx == k41X, By = by +boy = kY  (ky >0, ko > 0),
we introduce new co-ordinates X and Y, acting only in the first quadrant.

With the abbreviations

gy G180 _Gbo =%
lo-——Co a, b2 ’ l] ——a‘ kl' 12~—-a2 k2 o 4 e (22)
the form C passes into
LX.VYW=L+LX+LY . . . . . . (23)
So we get
p=Ky Xt Yt ([, + L X+LY) . . . . . (24
or with
a=m+1l, ea=pm+1, aa=u+1, . . . . (25
P = KOI X1 Yol (Io + Il X’+" 12 Y)a3_1 e e e (24 bis)

For R and S we now find
R=aly+(y+a) [ X+, LY, S=alh+aly X+(a;+a) LY. (26)
Also the form L(X, Y) must be positive. ’
Provided that [,5£0, [, 0, [,50, the lines X =0, Y =0 and L= 0
form with the line I at infinity a complete fourside, of which the sides °
can act as bounding lines of the probability domain,
We require that on the boundary lines Gp and He shall be zero.
The boundary triangle can consist

a) of X=0, Y=0 and L =0, provided that a,>>0, a,>0, a;>0;

/3) . X:(), Y:O v I » T I a1>01 C‘2>0' a1+a2+a3<0;
}’) P XZO, L:O ’” I s " T3 a1>0’ a3>0' a1+a2+a3<0;
6) . YIO, L:O ’ I v " ’ 02>0, a3>0, a1+a2+a3<0'

Only the 4 triangles formed by the fourside can constitute the
contour of the probability domain. These triangles must lie in the first
quadrant, ‘

‘We have moreover

o - l S —a I}
X=— B b p_ T% Do
aytay+a;z I ajta;t+a; I (27)
Py ~~ . a3 .
and L(X, )—--07--*—“--—1_{_(12_}_&3 L« . . . . . (28)
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We choose ky and ks in such a way, that [y, I; and [, have the same
absolute value, by which all the coefficients of L can be made = 1.
Thus we obtain the following cases: ‘

a) Contour X =0, Y=0, L=0; ¢, >0, a,>>0, a;>0; hence(see(27)and(28))
10:+ 1, 11:_“1, 12:"“"1;
and »
Le=1—-X-Y . . . . . . . . (29,
B) Contour X =0, Y=0,I; o, >0, a; >0, a; + a; 4 a3 <<O; hence

Lh=+1LL=+1 L=+1
and "

Lp=14+X4+Y. . . . . . . . (29
y) Contour X =0, L=0,1; ¢; >0, a; >0, a;+ a, 4+ a; <0; hence

y==—1, li==—1, [ =41
and .
L=—1-X4+Y. . . . . . . . (29
é) Contour Y=0, L=0,1; 0, >0, a3 >0, a4+ a;+ a; <0; hence

Io"—:‘—l. 11:+ 1, 12:""'1
and

Lo =

The cases I, = 0, I; = 0 and [, == 0 lead to functions wanting artificial
boundaries.
Consequently

a) (p:Kol Xa’—l Ya“—l V(I“X_Y)a——l' al>0' a2>0, a3>0,
b) (p:KO/ Xa—1 Yag-1 (1+X+Y)0‘3"1, a; >0, 0, >0, a3 —a;—ay, (30)11
=Ky’ X1 Yo (<1-X+ Y, ¢,>>0, a5>0, ay<—a;—a3, ’
(-

Z; p=K’ X' Yo (-14+X-Y) 1, 0,>0, a3 >0, oy <—a,—a;.
Treating these cases separately, we get, putting
oy + az + ay =B,
a) )?:%, ?:ﬂ o e BDma
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’ I
1(0 = F(al) I‘((CZ)) F(a3); R:al—(al+a3)X_al Yr 8:02“a2X~(a2+a3)Y
G= 22 I/’\I 2% = py S,y Sy == as B,

BB+ 1) FB+1)

Eqq. (10’) and (10”) now give

mzlo:—‘s2a:al(a2+a3) m,,1:+t‘zﬁ_~+slé\ —ay a,
é BFB+1)" ) F) RBE+1) (32
mo2 — f'I O‘2(‘11 + a3) ,

6 BCECE VN

T % % __2...“3(“14‘012—}-(13) ,
Y V(a1+a3) (ag + a3)’ 1—y =l ayla, Fay’ (32112«

The probability distribution here considered is that of the estimates of

the a priori probabilities (round the a posteriori probabilities f; = %"
fo= %, fa=1—fi—fs= %9 as most probable values) with the trino-~

mial distribution
dW.(py, pa) = Co 1™t p2 p3* (ps = 1—p1—pa).
It is the extension of PEARSON's type I for both variables,

8) Ezfﬁ ﬁa%: (31)ra 0

I'(—a; 4+ 1)

K= i Ty Feg ) R ot e X+aY, S=atoX+
) Vi G= pmghy H= gy 8= 0) ()
R e = 1= =
”"*3/—m~$7;WﬂM'l"f;ﬂ—gigﬁliw» (52
») )?:_”_“ﬁ ‘?:E%%; S . ... (BDmy
K, = r(a,)F If(::)‘ﬁ__l; 5 R:—a1~(a1~|—a3)X;}—a1Y, S——ay—a, X+
Harta)Yi 6=ty By o=



9)

Koll —_—

ma0 —

l(az + a3) a 11— % (—a) o2 = ay*(ay + ai)
= = —p—1) (AP (—H)*—p—1)
a; (—f+a,+as) 2 az (—p)
7—+Va1+a3 —p+a)’ : 72~(al-’r—a3)(——,3—{—a1)‘
X = gy X Y= ,8; Ce e

I'(—a; +1)

[(az) I'az) [(—p+1)
—(a;4a3) Y;

G=

""kal (02+O‘3) 0y

(—B)H—p—1

) A=)

)

a, (—p + a + a3)
a2+0‘3 "’ﬁ”t‘az)

A (—=p—1)"

(—

H=—

—B)—p—1)’

2 :(a1+0‘3)
(P (—ﬁ—l)

as (—P)

1_2___

" (gt as)(—p+ay) '

(31)Hao"

; Re=—a,+(a+a3) X—a, Y, S=—ayta,X—

(32) Tad

(32,)Ila )

Mathematics, — Inequalities concerning polynomials in the complex
domain. By N. G. DE BruiN. (Communicated by Prof. W. VAN DER
WOUDE.)

(Communicated at the meeting of November 29, 1947.)

In this paper inequality theorems for polynomials will be obtained by
means of one and the same underlying method which uses theorems on
the location of the roots of polynomials.

The method can be illustrated by the following proof for S. BERNSTEINS
theorem 1): “If P(z) and Q(z) are polynomials satisfying | P(z)| =
Q(z) £ 0 for any z in the upper half-plane or on the real axis, then we
have |P’(z)| = | Q'(z)| for those values of 2. Proof: If 1 is a complex
number, |A|>1, then all the roots of P(z)—1Q(z) lic in the lower
half-plane. Now, by the well-known GAUSS-LUCAS theorem, it follows
that P’'(z )———lQ’( ) has its roots in the same domain and consequently
P'(z) —2Q'(z) 540 for z in the closed upper half plane. Since this is
true for any 1 whose modulus exceeds unity, the assertion follows.

The simple idea on which this proof is based yields some surprising
results if we use some other theorems on the location of roots. In section 1
of this paper, we use the general form of the Gauss-Lucas theorem. In
section 2 a theorem of SzZEGO is shown to lead to a result which includes
a theorem of SCHAAKE and vaAN DER CoORPUT and which leads to a
simple proof of a conjecture of P. ERDOS, recently proved by P. D. Lax.
Section 3 is based on GRACE's Apolarity Theorem. In section 4, which
stands apart from the other sections more or less, we consider an in-
equality of ZYGMUND for polynomials, in the special case of functions
which have no roots inside the unit circle.

1. Woe first prove a direct generalisation of the BERNSTEIN theorem
mentionned in the introduction.

Theorem 1. Let R be a convex region in the z-plane and let B be its
boundary 2). Let P(z) and Q(z) be polynomials; suppose that the roots of
Q(z) belong to R -+ B, and that the degree of P does not exceed that of Q.

Now if |P(z)| = |Q(z)| for z on B, then we have |P'(z)| = |Q/(z)]

for z on B.

Proof. Let D denote the complement of R+ B. Since Q(z) 5£ 0 for
z€ D, the inequality |P|=|Q| for z€ B implies that |P|=]Q]| for
z€ B+ D. Consequently, if |A]|>1, the roots.of P(z) —AQ(z) belong
to R. Now, by the GAauss-Lucas theorem, the roots of P'(z) — 1 Q'(z)
also belong to R. From this the assertion follows.

1} BERNSTEIN [1] p. 56. Bracketed numbers refer to the bibliography at the end.
2) B may contain the point z = o,





