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Mathematics, — Inequalities concerning polynomials in the complex
domain. By N. G. DE BruiN. (Communicated by Prof. W. VAN DER
WOUDE.)

(Communicated at the meeting of November 29, 1947.)

In this paper inequality theorems for polynomials will be obtained by
means of one and the same underlying method which uses theorems on
the location of the roots of polynomials.

The method can be illustrated by the following proof for S. BERNSTEINS
theorem 1): “If P(z) and Q(z) are polynomials satisfying | P(z)| =
Q(z) £ 0 for any z in the upper half-plane or on the real axis, then we
have |P’(z)| = | Q'(z)| for those values of 2. Proof: If 1 is a complex
number, |A|>1, then all the roots of P(z)—1Q(z) lic in the lower
half-plane. Now, by the well-known GAUSS-LUCAS theorem, it follows
that P’'(z )———lQ’( ) has its roots in the same domain and consequently
P'(z) —2Q'(z) 540 for z in the closed upper half plane. Since this is
true for any 1 whose modulus exceeds unity, the assertion follows.

The simple idea on which this proof is based yields some surprising
results if we use some other theorems on the location of roots. In section 1
of this paper, we use the general form of the Gauss-Lucas theorem. In
section 2 a theorem of SzZEGO is shown to lead to a result which includes
a theorem of SCHAAKE and vaAN DER CoORPUT and which leads to a
simple proof of a conjecture of P. ERDOS, recently proved by P. D. Lax.
Section 3 is based on GRACE's Apolarity Theorem. In section 4, which
stands apart from the other sections more or less, we consider an in-
equality of ZYGMUND for polynomials, in the special case of functions
which have no roots inside the unit circle.

1. Woe first prove a direct generalisation of the BERNSTEIN theorem
mentionned in the introduction.

Theorem 1. Let R be a convex region in the z-plane and let B be its
boundary 2). Let P(z) and Q(z) be polynomials; suppose that the roots of
Q(z) belong to R -+ B, and that the degree of P does not exceed that of Q.

Now if |P(z)| = |Q(z)| for z on B, then we have |P'(z)| = |Q/(z)]

for z on B.

Proof. Let D denote the complement of R+ B. Since Q(z) 5£ 0 for
z€ D, the inequality |P|=|Q| for z€ B implies that |P|=]Q]| for
z€ B+ D. Consequently, if |A]|>1, the roots.of P(z) —AQ(z) belong
to R. Now, by the GAauss-Lucas theorem, the roots of P'(z) — 1 Q'(z)
also belong to R. From this the assertion follows.

1} BERNSTEIN [1] p. 56. Bracketed numbers refer to the bibliography at the end.
2) B may contain the point z = o,
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The above result was obtained by S. BERNSTEIN for the case that B is
the unit circle 8). His proof does not depend on a direct application of the
GaUss-Lucas theorem and does not admit the generalization obtained hel‘:e,

BERNSTEIN's result is a generalization of the well-known theorem: “If
|P(2)| =1 for |z| =1, then | P’'(2)| = n for |z]|=1". This is obtained
by specializing Q(z) = z". Analogous results may be obtained for general
convex domains, in virtue of Theorem 1.

Without any difficulty we can prove the following generalisation of
Theorem 1:

Theorem 2. Let R be a convex region in the z-plane, B its boundary,
and S a simply connected region in the w-plane. Let P(z) and Q(z) be
polynomials, the degree of P not exceeding that of Q, and suppose that
the roots of Q(z) belong to R+ B. Now if w="P(z)/Q(z) €S [or any
z€ B, then we have P’(z)/Q(z) € S for those values of z.

2. By circular domain we denote a domain in the z-plane whose image
on the z-sphere is either a closed region or an open region bounded by
a circle. For instance, the point sets |z| = 1, |z|>1, |z] <1, Rez =0

are circular domains.

We shall use the following theorem of G. SZEGO 4):
Theorem 3. If the polynomial P(z) of degree n has no roots in the
circular domain C 5), and if £€ C, then we have ~

(t—2)P'2) +n P(z)#0 for zeC. . . . . . (0

We directly infer ,
Theorem 4. Let C be a circular domain in the z-plane, and S an
arbitrary point set in the w-plane. If the polynomial P(z) of degree
n satisfies P(z) = w € S for any ze C, then we have, for any z € C and

any £eC

3

£ pg+ P22

€S. . . . . . . ()
Proof. If the number 4 does not belong to S, we have P(z) £ 2 for
ze C. Applying theorem 3 to the polynomial P(z) — A we infer that
(§—2)P’'(z) +nP(z) s£nk for z€C, £e C and any A which does fxot
belong to S. This proves (2). ’
We notice that a special case of theorem 4 was proved by SCHAAKE and

VAN DER CORPUT 6), who assumed that C is the unit circle (an unessential
restriction) but also that S is a convex domain. A number of old and new

3) BERNSTEIN [2].

)
4) Szead {1], p. 33. o
5) We adopt the convention that z=o is a root of P(z) if the coefficient of

z" vanishes.
8) SCHAAKE and VAN DER CORPUT [1], p. 350, Satz 20.
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results concerning polynomials and trigonometric polynomials were derived
from this special case by these authors. We now give an application where
S is not convex.

Theorem 5 (ErDOs-Lax 7)). If the polynomial P(z) of degree n
satisfies | P(z)| = 1 for |z| = 1 and if P(z) has no roots in |z | = 1, then
[P'(2)| =%n for |z] =18).

Proof. Take for C the region |z| <1 and for S the set 0 <|w|<T1.
Now (2) expresses, if |z|<C1, that the interior of a circle with radius
P’(z)/n completely belongs to S. Since the maximum radius of such a
circle is %, the result follows.

It is however neither difficult to prove this result by the SCHAAKE and
VAN DER CORPUT theorem, taking for S the region |w | <1, inferring that
|[P'(z)/n| 4+ |P(2)—2zP'(z)/n| =1 for |z| =1 and noticing that from
P(z) 5£0 (|z|=1) it follows that |P'(z)/n|=|P(z)—zP’(z)/n|9).

3. We shall now expose some consequences of J. H, GRACE's theorem
on the roots of polynomials 10),

Theorem 6 (Grace’s Apolarity Theorem). If n=1, and

P(z)=a0+<r11>a!z+<g>a222+...+<:>anzn, )]

Q(z)=b0+<’l’)b,z+<g)b222+...+(:>b,,zn. —

and if P(z) has no roots in a circular domain C which contains all the
roots of Q(z), then we have

{P, Qt=aoby— (T) ay b1 + (;) aybpa+... (1) (:) agbn 70 (5)

‘We can put this in a different form by taking Q(z) = (z—=21) ... (z—2a).

Theorem 62, Let f(zy,2s,....20n) be a linear combination of the
elementary symmetric functions of zq, ..., Zn:

flzyyeozn=ap+a Jz1+a Yziz+ ... 48, 3z .20+ an 2 co-zn (6)
so that, if P(z) is given by (3):
flz,z,...,2)=P(z).
Now if f(z, ...,z) (considered as a polynomial of degree n11)) has no
roots in the circular domain C, then for z1€C, ...,z, € C we have

f{z1s or 2n) 75 0.

7)) Lax [1].

8) Of course, several alterations of this theorem are possible by replacidg signs =<
by <. The same remark applies to Theorems 8, 9 and 10, i

9) In Lax [1], p. 511, a similar argument is used.

10)  GRACE [1]; SzZEGO [1]; PoLYA-SZEGO [2], Abschnitt V, Aufg. 145.

11y Hence a, = 0 would imply that z == « is a root,
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From this we deduce, in the same way as Theorem 4 was derived from
Theorem 3:

Theorem 7. Let C be a circular domain in the z-plane a‘nd S an
arbitrary point-set in the w-plane. Suppose that f(zy, .., Zn) is of the
type (6) and satisfies f(z,....2) =w €S for any zeC. Then we have,
or 2,€C,....2n € C
for = flz, ..., zn) €S,

Since f(z, oz, &) = P(z) + (6—2) P’(z)/n, Theorem 4 is a special

of this one. .
Cai‘%aClL{AAKE and van DER CORPUT's paper again contains the result of
Theorem 7 for the special case that S is convex. Their proof is based on

Theorem 11 below.

In the following theorem, a direct consequence of Theorem 6, it i.s
convenient to restrict ourselves to the case that C is the unit circle. Appli-
cation of Theorem 6 to P(z)—a and 2"Q(——£&/z) leads to

Theorem 8. Let S be a point-set, let P(z) and Q(z) be given by (3)
and (4), and suppose that Q(z) 5£ 0 for [z] <1, by =1, and

' P(z)eS for |z|]<<t. . . . . o . (7)

Now putting

PQ(z):aobo—}—(r;)a‘blz—l—...—I—(:)anbnz”, .. (8

we have
PQ(z)eS for jz| 1. . . . . . . - (9)

Conversely, if the numbers 1 = b, by, ..., ba are such that (9) holds
for any S and for any polynomial P(z) satisfying (7), we have“Q(z) ;ﬁ 0
for |z| <1. This immediately follows from a theorem of SzZeEGO 12) which
covers the case that S is the set w 5= 0. ’

This remark leads to the following consideration on FEJER sums: The
FEJER sums of the polynomial P(z), viz.

sk (z):ﬁlfl3(k+1)ao+k<’1’)alz+<k——1)(;)a2z2+...+ (k> a zkg,

have the following well-known property: “If S is a convex domain and if
P(z)e S for |z| =1, then si(z) € S for | z| = 1". This need not hold for
general point-sets S. That depends on the location of the roots of

(k+1)Q<z>:(k+1>+k(T>z+(k—1)<’;> z2+...+<;‘) 2,

insi it ci ifn=23k=1).

hich may have roots inside the unit circle (e.g. i ,
v The convexity of S may however be dropped if k = n—I1, for then we
have (k+1) Q(z) = {((k—n+1Dz+k+1} (z+ 1)~ The case

% — n— 1 also follows from Theorem 4 since sk_1(z) = P(z) —zP’'(z}n.

12)  SZEGO 1], p 50. It is sufficient to consider P(z) = (z— )" [¢]> 1.
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As an application of Theorem 8 we give

Theorem 9. Let S be a point-set, P(z) a polynomial of degree n, and
suppose that P(z) e S for |z| = 1. Then Jor p>1, |z| =1, 1| =1 we
have

[pﬂp<-j;) —pﬂP(pz)—-ng(pz)—P (;) ] / ("—p)eS. (10

Proof. According to Theorem 8 it is sufficient to prove that for p > 1,
| 2] =1 the polynomial

+pf—GE+p V' —2{zp+ 1)t —(zp +1)"} . . (11)
has no roots in |z | <.

For |z| =1, we have |z + p| <]z + p-1|, hence ¢(2z) = {z + p)*—
—(z+p-1)n 5£ 0 for | 2| = 1. If we put @qo(2z) = (zp+1)"—(zp—1+1)n,
then we have | (z)| = | pa(2)| for |z| = 1. It follows that |py(2)] =
= |@a(2)| for |z|=1, consequently the polynomial (11), equalling
®1(2) —A@g(z), has no roots in [z| <1 if |2 = 1.

The limit case p — 1 leads back to theorem 4. Another special case of

Theorem 9 was proved by SCHAEFFER and SZEGO ([1]); there S represents
the region |Re w| = 1.

The following consequence 18) of Theorem 8 is symmetric in P and Q.

Theorem 10. If P(z), Q(z) and PQ(z) are given by (3), (4) and (8),
respectively, and if |P(z)| =1, |Q(z)] =1 for |z]| =1, then we have
|PQ(z)| =1—|]|by|—lag|] for |z]=1.

Proof. Let 1 satisfy [1]>1, then Q(z)—A35£0 for |[z]<<1. On
applying Theorem 8 to P(z) and (Q(z) —41)/(by— 1) we obtain

|PQ(z)—Aday| < |by—1| for |z|<ZL. . . . . (12)

An argument of continuity shows that this holds for | 1] = 1 also. We can

choose a special 4y with modulus 1 such that [bg—2y| == 1—]bg | It
follows that

[PQ(2)| << |%oao| +1—[bo| =1—{|bo| —|ao|}.
By interchanging the roles of P and Q the result follows.

GRACE's theorem also supplies a proof for the following theorem of
SCHAAKE and VAN DER CORPUT 14), which they showed to lead to Theorem
7 (for S convex).

Theorem 11. (SCHAAKE-VAN DER CORPUT). I} f(zy, .
type (6), and if we put

1 n—1 n -1
ln(zl,...,zn):; 2 <lu> Z’lez...z;“

“=0

., 2n) is of the

13} Communicated by Mr, T. A. SPRINGER.
14)  SCHAAKE and VAN DER CORPUT [1] Satz 17, p. 343 and Satz 18, p. 345.
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then we have the identity

z
f(zl,.‘.,z,l)::%”,ln<-bl,..‘,%>f(p,p,..‘,p), (13)
where p runs through the n-th roots of zy 2y ... za.
Furthermore
2/1,1<—Z~‘..,‘,55>:1,. C e (19
» p P
and if |z(|=|zo| = ... = |za| = 1 we have
halzip™ oo zap 20 . 0 0 0L (15)

Proof. The relations (13) and (14) are easily verified; the difficulty
lies in proving that A, == 0 if all z; have the modulus 1. Putting z: = p ¢y,
we have to establish that

AH(CI,.»~,CII)20 lf ’Cll—'—:"':|:ﬂl:1'€1 Cz...é.n:l-
Putting by == 2'1(s ... £, we find by = by_u, consequently 2, is real. It
remains to be shown that 1. cannot be negative. Taking P(z) == z -+
+ 224 .. 42t 4 02" and Q(z) == zM—byzm-1 4 . = (z—1y) ...
.. (z—1¢{n), we obtain for the expression (5):

{p' Q} - (111>w1[71+<;>h1b2+-~'*‘ <nf_1>_1bn-l+abn:
:nln@puu&‘n)‘}‘a—l.

Now if 6 > 1, P(z) has no roots for |z | == 1, according to a theorem
of KAKEYA 15), so that Theorem 6 yields {P, Q} =£ 0. It follows that 1,
cannot be negative.

4. In this concluding section we shall obtain an integral inequality
related to an inequality of ZyGMUND (formule (18) below), generalizing
the ERDOs-LAX theorem. We deduce it from the following result which
depends on SCHAAKE and VAN DER CORPUT's theorem (Theorem 11 above).

Theorem 12. If f(zy, ..., zn) is of the type (6), and if O (w) is a real
and convex function of the complex variable w, i.e.

Plaw; +pwy) < aPwy) + P(wy) for 20,220, a+ =1,

then we have, for |z | =1, ..., |z, | =1

Z/ncb {f(z1e% ..., zne)}dO gjj”q>’gf(ew, ....ei9ide, . (16)
0

Proof, Since f(z4e?, ..., z,e!%) is a linear function of zy, the left hand
side of {16) is a convex function of z,. Consequently, its maximum for
|zi| =1 is attained at the boundary |z;|=1. The same applies to
29, ..., zn, and hence it is sufficient to prove (16) for the case

|z = ... = |z.| = 1.

15)  Cf, PoLYA-SZEGO [1], Abschn. III, Aufg. 22,
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By theorem 11 we then have
flzie®, ...,z el = %').n (zip™, ..., zn p“l)f(péia, oo pe’d),

where p runs through the n-th roots of 2y ... zn, and where the 1, satisfy
(14) and (15). Since @(w) is convex we have

PUflzres o zne™ < Zhn(zip™' L zap ) @ {f(pe, .. ., pei®)].
p
On integrating, and using (14), we obtain (16).

Now let P(z) be a polynomial of degree n and let f(zy, ..., z») be such
that f(z, ..., z) = P(z). Take z; = 2y ... = zp_1 — 1, zn = e™, where 7
is a real number, and ¢ (w) = |w|? (p=1). Since f(z, O

= P(z) + (§—2)P'(z)/n, Theorem 12 gives
27
Of [P (ef) — e P'(ei)/n + eitn+0) Plet®)|n|p do < 2 | P (e?%)|r d6.
Putting P (e') — /0 P’ (e#%)/n = A (), e P’ (e!)/n = B(#), we obtain
2n

J dejﬂA(e)—;«B(e)emlp dn<2njfnlp(e"9)ypd6. .

ZYGMUND's inequality 16)

can be derived from (17), by the formula (valid for any real value of p)

’ 2n
degfip(ew)wa =1 . . . (18

2
Ofla—l—be"”IP dn =2z Max {|alp,

BiPy. . . .. (19

Owing to the symmetry with respect to a and b it is sufficient to prove
(19) for a = b> 0. Then it follows by

2
27 | (0) 2 <\:0/ |¢(e™)[* dy, where ¢(z) = (a + bz)iP,

Our present aim is to investigate how ZYGMUND's result can be refined
if we suppose that P(z) has no roots inside the unit circle. In that case we

have, by Theorem 4, A(0) + £ B(9) =0 for [£| <1, so that
BOI<IAQ]  0<0<20. . . . . . (0
For |a| = |b| we have

27 ) 27 ’
0/ia+be“7fd772fblp0/ll—l—e"”l"’dn- Pp=0. . . (1)

It is sufficient to prove this for b = 1, 2> 1. In that case {21) follows
from [a 4+ e | = |1 + ein| (4 real).

18)  ZvYGMUND [1].
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From (17), (20) and (21) we infer

20 27 27
[ |B(O)]pdo. [ [14e|pdo<2x [|PE)]PdO, » |
0 0 0 _ Mathematics. — Sur les intégrales multiples dans les corps évalués et

algébriquement-fermés. By F. LooNSTRA. (Communicated by Prof.
J. G. van DER CORPUT.) '

and we obtain

Theorem 13. I} the polynomial P(z) of degree n has no roots |

3 =
|z| <1, then we have, for p = 1, (Communicated at the meeting of September 27, 1947.)

27 2n

(i |P
f B{L) degcpflp(ewnpde
[V} 0

27

where Cp:2n/g\1+e"’7|pdni2“’ VaI'(sp+1)/I(Ep+4)

Nous supposons que le corps T satisfasse aux conditions suivantes:
1. T est évalué non-archimédien;

2. T est algébriquement-fermé, c'est & dire que chaque polynome de
I'anneau I'[x] se compose de facteurs linaires;
‘ 3. T est complet. "
It is easily seen that the sign of equality holds if P{z) = a+ f2"
la| =|f|. It can also be shown that the sign < holds otherwise.
The case p = 2 was obtained by P. D. Lax (Lax [1]), whereas p = o
leads to the ErRDOs-LAX theorem.

Les éléements a avec |a| < 1 s'appellent des éléments ,entiers”.
Nous considérons un nombre fini quelconque de suites de polynomes

gu (x). g1z (xX)e.iginlx) ...

x ? R L e
Mathematisch Instituut der Technische ‘gz1( )z (%) g?n ).

Hogeschool, Delft.

. ¢ . . . o . . .

k gs1 (%), gs2(x)s oo gsn (%), .0
oit
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g (%) == XTRE A= cppy X7ELE A Criya XTROZ A oL b Chtp XTRLE A Chiptt

(k=1,2,....8 ngu >npii >...> ki, u)s

avec des exposants croissants et de sorte qu'aucun des polynomes consi-
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aki,]l aki,Z’ eeey aki,nki'
pour lesquelles on a

1
[aki.lf:’aki,zl —=.. ‘:laki»ﬂkil-‘: ‘cki’ﬂﬂﬁzz 1.

Nous supposons ensuite |nzi | = 1 et

nei=> o, g > o (I=1,2,..,, p) (Rei—nki,1) => &> pour i—> o,
Alors on a

nkl'—‘flki,l{:_«_ll_‘nki,{ = max (1 nkil
i 1]

n net | = o nei) =1,

) = max (1,
}()larce que les ngi,; sont des nombres naturels, c’est a dire |nwi 1| =1
=12,..,u) N

| En vertu de la relation | axs1| = 1 pour chaque k & part les racines des
polynomes gri(x) se trouvent sur le ,cercle d'unite”.

1 :
) Nous supprimerons dans la suite I'adjonction k =1, 2, ..., &
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