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l\Aathematics. I nequalities concerning polynomials in the complex 
domain. By N. G. DE BRUIJN. (Communicated by Prof. W. VAN DER 
WOUDE.) 

(Communicated at the meeting of November 29. 1947.) 

In this paper inequality theorems for polynomials wil! be obtained by 
means of one and the same underlying methad which uses theorems on 
the location of the roots of polynomials. 

The methad can be illustrated by the following proof for S. BERNSTEINS 
'theorem 1): "If P(z) and Q(z) are polynomials satisfying I P(z) I < I Q(z) I. 
Q (z) ::? 0 for any z in the upper half-plane or on the real axis, then we 
have I P'(z) I < I Q'(z) J for those values of z". Proof: If À is a complex 
number. I Je I > 1, th en all the roots of P (z) - Je Q (z) lie in the lower 
half-plane. Now, by the well-known GAuss-LuCAS theorem. it follows 
that P'(z)-JeQ'(z) has its roots in the same domain and consequently 
P' (z) - Je Q' (z) ::? 0 for z in the closed upper half plane. Since this is 
true for any À whose modulus exceeds unity. the assertion follows. 

The simple idea on which this praof is based yields some surprising 
results if we use some other theorems on the location of roots. In section 1 
of this paper, we use the general farm of the GAuss-LuCAS theorem.' In 
section 2 a theorem of SZEOÖ is shown to lead to aresult which includes 
a theorem of SCHAAKE and VAN DER CORPUT and which leads to a 
simple proof of a conjecture of P. ERDÖS, recently proved by P. D. LAX. 
Section 3 is based on GRACE's Apolarity Theorem. In section 4, which 
stands apart from the other sections more or less, we consider an in
equality of ZVOMUND for polynomiaIs, in the special case of functions 
which have na roots inside the unit circle. 

1. We first prove a direct generalisation of the BERNSTEIN theorem 
mentionned in the introduction. 

Theorem 1. Let R be a convex region in the z-plane and let B be its 
boundary 2). Let P(z) and Q(z) be polynomials; suppose that the roots of 
Q(z) belang to R + B, and that the degree of P does not exceed that of Q. 

Now if I P(z)J < I Q(z)1 for z on B, then we have I P'(z)1 < I Q'(z)1 
for zon B. 

Proof. Let D denote the complement of R + B. Since Q(z) ::? 0 for 

z € D, the inequality I P I < I Q I for z € B implies that I P I < I Q I for 
z € B + D. Consequently. if I Je I> 1. the roots ,,of P(z) - Je Q (z) belang 
to R. Now. by the GAuss-LuCAS theorem, the roots of P' (z) - Je Q' (z) 
also belang to R. Pram this the assertion follows. 

1.) BERNSTEIN [1] p. 56. Bracketed numbers refer to the bibliography at the end. 
2) B may contain the point z = co. 
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The above result was obtained by S. BERNSTElN for the case that B is 
the unit cirele 3). His proof does not dep end on a direct applieation of the 
GAuss-LuCAS theorem and does not admit the generalization obtained here. 

BERNSTEIN' s result is a generalization of the well~known theorem: "If 
IP(z)1 < 1 for Izl:S 1, then IP'(z)1 < n for Izl < 1". This is obtained 
by specializing Q (z) = zn. Analogous results may be obtained for general 

convex domains, in virtue of Theorem 1. 

Without any difficulty we can prove the following generalisation of 

Theorem 1: 
Theorem 2. Let R be a convex region in the z~plane, Bits boundary, 

and S a simply connected region in the w~plane. Let P(z) and Q(z) be 
polynomials, the degree of P not exeeeding that of Q, and suppose that 

the roots of Q(z) belong to R + B. Now if w = P(z)/Q(z) € S for any 

z€ B, then we have P'(z)/Q'(z) € S for those values of z. 

2. By cireular domain we denote a domain in the z~plane whose image 
on the z~sphere is either a c10sed reg ion or an open reg ion bounded by 
a circ1e. For instance, the point sets 1 z 1 :> 1, 1 z I> 1, 1 z 1 < 1, Rez:> 0 

are circular domains. 

We shall use the following theorem of G. SZEOÖ 4): 

Theorem 3. If the polynomial P(z) of degree n has no roots in the 

circular domain C 5), and if $ € e. then we have 

(~-z) P'(z) + n P(z) * ° for z € C. . (1) 

We directly infer 
Theorem 4. Let C be a circular domain in the z~plane, and S an 

arbitrary point set in the w~plane. If the polynomial P(z) of degree 

n satisfies P(z) = w € S for any Z€ C. then we have, for any z € C and 

any $ € C 
~ z P'(z) 

- P'(z) + P(z) - -- € S. 
n n 

. (2) 

Proof. If the number À does not belong to S, we have P (z) =j::- }, for 
z € C. Applying theorem 3 to the polynomial P (z) - À we infer that 
($-z)P'(z) +nP(z) =j::-n}, for ZEe. ~EC and any}, which does not 

belong to S. This proves (2). 
We notice th at a special case of theorem 4 was proved by SCHAAI<E and 

VAN DER CORPUT 6), who assumed th at C is the unit circ1e (an unessential 
restriction) but a1so that S is a convex domain. A number of aId and new 

3) BERNSTEIN [2]. 

4) SZEOÖ [1J, p. 33. 
h . t f P ( ) l' f the coefficient of 

5) We adopt the convention t at z = OJ IS a roo 0 . Z 

zn vanishes. 
6) SCHAAI<E and VAN DER CORPUT [1J, p. 350, Satz 20. 
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results coneerning polynomials and trigonometrie polynomials were derived 
from this special case by these authors. We now give an application where 
S is not convex. 

Theorem 5 (EROÖs-LAX 7)). ff the polynomial P(z) of degree n 
satisfies 1 p(z) 1 < 1 for 1 z 1 < 1 and if P(z) has na roots in 1 z 1 < 1, then 
1 p' (z ) 1 < t n for 1 Z 1 < 1 8). 

Pro of. Take for C the reg ion 1 z 1 < 1 and for S the set 0 < 1 w 1 < 1. 
Now (2) expresses, if 1 z 1 < 1, that the interior of a circ1e with radius 
P'(z)/n completely belongs to S. Since the maximum radius of sueh a 
circ1e is t, the result follows. 

It is however neither difficult to prove this result by the SCI-lAAKE and 
VAN DER CORPUT theorem, taking for S the reg ion 1 w 1 < 1, inferring that 
IP'(z)/n 1 + 1 P(z)-zP'(z)/n 1 < 1 for 1 z 1 < 1 and noticing that from 
P(z)=j::-O (lzl<l) it follows that IP'(z)/nl:>IP(z)-zP'(z)/nI 9 ). 

3. We shall now expose some consequences of J. H. GRACE'S theorem 
on the roots of polynomiaIs 10). 

Theorem 6 (Grace's Apolarity Theorem). ff n :> Land 

P(z) = ao + (7) al Z + (;) a2 Z2 + ... + (~) an zn, (3) 

Q(z) = bo + (7) bi z + (;) b2 Z2 + ... + (:) bn zn, (4) 

and if P(z) has na roots in a cireular domain C whieh eontains all the 
roots of Q(z), then we have 

lP. Q 1= ao bn- (7) al bn- I + (;) a2 bn- 2 + ... +(-l)n (:) aobn*O (5) 

We can put this in a different form by taking Q(z) = (Z--Zl) ... (Z-Zn). 

Theorem 6a• Let [( Zl' Z2' ... , Zn) be a linear combination of the 
elementary symmetrie funetions of Zl' ... , Zn: 

{(Zl' .... Zn) =ao + al 2: z, +a2 2: z] Z2 + ... + al' 1,' Z, ... ZI' +an ZI • .. Zn (6) 

sa that, if P(z) is given by (3): 

{(z, z, ... ,z) = P(z). 

Now if [(z, .... z) (eonsidered as a polynomial of degree n 11)) has na 

roots in the eircular domain C, th en for zl € C. ... , Zn € C we have 
[(zl' ... , Zn) =j::- O. 

7) LAX [1]. 
8) Of course, several alterations of this theorem are possible b,y replacing signs ::: 

by <. The same remark applies to Theorems 8, 9 and 10, 
9) In LAX [1], p. 511, a similar argument is used. 
10) GI(ACE [1]; SZEOÖ [1]; PóL YA-SZEOÖ [2], Abschnitt V, Aufg. 145. 
11) Hence an = 0 would imply that z = w is a root. 
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Pram this we deduce, in the same way as Theorem 4 was derived from 

Theorem 3: 
Theorem 7. Let C be a circular domain in the z~plane and S an 

arbitrary point~set in the w~plane. Suppose that [(Zl"'" Zn) is of the 
type (6) and satisfies [(z, ... , z) = w E: S for any ZE: C. Then we have, 

{or Zl E: C, .... Zn E: C: 
{(Zl"'" Zn) E: S. 

Since [(z, ... , z,~) = P(z} -I- (~-z) P'(z}/n, Theorem 4 is a special 

case of this one. 
SCHAAKE -and VAN DER CORPUT'S paper again contains the result of 

Theorem 7 for the special case that S is convex. Their proof is based on 

Theorem 11 below. 

In the following theorem, a direct consequence of Theorem 6, it is 
convenient to restriet ourselves to the case that C is the unit circle. Appli~ 
cation of Theorem 6 to P(z)-a and znQ(_Ç/z} leads to 

Theorem 8. Let S be a point~set, let P(z} and Q(z} be given by (3) 

and (4), and suppose that Q (z) -::j= 0 for I z I < 1. bo = 1. and 

P (z) E: S for I z I ~ 1. . . . .. (7) 

Now putting 

P Q (z) = 80 bo + (7) 81 bI Z + ... + (~) an bn zn, . . (8) 

we have 
P Q (z) E: S for I z I ~ 1. . . . . . . . (9) 

Conversely, if the numbers 1 = bo, bI' ... , bn are such that (9) holds 
for any S and for any polynomial P(z} satisfying (7), we have Q(z} -::j= 0 
for I z I < 1. This immediately follows from a theorem of SZEOÖ 12} whieh 

covers the case that S is the set w -::j= O. 
This remark leads to the following consideration on FÉJER sums: The 

FÉJER sums of the polynomial P (z)' viz. 

,,(z) =,,! 1 ! (k+ l)a,+k (~) a, z+(k--l) (;) a, z' + ... + (~) apk!. 

have the following well~known property: "If S is a convex domain and if 
P(z) E: S for I z I < 1, th en Sk (z) E: S for I z I < 1". This need not hold for 
general point~sets S. That depends on the location of the roots of 

(k + 1) Q (z) = (k + 1) + k (7) z + (k -1) (;) Z2 + ... + (~) Zk, 

whieh may have roots inside the unit circle (e.g. if n = 3, k = I). 
The convexity of S may however be dropped if k ::> n-l, for then we 

have (k -I- 1) Q(z} = {(k-In -I- 1}z+ k -I- I} (z -I- 1)n-l. The case 
k = n-1 also follows from Theorem 4 since Sk_ 1 (Z) = P(z} -zP'(z}/n. 

12) SZBOÖ [1]. p. 50. It is sufficient to consider P(z) = (z-On, 11; I> 1. 
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As an application of Theorem 8 we give 

Theorem 9. Let S be a point~set, P(z) a polynomial of degree n, and 
shuppose that P(z) E: S for 1 z 1 < 1. Then for p> 1, 1 z 1 < 1. I}, 1 < 1 we 

ave 

[pil P (;) - p-il P (pz)-l ~ P(pz)- P (;) ~ J I (pn_p-n) E: S. (10) 

Proof. According to Theorem 8 it is sufficient to prove that for p > I, 
I }, I < 1 the polynomial 

(z + p)n - (z + p-I)il -ll (z p + l)il - (z p-I + 1)il I . . (11) 

has na roots in 1 z 1 < 1. 
For 1 z 1 < 1, we have 1 z -I- pi < 1 z + p-11, hence 9?dz) = (z -I- p) n _ 

_ (z+p-l)n -::j= 0 for 1 z 1 <1. If we put 9?2(Z) = (zp+l)"-(zp- l -l-1)n, 
~en we have 19?1(Z}1 = 19?2(Z}1 for Izl = 1. It follows that 19?1(Z)1 < 
- 1 9?2 (z) 1 for 1 z 1 < 1, consequently the polynomial (11), equalling 
9?dz} - J, 9?2 (z), has na roots in 1 z 1 < 1 if I}, 1 < 1. 

The limit case p -?> 1 leads back to theorem 4. Another special case of 
Theorem 9 was proved by SCHAEFFER and SZEOÖ ( [1] ); there S represents 
the region I Re w 1 < 1. 

The following consequence 13} of Theorem 8 is symmetrie in Pand Q. 

Theorem 10. If P(z}, Q(z} and PQ(z} are given by (3), (4) and (8), 
respectively, and if IP(z}I<l, IQ(z)I<1 for Izl<l, then we have 
IPQ(z}l<l-llbo l-laoll for Izl<1. 

Proof. Let }, satisfy I}, 1 > 1, then Q (z) -A -::j= 0 for 1 z 1 < 1. On 
applying Theorem 8 to P(z} and (Q(z}-Î,}/(bo-A) we obtain 

IPQ(z)-Aaol~lbo-ll for Izl~1. •.•. (12) 

An argument of continuity shows that this holds for I A 1 = 1 also. We can 
choose a special Ao with modulus 1 such th at 1 bo - 10 1 = 1 -I bo I. It 
follows th at 

lP Q (z) I ~ Ilo ao I + 1 - I bo I = 1 - II bo I - I 80 Il· 
By interchanging the rol es of Pand Q the result follows. 

GRACE'S theorem also supplies a proof for the following theorem of 
SCHAAKE and VAN DER CORPUT 14}, whieh they showed to lead to Theorem 
7 (for S convex). 

Theorem 11. (SCHAAKE-VAN DER CORPUT). If [(Zl' ... , Zn) is of the 
type (6), and if we put 

lil (Zl" •• , Zn) =! ni/ (11 )-1 l' ZI Z2 ••• ZI" 
n 1'=0 fl 

~3) Communicated by Mr. T. A. SPRINOER. 
~4) SCHAAKE and VAN DER CoRPUT [1] Satz 17, p. 343 and Satz 18, p. 345. 
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then we have the identity 

{(ZI' ... ,zn) = }; Àn (:!, ... ,zn) {(p, p, ... ,p), 
P P P 

. . (13) 

where p runs through the n~th roots of Zl Z2 ... Zn. 
Furthermare 

. . . . . . (14) 

and if I Z1 I = I z21 = ... = I Zn I = 1 we have 

Àn (ZI p-I, .•. , Zn p-I)';:';: 0 . . . . . . (15) 
Proof. The relations (13) and (14) are easily verified; the difficulty 

lies in proving th at An ~ 0 if all Zi have the modulus 1. Putting Zi = P Ci, 
we have to estahlish that 

Àn (Cl' .•. ,Cn) ~ 0 if I Cl I = ... = I Cnl = 1. Cl C2 ••• Cn = 1. 

Putting bp = ~'Cle2 ... ep' we find bit = bn_p , consequently An is real. It 
remains to be shawn th at An cannot he negative. Taking P(z)= Z + 
+ Z2 + ... + zn-1 + 0 zn and Q(z) = zm-b1z m- 1 + ... = (z-ed ... 
. .. (z - en), we obtain for the expression (5): 

1 P, Q I = ( 7) -I bi + ( ~ ) -1 b2 + ... + (n~ 1) -I bn- I + Ó bn = 
= n An (Cl' .•• , Cn) + ó-1. 

Now if 0> 1, P(z) has no roots for 1 Z I ~ 1, according to a theorem 
of KAKEYA 15), sa th at Theorem 6 yields {P, Q} # O. It follows that J", 
cannot he negative. 

4. In this concluding section we sha11 ob ta in an integral inequality 
related to an inequality of ZYGMUNO (formule (18) helow), generalizing 
the EROÖs-LAX theorem. We deduce it from the following result which 
depends on SCHAAlm and VAN OER CORPUT' s th eo rem (Theorem 11 above). 

Theorem 12. ff [(Z1' ... , Zn) is of the type (6), and if cp (w) is a real 
and convex functian of the complex variable w, i.e. 

cp (a WI + PW2):::; acp(wl) + PCP(W2) (or a~O, p~O, a+ P = 1. 
th en we have, far I Z1 I -<: 1, ... , 1 Zn I -<: 1 

2n 2n 

J cp lf(zi e ie, .•. , Zn e iB) I de:::; J CP1 {(e W, ••• , e iB) I de. • (16) 
o 0 

Proof. Since [(Z1eie, ,,,,zlle te ) is a linear function of Z1' the left hand 
side of (16) is a convex function of Z1' Consequently, its maximum for 
I z11 -<: 1 is attained at the boundary I z1 I = 1. The same applies to 
z2' ... , Zn, and hence it is sufficient to prove (16) far the case 

I Z1 I = ... = 1 Zn I = 1. 

15) Cf. PóL'YA-SZBOÖ [IL Abschn. III, Aufg. 22. 
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By theorem 11 we then have 

f(zi eiD, ... , Zn cia) = }; )'Il (ZI p-l, ... , Zn p-l) f(p eiD, ... , p eIO). 
P 

wh ere p runs through the n~th roots of Z1 ... Zn, and wh ere the J'n satisfy 
(14) and (15). Since CP( w) is convex we have 

cp 1 f(zi e iG
, ••• , Zn e iO I :::; 1: An (ZI p-I • ... ,Zn p-l) cp 1 {(pe IO, ... ,peIO) I. 

P 

On integrating, and using (14), we obtain (16). 

Naw Iet P(z) be a palynomial of degree 11 and let [(Z1' ... , Zn) be such 
that [(z, ... , z) = P(z). Take Z1 = Z2 '" = Zn_1 = 1, Zn = e i1J , where r; 
is a real number, and cp (w) = 1 w lp (p:> 1). Since [(z, ... , z,/;) = 
= P(z) + (/;-z)P'(z)/n, Theorem 12 gives 

1"1 P (e iD
) - e iB PI(eiO)/n + ei('J+ 0) P I(e i8)/n lp de :::; ti P (e iD ) lp de. 

o 

Putting P (e iD) -- eiD PI (e i8)/n = A (e), e iB PI (eiO)/n = B (e), we abtain 
2:rt 2:r 2.n 

J de J I A (e) + B (0) ei'1lp dr; :::; 2" J I P(e ie) lp de. •. (17) 
o 0 0 

ZVGMUNO's inequality 16) 

2n 2n J I p/~eie) lP de:::;J I P(eie) lp de 
o 0 

(p?;: 1) . . . (18) 

can be derived from (17), by the farmuIa (valid for any real value of p) 
2 .. 

J I a + b ei
'1 lp dJ] ~ 2n Max 11 a lp, I b lp l. . " . (19) o 

Owing to the symmetry with respect to a and b it is sufficient to prove 
(19) for a :> b > O. Then it follows by 

2", 

2" I cp (0) 1
2:::; J I cp (ei'I) 1

2 dJ], wh ere cp (z) = (a + bz)!p. 
o 

Our present aim is to investigate how ZYGMUNO's result can be refined 
if we suppose that P(z) has na roots inside the unit circle. In th at case we 
have, by Theorem 4, A(e) +/;B(e) #0 for 1/;1<1, sa th at 

I B (e) I :::; I A (e) I (0:::; e :::; 2,,). . . . . . (20) 

Far I a I ~ I b I we have 

2", 2", 

J la+bei'1ldr;~lbIP J 11+e i '1I Jl dr;. 
o 0 

(p ~ 0). . (21) 

It is sufficient to prove this for b = 1, a> 1. In that case (21) follows 
from I a -+ e i1J I ~ 11 -+ e i1J I (r; re al ) . 

16) ZVGlvlUND [1]. 
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From (17), (20) and (21) we infer 

~ ~ ~ . 
f I B(e) lp de. f 11 + ei'llp de::::; 2n f I P(e10

) lp de, 
o ü 0 

and we obtain 

Theorem 13. If the polynomial P(z) of degree n has na roots for 

I z I < L then we have, for p ::> L 
2n 2n J I p/~eiO) lP de::::; Cp J I P(e i6

) lp de 

o 0 

2n 

where Cp = 2n I f 11 + ei'llp dY) ~ 2-P i;;-r( tp+ 1) / roop +t)· 
o 

It is easily seen that the sign of equality holds if P(z) = a + ~zl!, 
I a I = I PI. It can also be shown that the sign < holds otherwise. 

The case p = 2 was obtained by P. D. LAX (LAX [1]), whereas p --0> co 

leads to the ERoös-LAx theorem. 

Mathematisch Instituut der Technische 
Hogeschool, Delft. 
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Mathematics. - Sur les intégrales multiples dans les corps évalués et 
algébriquement~fermés. By F. LOONSTRA. (Communicated by Prof. 
J. G. VAN DER CORPUT.) 

(Communicated at the meeting of Septembe-r 27, 1947.) 

Nous supposons que Ie corps T satisfasse aux conditions suivantes: 

1. Test évalué non~archimédien; 

2. T est algébriquement~fermé, c'est à dire que chaque polynome de 
l'anneau T[x] se compose de facteurs lináires; 

3. T est complet. 

Les éléments a avec I a I ;;;;; 1 s' appellent des éléments "entiers" . 
N ous considérons un nombre fini quelconque de suites de polynomes 

gll (x). gl2 (x), ..• , gin (x), ... 

g21 (x). g22 (x), ••. , g2n (x) • ••. 

gSI (x), gs2 (x), •••• gsn (x), ..• , 

OU 

fIkt (x) = xnkl + Cki.1 XTlkl,1 + Cki,2 xnki,2 + ... + Cki.f' xnki.f' + Cki./A+I 

(k = 1. 2, ... ,8; nki> nki,1 > ... > nkl,f')' 

avec des exposants croissants et de sorte quO aucun des polynomes consi~ 
dérés ne possède des racines multipIes. En outre naus supposons que les 
coëfficients soient entiers et I Cki'fl+11 = 1 (k = 1,2, ... , s) 1). 

En ver tu de 2. Ie polynome gki{X) a mi racines 

paur lesquelles on a 
I 

I aid. I I = I aki,21 = ... = I aki.Tlkll = I Cki.fl+1Inki = 1. 

Nous supposons ensuite I nki I = 1 et 

nki ~ c/). nki, I ~ C/) (I = 1. 2, ..• 'f.1,). (nki-nki, I) ~ C/) pour i ~ c/). 

Alors on a 

I nki n~~ki.11 = /1 - n~c:;~ I ~ max (1.1 ":;:/ I) = max (1, I nki,ll) = 1. 

parce que les nki.1 sont des nombres natureIs, c'est à dire I nki, I I ;;;;; 1 
(1= 1,2, .... f~). 

En ver tu de la relation I akid I = 1 pour chaque k à part les racines des 
polynomes gki(X) se trouvent sur Ie "cercle d'unité". 

~) Nous supprimerons dans la suite l'adjonction k = 1. 2 ..... s. 

84 




