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I ntroduction. 

In the development of conformal differential geometry several different 
lines of research were followed. Now it is remarkable that in all theories 
just in the beginning the introduction to the theory of plane curves is not 
quite satisfying 1). 

As to the choke of a system of coordinates it is natural to choose as 
first axis the oS(:ulating circle. Than the first problem is the construction 
of a second axis (circle). But this is not the way followed by BLASCHKE­
THOMSEN. nor by HAANTJES 2) nor in the publication of HAANTJES­
SMITS 3). representing three different methods. 

In this paper we start from the osculating circle. The usual coordinate~ 
system is constructed in § 5. In the notation we follow BLASCHKE-THOMSEN. 

§ 1. Normalised tetracyclical coordinates. 
-+ 

Be x a vector whose homogeneous components (XO. Xl' X!!. X3) are the 
tetracyclical coordinates of an oriented circle. provided that 

-+ -+ 
(x. x) = -x~ + x: + x~ + x; =t- o. 

The coordinates can be normalised by the condition 

-+ -+ 
(x. x) = 1. 

This can be do ne in two different ways, each of them belonging to a defi­
nite orientation of the circle. IE 

-+ -+ 
(x.x)=O 

-+ 
x represents a point. 

-+ -+ 
The invariant (x, y) of two circles each with a definite orientation 

-+ -+ der 

(x, Y) = -xO Yo + XI YI + X2 Y2 + X3 Y3 

1) The method used in the beautiful work of BLASCHKE-THOMSE~: Differential 
geometrie lIl, is real~y somewhat more genera! than the method used here because a 
general system of drcles is used. But in application to the theory of plane curves it is 
more or Iess troublesome. Especially the construction of invariant coordlnatesystems is not 
quite satisfying and the same can be said of other methods. 

2) J. HAANTJES: conformal geometr,y I. 11; Proc. Ned. Akad. v. Wetensch .• Amsterdam. 
<H. 814-824 (1941) ; 45.249-255 (1942). 

3) J. HAANTJES and C. SM,JTS. De differentiaalmeetkunde van Moebius in het platte 
vlak. Nieuw Archief voor Wiskunde XXL p. 34-47 (1943). 
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is the cosinus of the angle lP between them. By the orientation of the 
circles it is possible to determine cos. lP uniquely. By introducing a definite 
order of the two points of intersection it is also possible to fix sin. lP. Then 
lP is fixed modo 2 n 4) . 

~ ~ 

IE x represents a point and y a 'circle the equation 

~~ 

(x.y)=O 
~ ~ 

expresses that x is a point of the circle y. 

§ 2. The normalized osculating circle of a plane curve. 

Be 
~ ~ 

x=x(t) 

~~ 

with the condition (x. x) = O. the parametrk equation of a plane curve. 
We as su me in the following that all functions are rea 1 and that they can 
be differentiated as often as may be necessary. Then the normalized 

~ ~ 

osculating circle y in a point x is expressed by 

(y. y) = 1; (y. x) = (y • .i-) = (y. i) = 0; x =; . ~~ ~~ ~~ ~~ ( d) 
Prom this it follows that 

~~ -+~ ~~ 

(x. y) = (x. y) = (x. ij) =0. 
~ 

Hence y satisfies the equations 

~~ ~~ ~~ 

(y. y) = (x. y) = (x. y) = 0 

~ ~ 

and this imp lies th at ,x and y differ only by a constant scalar factor. It is 
~ ~ ~ 

not necessary to except the case that x. y and x are linearly dependent 
because by multiplication with y it becomes clear that this case is impossible. 

~ 

Starting from the osculating circle y we have already 

~~ ~~ ~~ ~~ 

(y. y) = 1. (y, y) =(y. ij) = (y. !ï) = 0 (1) 

~~ ~~ 

(y.y)=(y,ij)=O. (2) 

~ ~ 

where y is the point of osculation on the curve iJ (t). 

4) Cf. Differentialgeometri.e 1II § 15. 

2 
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§ 3. The parameters do and do+. 

If a new parameter s is introduced instead of t we have 

-+ -+ 

dy = dy dt (dy = ~) 
ds dt ds dt y 

and this implies according to (2): 

This proves that the differential form (the positive value is meant) 

. (3) 

is independent of the choice of the parameter t. 
We remind that the method of tetracyclical coordinates is intimately 

connected witih the welIknown tmnsformation, carrying the points of a 
sphere into the points of the plane considered and the points outside of the 
sp here into the circles of that plane. 

-+ 

Now we have found that dy = -.; is a point of the plane, i.e. the image 
dt -+ -+ 

of a point of the fundamental sphere. Consequentiy ~:; = ~: is the image 

of a point on a tangent of the sphere, that is a point on the sp here or 
-+ 

outside of the sphere. Hence dd2r is in our plane a point or a circle and 
-+ -+ t 

(~:r ' ~:'f) ::> O. That implies that in (3) the bars may be dropped: 

-+ -+ 

_ (d2y d2y
) do - + 1Y d t2' d t2 dt. 

Generally 
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From 

it would follow after differentiation of (2) 

-+ 
that means: the osculating circle would have in iJ a contact of third order 
with the enveloping curve. This case will be excepted. 

We now assume that from the beg inning the parameter 0 were used. 
Then the equations 

-+ -+ -+ -+ 
(ij . ij) = 1. (y. "ij) = (ij . !ï) = 0 

-+ 
"7 _dy 

holdnextto (1) and (2). From now on y-do' 

-+ -+ 

-+ 

(
-+ _ dY ) 
y - do . • . (4) 

Two normalized circles y and ij are fixed . From (1) it follows that they 
-+ 

intersect orthogonally. One of the points of intersection is IVI (iJ). the other 
-+ -+ 

he denoted by W ( w). For w we have 

-+ -- -+ -+ -+-+ 
(y , w) = (ij. w) = (w. w) = O. · (5) 

and w can he normalized such that 

-+ -+ 
(iJ. w) = 1 · (5) 

Here is a table of scalar products written in the form of a determinant 

-+ -+ "7 -+ 
Y Y Y w 

-+ 
Y 0 0 0 
-+ 
y 0 1 0 0 

(7) . · "7 
0 0 0 1 y 

-+ 
w l O 0 0 

-+ -+ -+ -+ 
This determinant is -1. and this imp lies that the four vectors y. ij. y. w 
are linearly independent and every other vector can he linearly expressed 
in them. According to a wellknown theorem the determinant is equal to 

-+ -+ -+ -+ 
( ..• )2 - y. y. y. w . 



20 

Hence 
-+ -+ -+ -+ 

Det I y. y. y. w I = ± 1 

In fact both values may occur. Suppose the value is + 1. Then we apply 
-+-+ . . 

a transformation leaving (y. y) invariant. i.e. a transformation of the group 
M 6' lts determinant can have the value -+- 1; we apply a transformation 
having the value - 1. 

After this transformation (7) takes the value - 1. But scalar products 
-+ -+ 

being invariant (y. w) remains + 1. 
The differential do is invariant for all transformations of M6' We now 

define an other differential form do+ by the equation 

recurring to the arbitrary parameter t. This form is independent of the 
choke of the parameter t. The same holds for 

(8) 

H a transformation of M6 is applied to the righthand side of (8) with 
fixed t. the determinant remains invariant or changes its sign according to 
the value of the transformationdeterminant being + 1 or - 1. 

Consequently do+ is invariant with respect to transformations of the 
parameter and the transformations of M 6 +. the subgroup of M 6. with 
determinant + 1. 

H in (8) t is replaced by 0 we get the relation between do and do+ 

-+ 
+_ -+""!".""!" -+ ("'t_dY) do -Iy. y. y. wl do y - do . 

H we start from do+ = do this relation is invariant for every trans~ 
-+ -+ 

formation of M 6 +. That implies that all formulae hold if y. Y ... denote 
-+ . 

derivatives of y with respect to do+. In the sequel 0+ will be used as para~ 
meter and only transformations of M 6 + will be used. Then we have allways 

-+ -+ -+ -+ 
ly.y.y.wl=+1. . • (9) 

§ 4. FRENET'S formulae in conformal geometry. 

In this section the formulae of FRENET will be derived. We suppose that 

-+ -+ 
('Ij. w)=-b. . (lOa) 

hence (d. (6)) 
-+ 
(y. w) = b • (lOb) 
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IE now we write 
~ ~ ~ ~ ~ 

y = ay + Pij + ry + <5w 

the coefficients a. p. r. b can be determined immediately by scalar muIti~ 
~ ~ ~ ~ 

plication of this equation with y. ij, g, and w, using the table (7). In the 
same way the coefficients in · 

~ ~ ~ ~ ~ 

w = }.y + ftij + vy + ew 

can be determined. Thus we get 

-; = -b; -:l 
~ ~ ~ 

w=-y + bij 

. (11) 

and they are the formulae of FRENET in conformal geometry. We add the 
formula 

~ ~ ~.~ 

"ij = y - 2bij -by 
to be used in § 6. 

In the usual way it can now be proved that. if b is given as a function 
~ ~ ~ ~ 

of a+ the functions 9 (a+ ). and from this ij, y, and wand their relations. 
can be determined. uniquely to within transformations of M6+' in such a 

~ 

way that (11) is satisfied and that the circles 9 (a+) are all osculating 
èircles of the curve enveloping them. . 

This implies that band its derivatives form a complete set of conformal 
~ 

invariants of the curve y (a+). 

§ 5. Construction of the preferred coordinate system. 
~ ~ 

If 91 and Y2 are two normalized circles with no real common points. in 
~ ~ ~ ~ 

the linear circlemanifold a 91 + P Y2 there exist two points pand q. the 
limiting points. 

~ 

Now we ask for the two circles z satisfying the condition that the two 
double ratios 

~~~ ~ ~~~~ 

D (p, q. YI' z) = D (p, q, z, Y2) 

~ ~ 

are equal. In order to determine pand q we solve ft from the equation 

~ . ~ ~ ~ 

(YI + ftY2' YI + ftY2) = 0 
~ ~ 

1 + ft (YI + Y2) + ft2 = 0 

IE ft1 and ft2 are the solutions we have 

~ ~ ~~ ~ ~ ~ 

p = YI + ftl Y2' q = YI + ft2 Y2' 



Be now 

th en we have 
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~ ~ ~ 

Z=Yl +.tY2 

fll fll -.t fll -.t 
fl2 : fl2-.t = fl2-.t 

.t2=fllfl2=1 
~ ~ 

Z=Yl ±Y2' 
~ 

The geometrical signification can be obtained as follows. If z is written in 
the norm al form 

it follows that 

~ 

~ 

z= 

~ ~ 

YI ± Y2 
~ ~ 

VII + 2 (Yl' Y2) I 

Hence the two circles z are those circles of the linear manifold fixed by 
~ -f' ~ ~ 

Y 1 and Y2. that have the same invariant with Y 1 and Y2 5). 

The foregoing consideration be applied now to two neighbouring 
osculating circles of the curve. They may be chosen as near that one of 

~ ~ 

them lies entirely inside the other. They be denoted by Y + 6 l y and 
~ ~ ~ 

Y + 6 2yj Of the two circles z derived as above we chose one at random 
~ ~ 

and denote this one by z. From this circle and Y we construct a linear 
~ ~ ~ 

circlemanifold. Hence this manifold is fixed by Y and 6 l y + 6 2y or 
~ ~ 

6 l y - 6 2y. If the + sign is chosen we have 

~ 
~ ~ .. 

/\ -' /\ + + Y /\ +2 + LH Y - Y Ui 0 1 . 2 U 0 ••• (i= 1. 2) 

and this gives rise to the following consideration. Let 6 10+ and 6 20+ 

tend to zero in such a way that ~10+ is constant then the linear manifold 
U20 + 

~ ~ 

tends in general to a limit. determined by ij and y . But there is one 
exception. IE 

~ ~ 

5) Till here we did not use the condition, that Yl and Y2 have no real points in common. 
Hence the deduction does not loose sense if this condition is dropped. Then the circles 
~ ~ ~ 

z bisect the angles between Yl and Y'2. 
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~ ~ ~ 

we get instead the mani(old determined by Y and ij with Ij as one of the 
points of intersection. 

~ ~ ~ ~ 

Briefly said, we consider two osculating circles Y + 6 1y and Y + 62Y 
with 6 10'+ = -+- 6 20' + and (in a suitable way for each choice of the 

~ ~ ~ 

sign -+-) one of the two circles z having the same invariant with Y + 6 1y 
~ ~ ~ ~ ~ ~ 

and Y + 6 2y· lf 6 1y and 6 2y tend to zero, z tends ta a circle ii, forming 
~ 

with Y the axes of our invariant coordinatesystem. That fi xes this coor~ 
dinatesystem in a constructive way. 

§ 6. Comparisan with the methad af HAANTJES and SMITS. 

In this § we compare our method with the metho~ of H. and S . They 
~ 

start from the coordinates of GAUSS. Be (in our notation) x a point, then 
these coordinates can be introduced by 

X2 + iX3 
Z = --=----':---=c 

xo+Xt 
(12) 

Now let z describe a curve z(t) and be z' , z", ... the derivatives with respect 
to t. Then the socalIed derivative of SCHWARZ 

Z"' 3 (ZIl)2 Iz. ti = - , - - -----,-
z 2 z 

. • (13) 

is invariant for all transformations of M 6 +. H. and S. fixed their para~ 
meter (t) by the condition 

1Iz,tl=1. 
wh ere I {z, t} denotes the imaginary part of {z, t}. 

Now in our notation we let some point describe the same curve by 
putting in (12) 

and we ask for the relation between the parameter t (of H. and S.) and 
our 0' +. In order to show that 0'+ and t coincide, we have only to prove that 

I 1 z. 0'+ I = 1. 

From (12), (13), (14) it follows that 

z' 3 (Z)2 1 1 Iz. 0'+ 1= ;-2 i =~. (qp_pqY X 

X [2qq (qp-pq) (qp_pq)_2qq)2 (qp~pq)2 + 
(14) 

+ q21 (qp-pq+qp-pq) (qp-pq)-t (qp_pq)211 
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where we have put 

P = 92 + i 93' q = 90 + 91' 
The expression (14) can be simplified by the following transformation 

T of M 6 + for which {z, a+} is invariant: 

-+ 

-+ 
y ~ the straight line (0. O. O. 1) 
-+ 
ij ~ the straight line (0. O. 1. 0) 

"7 
y the point (t. t. o. 0). 

Then w is the point (- 1, 1, 0, 0). According to FRENET' s formulae the 
following equations can be added 

-+ 
y~(-tb+L -tb-LO.O) 
-+ • • 
·!ï~(-tb. -tb. -2b.l) 

and this leads to 

I z. a+ I = b + i. 
Hence the parameter t may be considered as induced by 0+. As was to be 
expected also the real part of {z, a+} is invariant, that is equal to b. 

The second base point of the invariant linear cirdemanifold considered 
by H. and S. is now, af ter performing the transformation T, the point 
z = co or in our notation the point (- 1, 1, 0, 0). It always coincides with 

-+ 
our point W. Our cirde ij is the normal cirde of H. and S. 


