
Aerodynamics. - On the influence of gravity upon the expansion of a gas. 
I. By J. M. BURGERS. (Mededeling no. 53 uit het Laboratorium 
voor Aero~ en Hydrodynamica der Technische Hogeschool te Delft.) 

(Co=unicated at the meeting of January 31, 1948.) 

1. Statement of the problem. - We consider a vertical column of gas, 
which before the instant t = 0 is limited by a horizontal plane wall at its 
upper end, whereas downwards the column extends indefinitely. Lateral 
motion of the gas is prevented (it may be assumed that the gas is enclosed 
in an infinite vertical cylinder with perfectly smooth walls, or that the 
lateral dimensions of the column are in fini te ). The gas originally is every~ 
where at rest. The pressure of the gas has a certain finite value Po at the 
level where it is in contact with the boundary plane; downward the pressure 
rises in consequence of the weight of the gas, according to the law valid 
for an atmosphere in adiabatic (isentropic) equilibrium. Above the boundary 
plane is vacuum extending towards infinity. 

At the instant t = 0 the boundary plane is suddenly taken away, so that 
the gas can expand. It is asked to find the motion of the gas, taking account 
of its weight. 

The gas shall obey the law ple = RT (p = pressure; e = density; 
T = absolute temperature; R = gas constant per unit of mass) and shall 
have constant specific heat Cv = R I (k - 1 ); Cp = kRI (k - 1 ). In working 
out the equations the case k = 5/ 3 is taken, as th is value of k (like the 
value 7/ 5 ) makes possible a solution of the principal equations in finite 
terms. The scale of the field depends upon two parameters: Co' the velo city 
of sound in the gas at the level just below the boundary plane in the 
original equilibrium state of the gas (for convenience a will be written for 
3co), and g, the acceleration of gravity, which is supposed to be indepen~ 
dent of the height; the time scale is fixed by alg, the scale of lengths 
bya2/g. 

Viscosity, heat conduction and radiation are neglected. It is found, 
however, that a shock wave appears in a particular point of the field at the 

instant t = il. ,alg. Within the shock wave viscosity produces a sudden 
rise of entropy. The continuation of the solution beyond this instant is 
extremely difficuit and we must restrict to a few indications concerning the 
first stages of the propagation of th is shock wave, in which the change 
of entropy still is smalI. 

2. Equations of motion for the gas. - We take the axis of z vertically 
upwards, z being counted from the upper level of the gas in the original 
equilibrium condition, i.e. from the level in contact with the boundary plane. 
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So long as the changes of state of the elements of volume of the gas are 
adiabatic and isentropic, the state of the gas in every element can be 
characterised by a single variabIe, for which we take the velocity of sound e. 

The equations of motion can be brought into the form 1): 

· (1) 

(first equation: + signs; second equation: - signs), where u is the velocity 
of motion of an element of volume. 

The gas was assumed to be at rest in the reg ion z < 0 for t < O. Both 
equations of the system (1) then reduce to the same form and by in te
gration give: 

e2 = ~ - (k-l) gz = e~ - t gz . · (2) 

From this formuia the increase of the temperature, of the pressure and of 
the density of the gas downward from the level z = 0 can be deduced. 
The temperature e.g. is given by T = To- (k-l )gz/kR = To-gz/ep, 
which is the weIl known relation for an atmosphere in isentropic equilibrium. 

After the boundary plane at z = 0 has been taken away we expect that 
the expanding gas will not rise indefinitely (as it does in the case where 
gravity is not operating), but that finally a new state of equilibrium will be 
approached. It can also be expected that for large negative values of z 
the state of the gas will not change very much and that in the limit formula 
(2) will remain valid. Hence if a new equilibrium state should indeed be 
approached (possibly af ter a period of oscillatory motion ), we must expect 
that the column of gas in the final state will not extend beyond an upper 
level determined by e = 0, from which: 

zm =3eM2g · (3) 

3. Solution of the equations by means of RIEMANN's method. - We 
introduce a change of variables: 

T = t; ,= z + tgt2
; W = u + gt . · (4) 

The equations become transformed into (with k = 5/ 3 ): 

~ OOT + (w ± e) 00, ~ (w ± 3e) = 0 • · (5) 

Here g na langer appears explicitly: equations (5) are identical with those 
for the expansion of a gas not subjected to gravity. We next introduce: 

{} = w + 3e; 1'] = w - 3e . (6) 
from which: 

w= -~- ({) + 1']); u={- W + 1']) - gt; e=H{}-1']) .• (7) 

1) Compare J. M. BURGERS, Some problems of the motion of interstellar gas c1ouds, 
these Proceedings 49, 593, eqs. (7), (1946). 
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Equations (5) express that {} is constant along a curve of a C. l'~plane for 
which dU dl' = W + c; and that '1 is constant along a curve for which 
dU dT = w-c. Hence the curves of the C. l'~plane determined by the 
equations: 

(I) dC/dT = W + c; 

or in other form by: 

(I) {} = constant; 

(11) de/de = w-c, 

(11) n = constant, 

are the two sets of characteristics of the system (5). 
As indicated by RIEMANN 2) we take '1 and {} as independent variables, 

describing an '1. {}~plane (fig . 1). in which C and • will be considered as 
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Fig. 1. 7], D-plane. The unit for the scales along both axes is a. 

the dependent variables. The transformation of the equations of motion is 
obtained in the most simple way by observing that the r~lations just 
mentioned are equivalent to: 

oe/on = (w + c) . (OT/On) for constant {} ~ 

oe/o{} = (w - c) . (OT/O{}) for constant TI ~ 
. (8) 

!I) See B. RdEMANN- H . WEBER. Die partiellen Differentialgleichungen der mathema
tischen Ph,ysik (Braunschweig 1901) , Bd. 2. p. 499 seqq. 
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Eliminating , by cross differentiation we arrive at: 

à2l 2 (0 l Ol) _ 0 
01] 0t'1 - f'J-t'1 01'} - àt'1 -

(9) 

We further consider the boundaries appearing in the 1}, #-plane. One 
boundary is obtained by observing that from t = 0 onward the first wave, 
initiating the expansion, penetrates into the gas in the direction of - z, 
with a velocity of propagation c given by (2). In a z, t-diagram (see fig. 2) 

(downword) 
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Fig. 2. z, t-plane. 

(upword) 

Z 

the path OC of this wave is determined by dz/dt = -c, from which: 

z = -~. at - i gP . (10) 

Inserting (10) into (2) we Eind that along this path c = Co +t gt = 
= {- (a + gt). As u = 0 along the path of this wave, we have w = gt, 
and we deduce from equations (6): 

t'1 = a + 2g1: (with l ~ 0); 1'} = - a (11 ) 

These formulae determine the straight boundary O*C in the 1}, #-plane as 
indicated in fig. 1, along which boundary 1: = (# - a) /2g. 

To obtain a second boundary we observe that the Eirst stages of the 
expansion (appearing near z = 0 for t only slightly above 0) will be 
practically the same as in the case where gravity is absent. In that case 3) : 

U = t a + t zIt; c = t a - t zit. 

Here the directions zit = constant represent the characteristics for which 
dz/dt = u - c. In the expanding gas near z = 0 the value of c will at 
most be equal to Co = a/3; as on the other hand c cannot decrease below 

3) Cornpare J. M. BURGERS l.c., eqs. (6) at p. 592, changing the sign of c. The 
solution given page 594. eqs. (8), although likewise reverting to that given by eqs. (6) 
when t goes to zero, refers to a set of initial conditions differing from those iotroduced 
io the present problern. 
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zero, the admissible values of zit are confined between - al 3 and + a. As 
the difference between wand u can be neglected for very sm all values of 
t, the characteristics 'YJ = constant must be tangent for t ~ 0 to the 
characteristics zit = constant of the equations from which g is absent. 
At the same time we find: 

{}= w + 3c~ u + 3c=a: 

'YJ=w-3c~ u-3c=-i-a + lzft (::::::; + a). 

These equations determine the boundary 0* A in fig.Lalong which 
boundary 'l = O. 

With the aid of the boundary values of 'l along O*C and 0* A it is 
possible to obtain an expression for 'l valid in the reg ion f}::> a; 
- a -< 'YJ -< + a by means of RIEMANN'S method of integration. The 
auxiliary function v introduced by RIEMANN must satisfy the equation: 

0
2 
V + a ( 2V) a ( 2v ) - 0 

O'YJ af} 01] 1]--& - 0-& ,1]- {} - , 

and the supplementary conditions: 

ov 2v OV 2v 
01] = 'YJ--& for -& = -&p: 0-& - - 'YJ--& for 1] = 'YJP, 

'YJP. -&p being the coordinates of any point where it is desired to find the . 
value of 'l. The appropriate solution for v is 4): 

(12) 

-4. Continuation. - Making use of RIEMANN 'S auxiliary function the 
following expression is obtained for 'l: 

(13) 

Having regard to (8) the corresponding expres sion for I; is found to be: 

-&2_a2 ~ 5 {jl-a2 -&(-&2_a2) 2-& ~ 
I; = g ({}-1]) ~ i (f}-1]) - 2 (-&-1])2 - "3 ~ . (li) 

where the integration constant has been adjusted so that along O*C (i.e. 
for rJ = -a) : I; = ({}2-4{}a + 3a2 )/ 12g, which leads to the value of z 
given by (10) . 

4) See R.IEMANN-WEBER [J.c. footnote 2) above]. p. 510. - The circumstance that 
a solution of the equations for v can be expressed in finite form if k satisfies the condition 
that (k + 1 )/2 (k - 1) is a whole number, was remarked by G. DARBOUX, Leçons sur la 
théorie des surfaces (Paris 1889), tome 11, p. 65. Compare J. HADAMARD, Leçons sur la 
propagation des ondes (Paris 1903) , p. 168 and also GoSSOT et LIOUVILLE, BaIIistique 
intérieure (Paris 1922), p. 142. 
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It is useful to mention the equations: 

2 g (&-1])4 (ilrf01]) = i)4 - 4 i)' 1] + 2 i)2 a2 + 4 i) 1] a 2 - 3 a4 . . (1~4) 

2g (i)_1])1 (O./Oi)) = i)4 - 4 i)'1] + 6i)21]2- 4 i) 1] a2 - 21]2 a 2 + 3 a1 (l5b) 

The values of oUor; and oUoi) are obtained from these expressions with 
the aid of (8). It follows from (15a) and (15b) that the derivatives o./or; 
and oUor; simultaneously become zero: 

a) along the line O· A wh ere {} = a (for all values of 1]); 
b T in the points of the curve: 

1] = ({}2 + 3a2)/ii) ........ (16) 

This curye starts from A ({) = a; 1] = a) and ends in F (i) = 3a; r; :;:: a); 

the minimum value of 1] on this curve is found in the point D ({) = fJ -a; 

1] =! fJ- .a). 
The derivatives O./Oi) and oUM} simultaneously become zero in the 

points of the curve: 

(6i)2-2a2) 1]2-4 ({)' + {}a2) 1] + i)1 + 3a1 = O. • . (17) 

which starts from A and returns to the same point af ter having passed 
through D. where {} reaches a maximum. The minimum value of 1] on this 

curve is attained in E (i) = (i -a; 1] = t (2 -a). 
The 1]. #~plane is also of use in the calculation of the path of an inclividual 

element of volume of the gas. The motion oE such an element is determined 
by: 

dzfdt= u = t (# + 1]) - gt . . . . . • (18) 

Erom which. making use of (4): 

dCjd-r = w = t (fJ + 1]). . . • . . • (t8a) 

IE the path of an element is represented in the #.1]~plane and d#/dr; refers 
to the curve thus defined. we have: 

dC _ (OC/01]) + (oCfoi)) (di)fd1]) 
d. - (0./01]) + (0./0#) (d#/d1]) 

(l8b) 

Making use of eqs. (8) and of (15a). (15b). equations (18a) and (18b) 
can be applied to deduce the following differential equation for the repre~ 
sentation in the #. r;~plane of the path of an element: 

d# i)4 - -4 #' 1] + 2 #2 a2 + 4 i) 1] a2 - 3 a4 

d1J - #1-4 i)'1] + 6i)21]2_'1 i)1]a2-2 a21J2 + 3 a4 • . (19) 

This equation admits the integral: 

t {}5_{}41] + 2 {}'1]2 -2 {}21] a2 + # (3 a4- 21]2a2) + 31]a4 = t Sa5 (20) 

S being a constant. - From what has been observed in connection with 
( 15a). (15b) it follows that the curves determined by (16) and (17) mark 
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the points wh ere the curves (20) have a horizontal or a vertical tangent 
respectively. 

We further mention that with the aid of (13) the following expres sion 
for u can be deduced: 

u = t (a2-1]2) (a2 -2111] + 1]2)/(11-1])3 

Hence u becomes zero: 

a) along the boundaries O·C (1] = - a) and AB (1] = + a) ; 
b) in the points of the curve: 

11=(1]2+a2)/21] • 

which has been indicated in fig. 1 by a dotted line. 

• (21) 

• (22) 

S. Pt'ovisional interpt'etation. - Having arrived at a formal solution 
of the equations referring to the 1], 11~plane, we attempt to interprete this 
solution in terms referring to the z, t~plane or "physical plane" (see fig. 2). 
It will be found that the correspondence between the two plan es is not a 
simple one, as a certain overlapping occurs in the z, t~plane in the region 
corresponding to the neighbourhood of the point A of the 1], 11~plane. We 
shall, however, first give attention to that part of the Tj, 11~plane between 
the lines O·C and AB for which 11 is large, as no difficuIties are found 
here. 

It has been mentioned th at the line O·C corresponds to the first wave 
penetrating downward into the gas and initiating the motion of the con~ 
secutive layers. This path has been indicated in fig. 2. 

Along the boundary 0* A in the Tj, 11~plane we have 11 = a, 'f = 0, C i= 0. 
In the z, t~plane the single point 0 (z = 0, t = 0) corresponds to this line. 
The point A itself (11 = a, Tj = a) is to be excluded, as the expressions 
( 13) and (14) become indeterminate here. 

Along the boundary AB in the Tj, 11~plane we have Tj = + a, 11 > a; 
hence 'f = t = ({f + a)/2g; C = ({f2 + 4{fa + 3a2)/12g, and: 

z = (-112 + 2 {fa + 3 a2)/24 g =! at-i gt2 
• . (23) 

This curve likewise has been indicated in fig. 2 (curve A· B starting from 
z = a2/6g = 3co2/2g; t = al g). • 

The curves OC and A * Bare both characteristics, as Tj is constant along 

these curves. Along OC we have u = 0, c = ! (a + gt) = r co2 -tgz. 
as mentioned before. Making use of (7) and (23) we find that exactly the 
same relations hold along A * B. Now it is a known property of equations 
of the hyperbolic class that along characteristics solutions of different type 
can be joined together. Hence it seems possible to suppose that not only 
the reg ion of the z, t~plane below the parabola OC, but also that ,above the 
parabola A * B - at least for large values of t - represents a state of rest 
of the gas in which equation (2) will hold. 

We will provisionally assume that for large values of t an asymptotic 

11 
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solution of this type is possible. although the conclusion cannot be accepted 
as final. in consequence of the peculiar conditions of overlapping which are 
found in the neighbourhood of A. 

Development of (13) and (14) for large values of -a. gives: 

_ _ -a. + 1] 1] (a2 _1]2) (a2 - 51]2)(a2 _1]2) 
t - f - 2""fl + g -a.2 - 2 g -a.3 + ... 

(24) 
_ -a.2 +4-a.1]+1]2+2a2 21] (a2-1]2) (3a2-231]2)(a2-1]2) 

C - 12g + 3g{} - 12g{}2 

from which: 

({}_1])2 - 4 a 2 1] (a 2 _1]2) 
z = - 24 g + 6 g {} - ... . (25) 

These formulae show that for large values of -a. (and thus for large values 
of t) there is a simple and unambiguous correspondence between the 
region of the 1]. 'I?~plane limited by the lines O*c' AR and the reg ion of 
the z. t~plane limited by the parabolae OC and A*B. 

For large values of 'I? eq. (20) can be approximated by: 

from which: 

. (26) 

where C = S't.a . It follows that the curve in the 1]. 'I?~plane representing 
the motion of an element of volume of the gas (for shortness we shall call 
such a curve an "S~curve") starts from 'I? c-::> C -(1; 1] = -a and arrives 
at 'I? c-::> C + a; 1] ,= + a. From (24) and (25) we deduce that the cor~ 
responding actual motion takes place in the interval of time from 
t := C/2g - alg until t = C f 2g + af g. and that the change of level is 
smalI. There is a slight (and slow) up and down motion. in which the 
value of z first rises over an amount of approximately a4/4gC2 and then 
almost comes back to the original level. the resulting increase of z (as 
deduced from a closer approximation) amounting tot~ a5/gC3 only. It can 
also be deduced from (21) th at for this motion u c-::> -1] (a2 _1]2) I 'I? 2 • 

so that u changes sign approximately at 'YJ = O. Hence the motion of the 
gas. started by the initial wave which travels along the pa th oc, is brought 
to rest again by a final wave travelling along the path A*B. 

6. Appearance of shock waves. - It has been mentioned that in 
establishing a correspondence between the 1]. 'I?~plane and the z. t~plane a 
certain overlapping is encountered. This overlapping becomes evident in 
various ways. In discussing it we conveniently make use of the 1;. f~plane 
instead of the z. t~plane. as this relieves us from the necessity of calculating 
values of tgt2 • As the z, t~plane can be obtained from the 1;, f~plane by a 
shift of every horizontal line over the appropriate distance igt2 to the ldt. 
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there is a one to one correspondence between the points of the relevant 
regions of the two planes, and intersections either of characteristics or of 
paths appearing in one plane will have their exact counterpart in the 
other plane. 

We start with a short discussion of the course of the characteristics. 
Referring to eqs. (15a). (15b), (16) and (17) of section -4 and to the 
conclusions derived from them, it will be seen that characteristics of the 
set r;= constant intersect with the curve AEDA in the r;, 'I9-~plane if 

YJ > -1 ti. a. At the point of intersection ?rr:/o'19- and oC/o'19- simultaneously 
become zero and change sign. This means that in the "T~plane the 
characteristic turns back upon itself and thus presents a cusp 5). At the inter~ 
section with the upper branch of the curve AEDA a second cusp appears. 
- The characteristics of the set '19- = constant intersect with the curve 
ADF if '19- < 3a; in the " T~plane these characteristics then likewise present 
a cusp, in consequence of the simultaneous vanishing of OT/Or; and o,;,or;. 

More important is a discus sion of the curves representing the motion of 
an individual element of volume (a layer) of the gas. The corresponding 
"S~curves" of the r;, 'I9-~plane are given by (20). The S~curves start from 
points of the line O*C; if the starting point is given by '19- = {Jo; r; = - a, 

the value of S is found to be S = ('19-0 / a + 1) 5 - 16, so that S increases 
regularly with '19-0 • The smallest possible value of S is obtained with '19-0 = a, 
giving S min = 16; the corresponding S~curve is the line 0* A in the r;, '19-~ 

plane. 
IE we take a value of S slightly above Smin the corresponding S~curve 

will intersect with the lower branch of the curve AEDA. The point of 
intersection gradually moves from A to the left, until it reaches the point E 

when S has obtained the value ft y2 = 16,26345. For S> 16,26345 there 
is no intersection with the curve AEDA, although th ere can be intersection 
with the upper part of the curve ADF of fig. 1. 

For any S~curve with 16 < S < 16,26345 it follows from (17) and (19) 
that d'l9-/dr; becomes in fini te at the point of intersection with the curve AE. 
At the same point OT/ O'19- and oUo'19- take the value zero and change sign. 
Hence when we proceed along the S~curve the corresponding pa th in the 
" T~plane turns back upon itself, i.e. it presents a cu sp (both distance and 
time going back). Such behaviour in reality is impossible. It is to be 
observed that the velocity of the gas, which in the "T~plane is determined 
by w = dUdT, does not become zero at the cusp. 

The vanishing of Oi/O'19- and oUo'19- means that at the corresponding 
point of the ,. i~plane the quantity '19- has an infinite gradient, i.e. '19- presents 
an abrupt change. I t appears from formulae (7) that this entails an abrupt 
change in wand in c (there is no abrupt change in r;). Hence we have the 
situation characteristic for a shock wave. 

6) Compare J. HADAMAIID. Leçons sur la propagation des ondes. p. 187. 
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The appearance of shock waves makes the problem considerably more 
difficult. as a shock wave introduces a non-isentropic change of state of 
the gas. 50 that the state can no longer be described by means of a single 
variabIe. This takes away the basis of the analysis given in sections 2 - i. 
and the 1/. ~-plane willlose part of its applicability. However. as the gas in 
its original state of rest was in isentropic equilibrium. a part of the dia
gram. situated along the boundary O·C. will retain its applicability. even 
for indefinitely increasing values of ~ and of t. Hence the shock waves 
will delimit certain domains in the 1/. ~-plane and in the ,. 't'-plane (or in 
the z. t-plane). within which the state of the gas no longer can be described 
by means of the value of c alone; these domains are embedded in regions 
to which the original analysis still applies. 

In a continuation of this paper we shall consider the initial stage of the 
first shock wave. which appears to start from the point E. 

(To be continued.) 
Résumé. 

Dans cette communication on considère I'influence de la pesanteur sur 
I'expansion d'un gas parfait, en supposant qu'il y a mouvement seulement 
dans la direction verticale. Dans Ie cas ou k = c p/ Cv '= 5/3, les équations 
peuvent être intégrées complètement par la méthode de RIEMANN; la 
fonction auxiliaire v de RIEMANN s'exprime en termes finies; la position z 
et Ie temps t caractérisant Ie ·mouvement d'un élément de volume sont 
exprimés par des fonctions rationelles de la vitesse même de I'élément et de 
la vitesse du son dans eet élément. 

Quand on cherche à décrire Ie mouvement réel d'un élément de volume. 
on trouve des irrégularités dans certaines parties du champ, qui démontrent 
l' apparition des on des de choco 

Resumo. 

En êi tiu artikolo oni konsideras la influon de la pezo al ekspansio de 
perfekta gaso, supozante ke la gaso movigas en la direkto vertikala. Kiam 
k = cp/cv = 5/3 ekvacioj povas esti integrata per la metodo de RIEMANN; 

la helpfunkcio v de RIEMANN esprimigas en termoj finitaj; la pozicio z kaj 
la tempo t rilataj al movigo de elemento de volumeno esprimigas per 
funkcioj racionalaj de la rapido de la elemento mem kaj de la rapido de la 
sono en la elemento. 

Kiam oni provas priskribi la realan movigon de elemento oni trovas 
neregulajoj en certaj partoj de la kampo, kiuj pruvas la aperon de ondoj 
de skuo. 


