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In sections land 11 of this paper. new primitive rules for derivational 
logic will be formulated and proofs will be given of the principal rules 
of derivational logic proposed in three earlier papers 1). Pl' P2• and P3 • 

to which the present paper is a sequel. 
In section 111. a few concepts of the general theory of derivation will be 

introduced. Some of these will be used in the subsequent sections in which 
certain problems concerning the definitions of classical and intuitionist 
negation will be discussed. 

I 

The notation 

will be used. as in the earlier papers mentioned. to express the assertion: 
"The conclusion b is derivable from the premises al ' a2 . .... an." We shall 
call th is the "/~notation". In addition to this notation. we shall use in the 
present paper another notation to express the same assertion. This new 
notation. viz.: 

"D (b. a •• ...• an)" 

will be called the "D~notation". 
We shall here use the D~notation as our fundamental notation; that is 

to say. we shall take 

as our fundamental undefined concept. and we shall assume that the 
/ ~notation has been introduced with the help of the definition 2 ): 

(DJ) 

I} The following three papers by the author will be referred to: PI = New Found8t~ 
ions for Logic (MIND. vol. LVI. 1947. No. 223, pp. 193-235); see also the "Additions 
and Corrections" to th is paper. ' forthcoming in MIND, vol. LVII, No. 225. 1948. and 
note 1 to P3. - P2 = Logic without Assumptiom (Aristot. Soc. Proceedings, 1947. pp. 
251-292). - P3 = Functional Logic without Axioms or Primitive Rules of Inference 
(Kon. Ned. Akademie van Wetenschappen. Proceedings of the section of Sciences, 
vol. L, 1947. pp. 1214-1224). In its general approach. terminology, and symbolism. the 
present paper is based on these earlier papers. 

2) As in PI and P3, "~" abbreviates the metalinguistic use of " jf and only if". 
Similar~y , " -+"; "&"; and "V" abbreviate "jf-then"; "and"; and "or~r both", respectively. 
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The use of the D-notation has the following advantages. First. it 
gives rise to a generalisation by suggesting that 

"D (al' ...• all)" 

may be meaning ful for n = 1; and we shall indeed find (in section 11) 
that 

"D (a)" 

turns out to be equivalent to "f- a". i.e .. to "ais demonstrabIe" (as defined 
in the earlier papers). Secondly. the D-notation assimilates our meta­
linguistic symbolism still more closely to that of HILBERT and BERNAYS. 
It makes it more obvious that "D (al' ...• an)" is an n-termed predicate of 
our metalanguage; also that it is our only 3) undefined predicate. since the 
class of statements (including statement functions) can be defined as the 
domain of the relation D(a1 . ...• an). Ultimately. the D-notation throws some 
light upon the function of the primitive rules which characterize the relation 
D (al' ...• an); or upon the function of those secondary rules which take 
the place of the primitive rules if we employ. as in P3 • the method of 
laying down Basic Definitions. For in the D-notation. it becomes clear that 
the main function of these rules is to relate n-termed deducibility to 2-
termed and n + r-termed deducibility (including. more especially. n + 1-
termed deducibility. in the case of BI. 1-2; cp. also D 3.4). 

In Pl' two methods of laying down primitive rules were distinguished. 
called "Basis I" and "Basis 11". respectively. In the present section. a set 
forming a Basis I will be discussed. and in section 11. a rule which 
(together with two definitions) suffices for Basis 11. 

The set of primitive rules for Basis I consists of the following two 
rules 4). BI. 1 and BI. 2. (It is assumed. for all rules written in the D­
notation. that 1 -< n and 1 -< r.) 

(BI. 1) D (al' a2) +-+ D (al. a2' a2)' 

(BI. 2) D(al ..... an) +-+ (an+I) ... (an+r)(D(an+r. al ....• an)-+ D(an+r •...• a2)). 

We shall first sketch the derivation of the most important rules belonging 
to the earlier sets. 

Putting n = 2 and r = 1. we obtain from BI. 2: 

(1. 1) D (a. b) +-+ (c) (D (c. a. b) -+ D (c. b)). 

and from this. by substitution and BI. 1: 

(1. 2) D (a, a); 

(1.3) D (a. a, a) (by 1. 2; BI. 1). 

3) Dur undefined symbol "a(;)" (cp. Pl. P2. P3) is not. of course. a predicate. but a 
function whose values are statements (including statement functions) and whose arguments 
are a statement and two individual variables. But this symbol wiJl not be used in the 
present paper (except in footnote 11. below) . 

4) In the present paper (in contradistinction to the earlier ones) I use the quantifiers 
"(a)" and "(Ea)" as abbreviations of the metalinguistic phrases "for every a " and "there 
exists at least one a su eh that". 
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Furthermore, we obtain from BI. 2 alone 

(1. i) D (SI' ... ,an) -+ (D (an+r' al' ... ,an) -+ D (an+r. ... ,a2))' 

Except for the proof of 

(1. 5) D (a) +-+ (b) D (a. b) 

which we shall give in section 11, in order to establish the equivalence of 
"D( a)" and .. f- a" (as defined in the earlier papers). we shall give the 
following derivations in the / ~notation, and we shall base them exclusively 
upon 1.2', 1.3' and 1.4', i.e., upon 1.2, 1.3 and 1.4 expressed in the 
/~notation. 

a/a 

a. ala 

(1. 2') 

(1. 3') 

(1. i') al ' ...• anI b -+ (b, al' ... , anlc -+ an+r, ... , atfe). 

Our contention is that 1.2' to 1.4' are equivalent to the Basis I as 
characterized in the earlier papers. 

We obtain, for n = 1 and n + r = m: 

(Lil) 

and therefore 

(1.i11) 

(1.i12) 

(1.42) 

al" .. ,anisn: 

b, al"'" anlan: 
an+r • • ..• al/an. 

which can also be written 

(l. i2') (1 ~ i ~ n). 

and which yields. more especially. 

(1. i21) 

We further obtain 

(1. i3) 

(1. 44') 

(1. 45') 

b, al' ...• anlb. 

al •...• anlb -+ an+r • . ..• atlb: 

al • . · .. an lb-+ an •... ,al/b: 

al' ...• anlb -+ al' .. , • an+rlb. 

From 1.4' and 1.44' we also obtain: 

(1. 2': 1. 3' : 1. i') 

(Lil) 

(1. i11) 

( 1. i 11 : 1. i 12: 1. i') 

(1. 421 : 1. i') 

(1. i3) 

(1. i3: 1. H') 

(1. i6') al •...• anlb -+ (b. al' ... , anle -+ al' .•.• anle). 

Rule 1.46' may be called the "principle of the redundant first premise"; it 
can be formulated in words: "If the first premise of an inference is deriv~ 
able from the remaining premises. then its omission does not invalidate 
the inference." Por clearly, 1.46' is the same as 

(1. 46") a2' ...• an/al -+ (al' ...• anlb -+ a2 • ...• anlb). 

or in our D~notation: 

(1. 46"') D (al' ...• an) -+ (D (b, al' ... ,an) -+ D (b. a2'" .• Sn)). 
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Now 1.2'. LH'. 1.45' form. together with the principle 1 have called 5) 
"generalized transitivity principle". that is to say. with 1.47 

(1. 47) (al •..•• anlb l & ... & al' ... '. anI bm) ~ (bI ••.•• bmle ... al •...• anle) 

a set of rules which constitutes a form of Basis I. 
Our contention is that. in the presence of 1.44' and 1.45'. the generalized 

transitivity principle 1.47 can be derived from 1.46'. 
The proof of our contention will be given in the / ~notation . 
We first obtain. from 1.44' and 1.45' 

(1. 48) 

In the pres en ce of this principle. we only need 1.45' for our proof; for 
we need only to prove 

(1. 49) (al ..... anI bi & ... & al . .... an/bm) ... (al ..... an. bi ... · .bmle ... al ..... anle) 

in order to obtain 1.47. since. c1early. 1.47 can be obtained by 1.48 from 
1.49. We now sketch the proof of 1.49 which makes use of 1.45' only 
(apart. of course. of 1.46'). 

We observe that 1.46' may be written: 

(1. 491) al.···. an. bi •...• bm-I/bm ... (al" ..• an• bi' ...• bm/e ... 
... al' ...• an. bi •.. • • bm-I/e). 

Applying to this 1.45'. we obtain 

(1. 492) al ..... anlbm ... (al ..... an. bi ..... bm/e ... al ... . . an. bi ..... bm-I/e). 

From this we obtain. by substitution. 

(1. 493) al .... • anlbm_1 ... (al ..... an. bi' .... bm-t/c ... ah .... an. bi' .... bm- 2/c). 

Combining 1.412 and 1.413. we get: 

(1. 494) (al • . . . • an/bm & al •...• anlbm- I ) ... (al •...• an. bi •...• bm/c ... 

... al' ...• an. bi' ...• bm- 2/c). 

We can continue this procedure for m - 2 steps. i.e .• until the pre mises 
bi are exhausted. The result is 1.49. 

It may be remarked that a Basic Definition of "h 1\ c" (analogous and 
equivalent to DB 2' in Ps) may be obtained by making use of 1.2'; 1.3'; 
and 1.4'; this Definition is DB 21: 

(DB21) 
allbl\e ~ (al)'" (an+r) ((a/an ~ b. clan) & (al ..... anlb ... 

... (b. al ..... an/e ... ani-T •...• atle» & bIb & b. bIb). 

This definition may be simplified by replacing "b/b & b. b/b" by 
"al' .... an / al"; or else. by "al ' .... am/al" together with the restriction 
"(1 :s m <: 2)"; but even in the latter case. the simplified definition is 
still a little stronger than necessary. that is to say. stronger than DB 21. 

We have derived 1.2'; 1.44'; 1.45' and 1.47 from our BI. 1 and BI. 2; 

lil Cp. Pl. pp. 199 f .• rule 2.5 g. 
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the derivation of BI. 1 and BI. 2 from the rules mentioned. and therefore 
the equivalence of the two sets of rul es for Basis I. is trivia 1 6) . 

11 

We now proceed to Basis 11. This is not equivalent to Basis I. but to 
Basis I combined with the two definitions 

(DB 1) 

and 

(D 1;\) 

a//b +-+ (c) (c/a +-+ clb) 

a/ /b ;\ c +-+ (d) (a/d +-+ b. c/d). 

(The second of these definitions is incorporated in DB 21; cp. the end of 
the foregoing section.) 

The simplest form of Basis 11 known to me consists of the one primitive 
rule BIl (built in analogy to BI. 2). together with the two definitions. 
OBI and DIl A . 

(B 11) D (al' ...• an) +-+ (an+Il ... (an+r) (D (an+r. ad -+ D (an+r • •..• 82))' 

The difference between BIl and BI. 2 consists in writing "D(an+r. al)" 
instead of "D(an+r. al . .. .• an)"; and although this difference makes it 

possible to derive BI.1 from BIl. it makes it impossible to derive from BIl 
the generalized transitivity principle without at least as su ming . in place 
of DI ;\. tbe more complicated definition 

(D 11;\) a/lb;\c +-+ (al) .,. (an) (a\ • ... • anla +-+ (a\. '" • anlb & al' ...• ante)). 

IE this definition is incorporated. together with BIl. into a Basic 

G) The proof that we can obtain 4.7 (called in Pl "generalized transitivity principle") 
from 4.6' solves the problem of constucting a complete basis for the general theory of 
derivation - such as Basis I, as opposed to Basis 11 - without having to use 4.7 as 
primitive. The objection against 4.7 is that it makes use of an unspecified number of 
conjunctive components in its antecedent; this may be considered as introducing a new 
metalinguistic concept - something like an infinite product. The problem of avoiding 4.7 
was discussed, but not solved, in Pl' The lack of a solution led me there to construct 
Basis 11, the need for which. as it were. has now disappeared. But Basis 11 turend out to 
be of interest in itse.)f; cp. especially the derivation of 2.2 from Bil. below. and the 
remark (in the paragraph before the last, of section 11) on the definition-Iike character 
of Bil. . 

The sol ut ion mentioned makes it possible to construct Basic Definitions like those of P3, 
but with Basis I as underlying basis. (P3 uses Basis 11 for th is purpose.) Such Basic 
Definitions - cp. DB 2 I - may define conjunction, but an,y other compound serves 
just as weil, since Basis I, as opposed to Basis 11, is neutral with regard to the various 
compounds. - It may be remarked that we can by various methods reC:uce the number 
of Basic Definitions form three to two. viz., to DB 1 plu~ a Basic Definition which. 
apart from incorporating the definition of some compound C and the rules of the basis 
chosen. a1so inc1udes the six rules pertaining to substitution (i.e. Pa. rules 5.71 to 5.76). 
If Basis I is chosen. C may be one of the quantifiers. which would make th is procedure 
more "naturaI" . 
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Definition, th en we obtain the following Basic Definition DB 211, which is 
equivalent to DB 21: 

(DB2il) affbl\c ~ (a]) •.. (an+r) ((a] • .•.• an/a ~ (a]. '" • 8n/b & 
& a] • ...• an/e» & (a] • ...• an/b -+ (b/e -+ 8n+r • •..• a]fe)) & bfb). 

(This is equivalent to DB 2', given in P3)' 
I shall con fine myself to showing that we can obtain. from BIl, the 

rules 1.42'; 1.44'; 1.45'; and, besides, 2.46', i.e.: 

(2.46') 

which is, in Basis 11, the transitivity principle th at corresponds to the­
(stronger) principle 1.46' of Basis I. 

The main interest of BIl is that, by putting n = 2 and r = 1, we obtain 

(2. 1) D (a. b) ~-+ (c) (D (e, a) -+ D (e. b)) 

which, without any further help, leads to 

(2. 2) D (a, a); 

for "D(c, a) ~ D(c, a)" must be true, whatever the meaning of "DCal> a2)" 
may be. 

We obtain from BIl immediately 

(2.4) D (a], •.•• an) -+ (D (an+r, a]) -+ D (an+r • •.•• a2)' 

We thus have, in the / -notation: 

(2.2') 

(2. 4') 
a/a 

a], ... , an/b-+ (b/e-+ an+r,'" • a] Ie). 

Putting here n = 1 and n + r = m, we obtain: 

(2. 41) 

and from this 

(2.3') a, a/a. 

We further obtain: 

(2.43) 

(2.44') 
(2.45') 

(2.46') 

The principle 

(2.42) 

or 

(2.42') 

at, ••. , an /b-+ an+r •... , a]/b; 

a], ... anfb -+ an •• ..• a]/b; 

a], ... , an/b -+ a], . ..• an+rfb; 

a], ...• an/b-+ (b/e-+ a] •.•.• an/e). 

(1 ~ i ~ n), 

is obtained from 2.41 together with 2.45'. 

(2. 2' ; 2. 4') 

(2. 2' ; 2. 4') 

(2.43) 

(2. 43; 2. 44') 

(2. 4' ; 2. 44') 

Sin ce 2.42'; 2.44'; 2.45' are identical with the rules 1.42'; 1.44'; 1.45', 
we have derived all the rules we wanted. 
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We now proceed to show that 

(2.5) D (a) -.. (b) D (a,b). 

which establishes the equivalence of "D(a)" and 
Putting in BIl n = 1 and r = 2. we obtain 

.. " ... a . 

(2. 51) D (a) -.. (b) (c) (D (c. a) ~ D (c. b)). 

and further 

(2.52) D (a) ~ (D (a. a) ~ D (a. b)). 

From this and 2.2 we obtain 

(2.53) 

and thus 

(2.54) 

D (a) -+ D (a. b) 

D (a) ~ (b) D (a. b). 

(by 2.51) 

In order to obtain from 2.51 the converse of 2.54, we need only 

{2.55) (b) D (a. b) ~ (b) (c) (D (c. a) ~ D (c, b)). 

which is an immediate consequence of the transitivity principle in its 
simplest form. i.e. of 

(2.551) D (a. b) ~ (D (c, a) ~ D (c. b)). 

This concludes the proof of 2.5. In order to show that 1.5. which is the 
same as 2.5. can be derived from BI. 1 and BI. 2. we first consider that 
we can obtain 2.51 from BI. 2 in the same way as from BIl. Since we 
have also 2.2. i.e .• 1.2. we obtain 2.45; and since we also have 2.55. which 
is obtainable from 1.47 by n = 1 and m = 1. we obtain 2.5. i.e. 1.5. 

Concerning BIl, it may be remarked that. in view of the method of 
deriving 2.2. it very c10sely resembles DB 1 (cp. P3)' It might therefore. 
perhaps. be described as a "quasi~definition"; for it defines. as it were. 
the n~termed relation D(al' .... an) for 1 <: n. in terms of the two~termed 
relationD(al' a2) and the n + r~termed relation D(al' .... an+r). for 1 <: r. 

Concerning our two Basic Definitions DB 21 and DB 2Il• it may be noted 
that they can be made homogeneous (in the sense of P3 ) simply by in~ 
corporating BI. 1 and BI. 2. or BIl. respectively. as they stand. In this case. 
a second set of quantifiers appears within the right hand side of the 
definitions. which makes them more complicated; but we achieve. besides 
homogeneity, the derivability of 1.5 and 2.5. H, on the other hand. we wish 
to avoid this set of quantifiers within the right hand side. then 1.5 and 
2.5 cannot be derived. and we have to revert to our earlier method of 
defining " ... a ". But with this. the main advantage of the D~notation 
disappears. (Thus it seems that there is not much point in formulating 
DB 21 and DB 2Il in the D~notation.) 

111 
We can distinguislt between the general and the special theories of 

derivation (and proof). The special theories are the theories of the 
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compounds. quantifiers. and modalities; closely connected with them are 
the theories obtained by adding existential postulates to our bases. (Such 
postulates may demand. for example. the existence of provable or refutable 
statements. or perhaps the existence of a conditional statement e to every 
pair of statements a and b. that is to say. of a weakest statement which. 
together with a . yields b) . The general theories are erected on either BI. 1 
and BI. 2. or on BIl. without. however. introducing compound argument 
variables for D (al ' .. .• an). or existential postulates. But such problems 
as the equivalence of existential postulates fall within the scope of the 
general theory. 

In the present section. we shall first sketch that part of the general 
theory which is concerned with the complementarity or exhaustiveness (or 
disjunctness) and with the contradictoriness or exclusiveness (or con~ 
junctness) of n statements. We shall write 

for "the statements al • ...• an I taken together. are complementary or 
exhaustive" and 

"7( )" al • . ..• an 

for "the staments al' .... an , taken together. are contradictory or exclusive". 
The definitions are: 

(03.1) 

(03.2) 

I- (al •...• an) .-. (b) (e) ((atle & . .. & anle) ... bIc). 

7 (al' .. . • an) .-. (b) (c) ((blal & ... & blan)'" bIc). 

An alternative and equivalent way of defining "7" is this: 

(03.2') 7 (al' ... an) .-. (b) (al' . . .• atJl b). 

Introducing the convention that the brackets af ter "I-" and "71" may 
be omitted. we obtain. for n = 1. 

(3. 1) 

(3.2) 

I- a .-. (b) (bI a); 

7 a .-. (b) (alb) 

(2.2'; 2.46'; D 3.1) 

(2.2'; 2.46'. D 3. 2) 

This shows that. for n = 1. the two concepts coincide with demonstrability 
and refutábility respectively. as defined in my earlier papers; furthermore. 
that for n = 1. D(a1' ... . an) and l-(a1' ... • an) coincide. 

The' two concepts may be generalized or relativized by introducing the 
folJowing definition. (We assume 0 -< n; 0 -< m; 1 -< n + m.) 

(03. 3) (alo·· ·. an) I- (bi' ...• bm) .-. (e) (á) ((bdd & ... & bmld) ... 
, ... ((clal & ... & clan) ... clá))· 

An alternative formulation can be obtained as before (cp. 03. 2'): 

(03. 3') (al ' .. .• an) I- (bi' ...• bm).-. (e)((btfe& ... & bmle) ... al' ...• anle). 

We again introduce the convention that brackets can be omitted. before 
and after " I- " . 
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The concept defined by 03.3 may be called "relative demonstrability" 
(or "relative refutability"). and "al' .... an .- bI ..... bm" may be read: 
"The statements bI' ... b m are complementary relative to the demonstra­
bility (or self-complimentarity) of all the statements al ..... an." For it is 
dear. from 03. 3 and 03. 3'. that every one of the al which stand in front of 
".-" may be omitted if it is demonstrabIe (or self-complementary). without 
affecting the force of the whole expression. This shows that for n = 0 
relative demonstrability degenerates into complementarity (or demonstra­
bility) as defined by 03. 1. 

A similar consideration shows that every bi which stands af ter ".- .. 
may be omitted if it is refutable or self-contradictory. IE all the bi are so 
omitted. we obtain. for m = O. an expression which is equivalent to 
03.2. That is to say. we obtain: 

(3.3) , 

Thus '~al' .... an .- bI ..... bm" may be read. alternatively: "The state­
ments al' .... an are contradictory. relative to the refutability (or self­
contradictoriness) of all the statements bI' .... bm." 

For certain purposes - especially if we wish to emphasize the duality 
or symmetry between ".-" and " 7 " - the use of "( ... ) .-" turns out to 
be preferahle to that of "7 ( ... ) ". 

It should he noted that. for m = 1. relative demonstrability degenerates, 
as it were. into derivability; that is to say. we have 

(3.4) 

IE. however. m> 1. th en relative demonstrability means something else. 
(lt is thus a further generalisation of "1".) lts meaning: can be intuitively 
explained by remarking that. whenever disjunction is available. 

(3.5) BI ..... an'- bi ..... bm .- BI ..... Bn/bl V b2 V ... V bm• 
that is to say. the intuitive meaning (even if disjunction is not available) 
is the same as that of the derivability of the disjunction of the statements 
standing to the right of ".-" from the statements standing to the left 
of ".-". Relative demonstrability is thus about the same as GENTZEN' s 
"Sequences" or CARNAP's "Involution" 7). 

7) Cp. G. GENTZEN. Untersuchungen über das logische Schliessen I & II (Mathe~ 
matische Zeitschrift vol. 39. 1935); and RUDOLF CARNAP. Formalization of Logic. 1943, 
esp. § 32. Pl'. 151 ff. - My remark that relative demonstrability is "about" the same as 

these earlier concepts alludes to the following djfferences. (1) It is not quite dear whether 
GENTZEN',s concept is. like ourS. ametalinguistic predicate asserting some kind of inference 
(it looks as if his horizontal stroke rather than his sequences were meant in this way) or a 
name of an object~linguistic notation. (2) CARNAP's concept on the other hand (which is 
not open to any objection of this kind) ma,y be described as a generaIization of ..... , .- ... ". in 
so far as classes of statements are admitted as arguments. besides statements. (3) Attention 
may be drawn. furthermore. to the fact that GENTZEN identifies the difference between 
classical and intuitionist logic with the difference (1 am using my own terminology) 
between permitting m to he greater than 1. and taking 1 as the upper limit of m. This 
does not agree with our results. and seems to be due only to GENTZEN's choice of his 
primitive rules for negation. We operate freely with m 2: 2. even within intuitionist logic. 
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On ce we have adopted 03. 3 or 03. 3', we obtain 03. 1 and 3. 1 as 
theorems, as weIl as theorems corresponding to 03. 2 and 3. 2 {with 
u ( ... ) t-" instead of u 7 ( ... )"); and we can, if we wish, even dispense 
with the further use of "j", in view of 3.5. 

In the next section; we shall make use of "al' ... , an t- b1, ... , bm" more 
especially for 0 <: n <: 2 and 0 <: m <: 2. Implicit use will be made of the 
obvious theorems: 

(3.61) 

(3.62) 

(3.63) 

a t- a, b 
b t- a, b 

at-b,c~ (c t-d~ (b t-d~a t-d)). 

(In the expression in brackets, ut-" may, of course, be here replaced by 
u/".) 

The rules 6.31 to 6.33 show that we may characterize "a V b" by a 
characterizing rule which is precisely analogous to and dual of the simplest 
characterizing rule 8) for "a 1\ b": 

(3.71) 

(3.72) 
a 1\ b t- C ~ a, b t- c 

a t- b V c ~ a t- b, c. 

Similarly, we can characterize a new compound, called Uanti-conditional" 
and denoted by "a ~ b", in precise analogy to (and as the dual of) a> b: 

(3.81) 

(3.82) 
a t- b > c ~ a, b t- c 

a ~ b t- C ~ a t- b, c. 

"a ~ b" is, intuitively (and in the pres en ce of classical negation), a name 
for the negation of a > b, or for the conjunction of a and the negation of 
b. But in the absence of classical negation, its meaning is less familiar. 
(Cp. 5.32 and 5.42, and note 15, below.) 

These characterizing rules can all be transformed into explicit definitions; 
for example, 3.71 into DI 1\ (quoted at the beginning of section 11). 

All the rules and definitions given apply equally to closed and open 
statements. But as long as we con fine ourselves to closed statements, 
" ... t- ... " may, intuitively, be interpreted as asserting that at least one of 
the statements on the right of Ut-" is true, provided all statements on the 
left are true. It should be noted, on the other hand, that two or more open 
statements - e.g. an open statement and its classical negation - may be 
complementary (or relative complementary) in our sense even though their 
A-closures, i.e. the results of universal quantification, are not complementary 
(or relative complementary). This is due to fact th at A-closures and E­
closures (i.e. results of existential quantification), are duals of each other, 
like conjunction and disjunction. For it follows from our definitions that 
every valid t- -formula remains valid if any of its statements to the left of 
.. t-" are replaced by their A-closures, and any of its statements to the 

8} Cp. PI p. 215, rule 1.1; Ps, 5.2. - See also DI 1\ (in section 11, above). 
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right by their E~closures; and that. if th ere are no open statements to the 
left or to the right respectively. the disjunction or conjunction respectively 
of the remaining open-statements may be replaced by either its A~closure 
or its E~closure. 

So far we have considered generalizations of the idea of derivability; 
but in view of 3.4. which may be taken as a definition of derivability in 
terms of relative demonstrability. and in view of 03.3. which defines the 
latter with the help of only two~termed derivability (or inference from one 
premise). it is clearly possible to use two~termed derivability. "D(a. b)", 
characterized by (ordinary) reflexitivity and' transitivity. as our sole un~ 
defined predicate. That is. we may introduce "D(a. b)" by the one rule 
2. 1. or. for example. by the following rule (constituting a "basis 111"): 

(Bil I) D (a, b) +-+ (c) (D (b, c) -+ D (a, e)). 

The explicit definition of "D(al' .. . ,'an)" in terms of "D(a, b)" becomes. 
considering 03.3 and 3.4: 

(03.4) D (a), .. . , an) +-+ (b) «D (an, b) & ... & D (az, b)) -+ D (a), b)). 

But this formula turns out to yield BIII. It therefore. surprisingly enough, 
suffices (without BIII) for a Basis I. ' 

13 


