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In a paper published recently in these Proceedings (On the dissection 
of rectangles into squares, III (Vol. 50, pp. 72-78)), C. J. BOUWKAMP 
called attention to certain pairs of "conformal squared rectangles". We 
use here the terminology employed by Or BOUWKAMP. Following him we 
also denote by A the paper of R. L. BROOKS, C. A. B. SMITH, A. H. STONE 
and W. T. TUTTE entitled "The dissection of rectangles into squares" 
(Ouke Mathematical JournaI. Vol. 7 (1940), pp. 312-340). 

In particular Or BOUWKAMP pointed out three pairs of conformal 
rectangles in which the two members of each pair are of different orders. 
In his notation they are (i) IX, 130, c and XII, 585, f; (ii) X, 224, a and 
XIII, 1008, b; and (iii) X, 224, band XIII, 1008, e. He noted that, for 
pairs (ii) and (iii). "upon transformation on the same si ze, four common 
elements are found in each case" I). 

There is an interesting electrical interpretation of these results. 
If Pr, Ps. P t and Pa are vertices of an electrical network N, th en we 

denote by [r5. tul the fall of potential from Pt to Pa given by KIRCHHOFF's 
Laws in the case in which a current equal to C(N), the complexity 2) of 
N, enters the network at Pr and leaves at Ps. This is in accordance with 
the nota ti on of A. 

Let X be the set of integers (1. 2, 3) and Y the set (4. 5, 6). Let (p, q) 
and (r, 5) be each an ordered pair of distinct integers. We suppose that 
for each of these pairs the two integers belong either both to X or else 
both to Y. If all four of p. q. rand 5 belong to the same set X or Y we 
write 

epq, rs = 1. 

but if pand q belong to one set X or Y. and rand 5 to the other, we write 

epq, rs =-1. 

Consider the two electrical networks NI and N 2 shown in figs 1 and 2 
respectively. It may readily be verified, either by evaluating determinants 
or by counting trees 3) that the complexities of NI and N 2 , C(Nd and 
C(N2 ). are 6 and 27 respectively. 

Taking the conductance of each wire to be 1. we consider the distri-

1) In pair (i). three commOll elements are found (not two as stated by Dr. Bouw KAMP ). 

2) A,p. 315; C. J. BOUWKAMP, Paper 11 (These Proceedings, Vol. 50, pp. 58-71), 
p.59. 

3) A, pp. 317-318. 
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butions of currents in the two networks when, in each case, a current I 
enters at PI and leaves at P2 • It is at once evident on inspection of the 

Fj 

Fig. 1. Network NI of complexity 6. Fig. 2. Network N2 of complexity 27. 

diagrams that if u and vare two integers, either both in X or else both in 
Y, then the ratio 

Fall of potential from Pu to Pv in NI 
------------------ =e'2,u". 

Fall of potential from Pu to Pv in N 2 

We transform to "full flows" 4) by multiplying the currents in NI and 
N 2 by C(Nd/I and C(N2 )/I respectively. The above equation then 
becomes 

[12 , uv]. C(N.) 
[12,uvh = C(N2) el2,u~ =te'2,U'" 

(Quantities referring to NI and N 2 are distinguished by suffices land 2 
respectively. ) 

By using the symmetry of the networks we can generalize this at on ce to 

[pq, l's]. 
[ ] = J epq, rs , pq, l'S 2 

. (1) 

where, for each pair (p, q) or (l', s) the two members belong either both 
to X or both to Y. 

It is a remarkable fact that equation (1) remains valid when the net~ 
works NI and N 2 are modified 5) by any sequence of operations of the 
following kind; we choose two integers u and v belonging to the same 
set X or Y, and join Pu and Pv by a wire of arbitrarily chosen conductance 
c in each network (c having the same value in each network) . Moreover 

4) A. § (2.13); C. J. BoUWKAMP, Paper II, p. 62. 
5) The modifjed networks will be denoted by N' land N' 2. 
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the complexities C(N'd and C(N'2) remain in the ratio 2: 9. There is 
no difficulty in proving this by induction. using the formulae of section 
(2.3) of A. 

If therefore. af ter we have added the new wires. we can derive a squared 
rectangle from each network by taking PI and P2 as poles. then the two 
rectangles will be conformal. and corresponding full sides will be in the 
ratio 2: 9 S). Further. those elements in the two rectangles which are 
represented by corresponding added wires will also be in the ratio 2 : 9. 
Such elements thus become equal when the two conformal rectangles are 
made equal in size. 

If the added wires join the pairs (P5P S )' (P4P 5 ) and (P2P 3 ) we obtain 
the pair of conformal perfect rectangles IX. 130. c and XII. 585. f. On 
transforming these to the same si ze we find just three pairs of equal 
squares. corresponding to these three added wires. 

If the added wir es join the pairs (P IP 3 ). (P2P 3 ). P4P 5 ) and (P4P S ) 

we obtain the pair X. 224. a and XIII. 1008. b. If the added wires join 
the pairs (P2P 3 ). (P4P 5 ). (P5P S ) and (P4P S ) we obtain the pair X. 
224. band XIII. 1008. e. The four common elements noted in each case 
by Dr BOUWKAMP when the two rectangles are made equal in size thus all 
correspond to "added" wires. 

In each of these pairs. the full sides of the rectangle of lower order have 
a common factor 2. and the full sides of the other rectangle have a 
common factor 9 (because of the ratio 2/9 in formula (1)). We could 
therefore predict from the reduction theorems of A (pp. 325-326) that 
the reductions of the two rectangles divide by 2 and 3 respectively. without 
actually working out the values of the elements. 

Similar conformal pairs. which are however compound 7). can be obtained 
by replacing the "added wires" by polar networks of squared rectangles. 
which can be regarded as resistances whose value is (in general) different 
from unity. 

Trinity College, Cambridge, England. 

6) In each rectangle the full sides are C(N'tl and [12. 12), (i = I. 2). (By A. 
§(2 . 13)) . 

7) A. § (5.21); C. J. BOUWKAMP. Paper! (These Proceedings. Vol. 48. pp. 1176--1188). 
p. 1177. 


