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IV 

We now turn to the discussion of negation - more especially, of the 
intuitionist negation of BROUWER and HEYTIN'G, and its relation to other 
negations. In the present section, we shall discuss the simplest characterizing 
rules for, and definitions of, the intuitionist negation of a, denoted by "ai"; 

the classical negation of a, denoted by 9) "a k "; and a third negation of a, 
denoted by "am i.e., the "minimum definable (non~modal) negation of a", 
or the "weakest definable (non~modal) negation of a". 

The definitions and characterizing rules of ai and a k given in my earlier 
papers are adequate, but a little complicated and intuitively not as obvious 
as, for example, 3.71 to 3.82. A characterizing rule for ai which in its 
simplicity is comparable to 3.71 etc. is this 10): 

(4. 1) 

This may be put into the words: "The intuitionist negation of b is the 
weakest of those statements which are strong enough to contradict b." 
The corresponding explicit definition is: 

(D 4. 1) aj fbi ~ (c) (c f- a ~ c, b f- ). 

Thus intutionist negation is, as it were, characterized by contradictoriness 
alone. One might be tempted to think that classical negation is similarly 
related to complementarity; but th is is not the case. The dual of 4. 1 leads 
to a new kind of negation which is weaker than classical negation. We call 
this negation "am" (the "minimum definable negation of a"); its char~ 
acterizing rule may be written: 

(4.2) 

11) In PI p. 220, note 1. I have used instead of "ai" and "a k" two more complicated 
symbols. In P3 , sections 111 H., I have used the symbols "ai" and "ac". I have 
now replaced "ac" by "a k " because I found that the "e" in "ac" was misleading, occurring 
as it does together with the statement-variable "e". 

10) Rule 4.1 and a~ other rules in this section are purely derivational (in the sense 
of PI, p. 230), i.e. they can all be non-vacuously satisfied b,y non~logical (or factual) 
statements. Were we to write "a Ab f- " instead of "a, b f- ", or "f- a V b" instead of 
"f-a, b", our rules would no Jonger be purely derivational, sin ce these rules would need 
logical (demonstrable or refutable) statements to satisfy them. The reason why my 
earlier definitions are more complicated then the present ones is that I did not then use 
"f-" and "7" with more than one argument; this makes it impossible to obtain rules as 
simple as our present ones if we wish to remain within derivational [ogie, which I 
consider highly desirabIe for non-modal logic. (The definitions of the modalities, of course, 
cannot be pure~y derivational; cp. P2, end of note 20.) 
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that is to say, a m can be characterized as the strongest of those statemellts 
which are weak enough to be complements of a. We can 11) transflJrm 
(4. 2) into the corresponding definition 

(04.2) al Ibm ~~ (c) (a ~ c ~~ ~ b, cl. 

There exist two simple rules for classical negation (see 4. 311. f., below) 
which are analogous to 4. 1 and 4.2, but less striking. The simplest and 
most striking characterization I have been able to find is the following 
explicit definition 12) 

(04.3) al/bk .-+ a, b ~ & ~ a, b. 

That is to say, the classica I negation of b can be defined (as Aristotle 
might have defined it) as that statement which is at once contradictory 
and complementary to b. 

Classical negation, according to this definition, will exist in a language 
L iE, and only iE, there exists in L to every statement a a statement a k 

which is both contradictory and complementary to a. It is fairly c1ear, 
from this definition, that intuitionist negation ai or its dual a m , or perhaps 
both, may exist in a language in which classical negation does not exist; 
and we shall prove all this by an example (in section V) . 

Some characterizing rules for classical negation, if written in terms of 
relative demonstrability, are only slightly different from 4. 1 and 4.2, and 
may be described as generalizations of these rules; 4. 31 is equivalent to 
04.3, and so is 4. 32, which is the dual rule of 4.31: 

(4. 31) 

(4.32) 

a ~ bk , C ~~ a, b ~ c. 

a, bk ~ c ~~ a ~ b, c. 

11) The method here used to obtain relatively simple formulae incorporating the 
condition "the weakest (or strongest) statement su eh that ... " is capable of fairl,y wide 
application. This may be ilIustrated by the example of the definition of identity. We use 
"ldt (x, y)" as the metalinguistic name of a statement-function ex pressing identity 
between individuals represented by the individual variables x and y . (Note that. in this 
characterization, "x" and " y" must not be put into quotes.) We introduce the abbreviating 
notation: 

alla~y .-+ (w) (alla (;) & alla W). 
We can define ldt (x, y) as the weakest statement strong enough to imply what 
HILBERT-BERNAYS (I, p. 65) call the "second identity axiom", as follows (cp. PI, D6.2, 
and the correction to it in Pa, note 1) : 

al I Idt (x, y) .-+ (b) (z) ((bi Ib~y ~ a, b (~)Ib (;)) & (( (c) (u) (cl Ic~y ~ 

~ b, C(~)/c(~))) ~ bla)). 

Adopting the method used in 4.1 of formalizing "the weakest statement such that", this 
may be replaced by the rule (or the eorresponding definition) : 

alldt(x, y) .-+ (b) (z)(bllb~y~ a, b (;)Ib(;)) . 

12) The presenee of 3.71 or of 3.72 is assumed. Por the derivational eh ara eter of D 4.2 
see note 10 above. An identical. definition is given in P2, p. 284, rule 7.7. 
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The close relationship to 4. 1 and 4.2. respectively. is clear. but the rule~ 
are intuitively less satisfactory than 04. 3 - especially in view of the 
fact that 04. 3 is an explicit definition. Two other characterizing rules. 
each of them equivalent to 04. 3. may be obtained by inverting 4. 1 and 4. 2~ 

(4.311) 

(4.312) 

a. bk ... ~~ a ... b. 

... a k • b ~~ a ... b. 

The first of these may be expressed in words: "The classical negation of b 
is a statement that contradicts every statement a which is at least as 
strong as b". This is similar to 4. 1. but. surely. more involved and less 
striking. 4.312 may be read: "The classica I negation of a is a statement 
which is complementary to every statement. b which is at most as strong 
as a." 

Each of the rules and definitions 4. 1; 04. 1; 04. 3 (in the presence of 
conjunction or d isjunction) ; 4.31 to 4.312; can be shown to be equivalent 
to the corresponding definitions given in my earlier papers. 

v 
In the presence of classical negation. that is to say. of characterizing 

rules for. or of a definition of. classical negation. it is possible to prove 

(5. 11) 

(5. 12) 

and therefore also 

(5. 13) 

This follows simply from the fact that the characterizing rules for al 

and a m allow us to prove equivalence for every statement which satisfies 
these rules . (This is . precisely. the point which makes what may be called 
a " fully characterizing rule" equivalent to a definition.) But a k satisfies 
the characterizing rules for ai and for a m • Thus we obtain 5. 11 to 5. 13. 

This result may be generalized. Whenever we have two logical functions 
of statements (or two formative signs) 5 1 and 5 2 , which have been intro~ 
duced by way of two sets of primitive rules . Rl and R2 • such that R2 is 
obtained by the omission of some rules of Rl' th en we can prove in the 
presence of 5 1, the equivalence of (the full expressions of) 5 1 and 52 

whenever both are de[inable . Por example. if we introduce "a> b" by rule 
3.71 and another function. say "a:> b" . by the two 13) rules (of which 
the first is like 3. 71 ) 

(5.21) 

(5.22) 

a ... b :> c ~~ a. b ... c; 

a.b:>c ... b~~a ... b; 

13) The second of these two ruIes is discussed in section VII below (rule 7.3k ); for 
another discussion of the same rule see Pl. pp. 215 f. (rule 4.2e) . 
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then, sin ce 3.71 or 5. 21 can be transformed into a definition, we can prove 

(5.23) a> bI/a::::> b. 

in spite of the fact that 5. 22 is independent of 5. 21, that is to say, that 
its addition changes the meaning of the sign .. ::::> " . 

The problem arises whether, in the presence of botha i and a m in a 
language L1 ' a k is always present, so that 5. 13 holds, or whether ai and 
a m can coexist in L 1 without becoming equivalent. 

We shall prove that the second alternative holds, by constructing, as 
an example, a language L) in which ai is equivalent to Ia, i.e. to the modal 
statement which asserts that the state of affairs described by a is im~ 
possible 14), and in which a m is equivalent to Ua, i.e. to the modal state~ 
ment asserting that the state of affairs described by a is uncertain (not 
necessary) . . 

We have, of course, to choose a language L 1 in which at least one non~ 
logical statement exists, since we have otherwise lallUa, which would lead 
to ai I I a m , i.e. to the case we wish to avoid. We shall construct a language 
L 1 which contains one factual statement s, together with all the compounds 
which may be constructed from it with the help of the four functions 
characterized by 3.71 to 3.82 and of the definitions for ai , a m , Ia , and 
Ua. (a k , of course, does not occur.) We shall have in L 1 (1) demonstrabie 
statements such as s> s; s V Us; (2) factual statements such as s;- s 1\ Us; 
s V Is, and (3) refutable statements such as s 1\ Is ; s ~ s . 

In order to show that ai may be here without contradiction identified 
with Ia, and a m with Ua, we construct an arithmetical model of our 
metalanguage, interpreting our variables " a", "b", etc., as variables whose 
values are the three numbers 1. 2, and 3, and "a l ' .. . ' an l b" as the 
statement asserting that the greatest of the numbers al' ... , an is at least 
equal to b. 

On the basis of our characterizing rules for Ia; Ua; a 1\ b; a V b; a> b, 

and a ~ b, this interpretation forces us to accept the following: " a 1\ bH 
is to be interpreted as the greater of the two numbers a and b; "a V b" 
as the smaller of them; etc. We obtain the matrices (also useful for showing 
that 04.3 is independent of 4.1, etc. ): 

I a I\ b I I aVb 

, 

I I Ia Ua 123 123 
I 

a >b 123 a~b 123 a I 
1 3 3 1 123 J 111 1 123 1 311 
2 3 1 2 223 2 122 2 113 2 332 
3 1 1 3 333 3 123 3 lil 3 333 

14) la. Ua. and the other moda! functions are defined in P3. section VIII. A simp!er 
definition (taken from P2. p. 283, note 20) of la is given in section VII bel ow, D 7. I. 
The dua! of this definition is: 

al/Ua +-+ (e)((e/a Ve/ b) & (a/b-+ ale)). 
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In order to show that in L1' al /I la and a m IIUa, we can use the 
generally valid dual rules: 

(5. 31) 

(5.32) 

or alternatively 15) 

(5. 41) 

(5.42) 

ailla>la 

amllUa~a 

ai I1 a > (a ~ a) 

amll(a> a) ~ a. 

Evaluating with the help of our numerical tables either 5.31 and 5.32 
or 5.11 and 5.42, the equivalences ai / / la and a m IIUa can easily be shown 
to be valid in L 1• 

This result is not in general true, but the fact that it holds for Ll 
establishes that, without risking a contradiction, we may postulate alilla, 
provided that classica I negation does not exist in the language under 
consideration. This justifies the weil known intuitionistic identification of 
ai with "a is impossible". 

Our result is by no means trivial since Erom our definition of al (which 
is equivalent with the implicit characterization of HEYTINO's calculus) we 
obtain 

(S.5) 
while we cannot obtain the corresponding formula for la from its definition; 
if we could, the equivalence of la and ak could be established in the 
presence of a k , which is obviously not possible, in view of our definitions 
of la and ak

• The pi ace of 5.5 is taken by the weaker rules 

(5. 51) 

(5.52) 
a, blla -+ b/a l • 

alla -+ blla. 
The fact that a rule which is like 5.5 but with "Ia" instead of "al" 

cannot be shown to follow from our definition of la might be considered, 
at first sight, as speaking against the intuitionist identification of ai with 
la. But the problem is wh ether ai is equivalent to la in the absence of ak. 
That th is is the problem may be seen from the fact that intuitionism admits 
that the law of the excluded middle holds in a wide range of cases, which 
means, in our way of speaking, that for certain statements a it may happen 
that ai is complementary to a and thus coincident with ak. 

lG) It is remarkable that both ai and a m can be defined in terms of ">" and its dual 
"~", while a k cannot be so defined (as proved by our example Ll). We see that every 
language containing ">" and .. ~" necessarily con ta ins ai and a m (possibly undistinguish~ 
able from ak ) while it need not contain ak • - It may be mentioned that the theory of the 
anti~conditional "~~' is quite interesting. We have, for example, the dual of 7 .. 40 (see 
section VII, below), i.e.: 

a~b~c, d~~ (e) (b ~ e, c~af-e,d). 

We also obtain, with the modus ponens, its dual: 

a, a > b ~ b a f- a ~ b, b 
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A complete formal justification of the intuitionist identification of ai 
with the impossibility of a could be obtained by proving the following very 
general 

Conjecture: IE a language L does not contain the classical negation of 
every of its statements but does contain ai and la for every statement a. 
then the following holds: iE. for some b. th ere does not exist a bk

• th en lb 
is the weakest statement con trad ic tory to b. so that bi is equivalent to lb. 

I have so far not been able to prove or disprove this conjecture. (The 
problem is a straightforward calculation in our metalinguistic calculus. and 
most probably not difficult to solve; cp. its formal presentation at the 
end of section VII.) Meanwhile. our example of a language L 1 for which 
this conjecture holds establishes that. for a language which does not 
contain classical negation. we may postulate that ai is identical with la. 
without fear of contradiction. 

It should be noted that 5.5 is the only one of the more important rules 
which ai and la do not share. Among the more important rules which can 
be derived from the definition of la and which hold for ai as weIl are: 

(5. 6) 

(5. 7) 
(5. 71) 

(5.8) 

(5.9) 

a, la t-

a t- la ~ t- la 

la t- a ~ t- Ila 

a t- Ila 

at- lb ~ b t- la. 

Equally important is that the following classical principles (which also 
hold for a m and Ua) cannot be shown to hold generally of either ai or la: 

(5. 6') 

(5. 7') 

(5. 8') 

(5.9') 

t- a, a m 

a m -I a ~ ,t- a 

a m m -I a 

VI 

We shall now extend our considerations to other kinds of negation, 
even to fairly remote and unusual ones. Neglecting (1) la and Ua, which 
were considered in the last section, we shall now consider (2) ak ; (3) ai; 
(i) a m ; (5 ) fa, i.e. the self~contradictory compound of a (for which f al I fb 
holds) definable, for example, by 

all fb ~ (c) (alb ~ ale); 

and ultimately (6) three negations, ai; al; and a n , each of which is to be 
considered as introduced with the help of one of the following three primi~ 
tive rules, respectively: 

(6. 1) 

(6.2) 

(6.3) 

a, blcl ~ a, clbJ• 

a, bllc~ a, e1;b. 

a, bIc ~ a, cnjbn. 
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(These three rules wiII he shown not to he equivalent to definitions, that 
is to say, they are not fully characterizing rules in our sense. ) 6.1 is 
equivalent to the axioms which introduce the negation a j of JOHANSSON'S 

so-called "Minimalkalkül". In view of 6.2, we may call al the "Ieft-hand 
side negation of a" (in contradistinction to JOHANSSON'S a j which, in view 
of 6. I, is a "right hand side negation"). a n may he called the "neutral 
negation"; it is neutral with respect to right-sidedness and left-sidedness, 
as is a k which, indeed, can he fully characterized hy the converse of 6.3, 
viz . hy: 

(6.4) a, bk lek -+ a, e/b. 

The following diagramme indicates the way in which the rul es of the 
six negation ak , ai, a m , a j , al, and an are satisfied. 

a k 

ai c,J \ ~am 
a j al 

\I ~ i/ 
an 

The arrows indicate, for example, that a k satisfies the rules holding of all 
the others, or that ai satisfies the rules holding of a j and a n, and that the 
latter ones are satisfied hy all others (except a m which is so weak 16) that 
it does not satisfy even 6.3) . 

We shall now show that the three negations listed under (6) cannot he 
defined. 

In order to show this for aj , we introduce the following auxiliary 
definition of "tb": 

al/tb ~ (e) (b la ~ cia) 

"tb" may he called the " self-complementary compound of b" . We ohtain 
talltb. 

It can now he shown that tb satisfies 6. 1. On the other hand, ai also 
satisfies 6. 1. Thus, if a j were definahle, we would ohtain tal I a j and 
ak / / ai and therefore tal I ak • But this is possihle in contradictory languages 
only; since we have (a>a)k ... and'" t(a>a), it is c1ear that tallak 
would lead to al l b. Thus th ere cannot he a definition equivalent to 6. I, 
and aj cannot he defined 17) . 

Similarly, 6. 2 is satisfied hy fa and ak; thus al cannot he defined. 

16) There are, of course, dual mies of 6.1. 6.2, and 6.3, two of which are satisfied 
by a m, just as 6.1 and 6.3 are satisfied by ai. Note that our diagramme does not contam 
the duals of aj, al, and a k, and that it is therefore not fuJly symmetrical. 

17) For JOHANSSON 's calculus, see HILBERT-BERNAYS 11, 449 f. The fact that his 
negation cannot be defined, and that this imposs.ibility can be proved, is mentioned in 
P2, p. 286. 
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6.3 is satisfied by ta, fa and ak ; thus a n cannot be defined. 
The fact that JOHANSSON'S negation ai cannot be formally distinguished 

from ta (which is not, by any stretch of imagination, to be called a 
negation) speaks strongly against its adoption. al seems slightly preferabIe 
since fa has something in common with Ia; for fa is equivalent to Ia when~ 
ever a is either factual or demonstrabIe. a n is, perhaps, the best of the three 
negations under (6). 

But the fact that none of the th ree is definable speaks very strongly 
against all of them; indeed, I suggested in P3 that the term "formative 
sign" should be applied only to signs whose meaning is definable by 
definitions in terms of deducibility. Should this suggestion be accepted, 
then we would have to say that those signs of a language L which represent 
J OHANSSON' s negation, or the ot hers under (6). are not formative. 

On the other hand, the very fact that these three signs cannot be defined 
makes it possible to combine them in the same language L with classical 
negation without running the risk of destroying their distinguishableness; 
which is not possible for the signs under (3) and (4). 

VII 
We now turn to some concluding remarks about the existential 

assumptions connected with intuitionist and classical negation. They will 
provide, at the same time, examples of the kind of existential problems 
which are far from trivial and which arise, and can in principle be solved, 
within the general theory of derivation. 

It is well known that intuitionism does not assert that there does not 
exist a classical negation of any statement; on the contrary, BROUWER has 
not only asserted that the law of the excluded middle is valid for certain 
entities, but has even given a proof 18) of its validity for a certain range 
of entities. This means, from our point of view, that there exist some 
statements a to which statements b exist which are both contradictory and 
complementary to a. Where intuitionism deviates from classical logic is in 
its assertion that such statements b do not exist to every statement a. 

In other words, intuitionism asserts. for the language which it considers 
(the language in which mathematicians deal with infinite sets): 

(a) (Eb) (c) (c .... b ~~ a. c .... ). 

The corresponding assertion or postulate of classical logic is 

(7.U) (a) (Eb) (c) ((c .... b~~a.c .... )&( .... a.c~~b .... c)). 

which. of course, implies 7. lt. 
Now intuitionism does not only assert 7. }/, but it denies 7. U; that is 

to say, it asserts besides 7. } / the following principle which is a negation 
(an intuitionist one) of 7. Ik: 

(7.2/) (Ea) (b) (Ec) (d) (e) (((c .... b~~a,c .... )& ( .... a,c+--+b .... c))-+d .... e). 

18) Cp. L. E. J. BROUWER. Intuitionistische Betrachtungen über den FormalismIJ$. 
(Sitzungsberichte Preuss. Akad .• 1928, V. esp. pp. 51 f.). 
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In other words, the fundamental assertion of intuitionism - the one 
by which it isdistinguished from classical logic - is an existential 
assertion: it asserts the existence of a statement a for which the application 
of the classical principle 7. Ik leads to a contradiction. (This is the force 
of the clause "d t- e" which allows us to de duce a contradiction from a 
tautology. ) 

Intuitionism does not consider an existential assertion such as 7.2/ as 
legitimate if it cannot be supported by an actual construction of an example: 
it is therefore a crucial task for intuitionism to give an example of a 
statement which, if treated classically, leads to a contradiction. In other 
words, the proof 19) of the contradictoriness of classical mathematics must 
be of crucial importance for intuitionism. It is an agreement with this result 
that BROUWER considers the proof of the contradictoriness of classica 1 
mathematics as one of the most central problems of intuitionist mathematics. 

We now proceed to state some principles equivalent to 7.2/. 
One such principle is obtained by asserting the existence of an intuitionist 

negation which is not classical. This may be written, considering 7.1 1 

and 7.1 k : 

(7. 21/) (Ea) (Eb)(c)(d) (e)(o- b ~~ c, at-) & ( (b t- c ~ t- c, a) ~ d t- e)) 

In the presence of 7.1/, 7.21/ is equivalent to 7.2/. 
A less obvious equivalence can be obtained if we remember 20) that, in 

the presence of intuitionist negation and the conditional. classical negation 
can be derived from the following principle 7. 3k (cp. also 5.22): 

(7.3k ) a, b > clb -+ alb. 

In this form, the existential character of 7.3 k is not very obvious, but 
it becomes obvious if we eliminate here the sign ">", with the help of 

(7.40) a, b> cId ~ (e) (b, e/e -+ a, eld) 

which an alternative characterizing rule 21) for "> ", obtainable from 
3.81 (or from the definition of "b> c"). Applying 7.40, we can transform 
7.3 k into 7.4 k : 

(a)(b)(e)(Ed) «b, dIe -+ a, dl b) -+ alb) 

which shows its existential character. Negating 7. 4 k , we obtain a principle 
7.41 which (in the pres en ce of 7. 1/ and of a formula asserting the existence 
of the conditional) is equivalent to 7.21: 

(7.4 1) (Ea)(Eb)(Ee)(d)(e)(f) « (b, die -+ a, dl b) -+ al b) -+ elf). 

In this case, the equivalence is by no means obvious, but demands a fairly 
complicated proo!. based, of course, upon BI. 1 and BI. 2. It shows that 
the consequences derivable from this basis are not all trivial. 

As an example of an interesting and perhaps more difficult problem, 

19) This proof must, of course, be intuitionistically valid; and thel'efore, a fortiori. 
olassicaUy valid also. 
~) Cp. note 13, and rule 5.22, above, a:ld P1, pp. 215 f: (rule i.2e). 
21) For the dual of rule 7.10, see note 15 above. 
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I may refer to the conjecture. formulated in section V. that ai ii Ia when
ever ai and la exist but not ak • This conjecture can be proved or disproved 
by proving or disproving a metalinguistic conditional with the conjunction 
of the closures of BI. 1. BI. 2 and the definition of "I- a. b" and "a. b ..... 
as antecedent and a consequent which asserts: "If a is (not equivalent 
to b m and therefore) not the classical negation of b then. if a is the 
intuitionist negation of b. then al lIb." In order to formalize this assertion. 
we shall make use of the following comparatively simple definition 22 

of Ib: 

(07./) al/lb ~ (c) ((ale V bic) & (bla -+ cIa)). 

With the help of this. we can write the assertion in question as follows: 

(a) (b)(c)(cl) (Ee)(Ef) (Eg) ( ((a/ d ~-'" I- b. cl) -+ elf) -+ ((g/ a ~-'" b. g 1-) -+ 

-+ ((ale V blc)&(bla-+ cia))). 

IE the metalinguistic conditional here described is refutable. and a counter 
example can be constructed. 23) i.e. a language for which it is not valid. then 
the problem arises of formulating the necessary and sufficient conditions 
under which it holds: for that it holds for some languages has been 
established by our example in section V. 

:12) Cp. note H. above. 
23) Note added in the prools. I have now been able to construct various simple 

counter examples which refute the conjecture. 

22 


