Mathematics. — Non-homogeneous binary quadratic forms. II. By P. VARNAVIDES. (Communicated by Prof. J. G. VAN DER CORPUT.)

(Communicated at the meeting of February 28, 1948.)

7. Lemma 7. There exists a number $n_0 = n_0(\delta)$ depending only on δ such that, if $a \ge \tau/\theta$, then there is exactly one integer n such that

$$0 < n \leq n_0, \ldots \ldots \ldots \ldots \ldots \ldots$$

$$\frac{1}{\xi_n} < a < \frac{1}{\xi_{n+2}}, \quad \dots \quad \dots \quad \dots \quad \dots \quad (45)$$

and

$$\frac{1}{\eta_n} > \beta \geqslant \frac{1}{\eta_{n+1}}, \ldots \ldots \ldots$$
 (46)

where

$$\xi_n = \frac{1 + \tau^{-n+1}}{\sqrt{2}\tau}$$
 and $\eta_n = \frac{1 - \tau^{-n}}{\sqrt{2}}$... (47)

are integers of $k(\gamma 2)$.

Proof. That ξ_n and η_n are integers of $k(\gamma 2)$ follows from the congruence (21). We consider the sequence of numbers $(\eta_n)^{-1}$. As *n* increases from the initial value 1 and tends to infinity, this sequence decreases strictly from the initial value τ and tends to the limit $\gamma 2$. Thus, if n_0 is sufficiently large

$$\frac{1}{\eta_{n_0}} < \gamma 2 + \tau^{-2} \delta.$$

Consequently, by Lemma 6,

$$\frac{1}{\eta_{n_0}} < \gamma 2 + \tau^{-2} \delta < \beta < \gamma (2\tau) < \tau = \frac{1}{\eta_1},$$

and there is just one integer $n \le n_0$ for which (44) and (46) are satisfied. We have to prove that (45) is satisfied for this value of n.

Now using (17), (46) and (47)

$$a < \frac{2\tau}{\beta} \leq 2\tau \eta_{n+1} = \sqrt{2\tau} (1 - \tau^{-n-1})$$
$$< \frac{\sqrt{2\tau}}{1 + \tau^{-n-1}} = \frac{1}{\xi_{n+2}},$$

and so one of the inequalities (45) is satisfied. To prove the remaining

inequality we use (15) with $\xi = 1$. If we neglect ε we obtain

$$a \ge 1 + \frac{1}{\beta - 1} = \frac{\beta}{\beta - 1} > \frac{1}{1 - \eta_n}$$
$$= \frac{\gamma 2 \tau}{1 + \tau^{-n+1}} = \frac{1}{\xi_n}.$$

by using (46) and (47). When we do not neglect ε we obviously obtain an inequality of the form

$$a \geqslant \frac{1}{\xi_n} - \nu_n \varepsilon$$
, (48)

where v_n is a positive number depending only on *n*. Using (15) with $\xi = \xi_n$, we have

$$|(\alpha \xi_n-1)(\beta \xi'_n-1)| \ge 1-\varepsilon$$

so that, by (37),

But, if a were less than or equal to $1/\xi_n$, the inequalities (48) and (49) would give a contradiction, provided ε was less than some positive number depending only on n_0 . Hence $\alpha \ge 1/\xi_n$, and the lemma is proved.

Lemma 8. If $a \ge \tau/\theta$, the inequalities (44), (45) and (46) are satisfied for just one odd integer n.

Proof. Suppose, if possible, that (44), (45) and (46) are satisfied for some even integer n. Then

$$\eta'_{n} = \frac{(-\tau)^{n} - 1}{\sqrt{2}} = \frac{\tau^{n} - 1}{\sqrt{2}},$$
$$\eta'_{n+1} = \frac{(-\tau)^{n+1} - 1}{\sqrt{2}} = -\frac{\tau^{n+1} + 1}{\sqrt{2}}$$

By (15) with $\xi = \eta'_n$ and with $\xi = \eta'_{n+1}$

$$(\eta'_n \alpha - 1) (1 - \eta_n \beta) \ge 1 - \epsilon,$$

$$(|\eta'_{n+1}| \alpha + 1) (\eta_{n+1} \beta - 1) \ge 1 - \epsilon,$$

the four factors on the left hand sides being positive, by (46) and our assumption that $\alpha \ge \tau/\theta$. Thus

$$1-\eta_n\beta \geqslant \frac{1-\varepsilon}{\eta_n'a-1},$$

$$\eta_{n+1}\beta-1 \geqslant \frac{1-\varepsilon}{|\eta_{n+1}'|a+1},$$

Eliminating β and using (45) we obtain

$$\frac{\eta_{n+1} - \eta_n}{1 - \varepsilon} \ge \frac{\eta_{n+1}}{\eta'_n a - 1} + \frac{\eta_n}{|\eta'_{n+1}| a + 1} \\
\ge \frac{\eta_{n+1} \xi_{n+2}}{\eta'_n - \xi_{n+2}} + \frac{\eta_n \xi_{n+2}}{|\eta'_{n+1}| + \xi_{n+2}} \\
= \frac{(1 - \tau^{-n-1})(1 + \tau^{-n-1})}{\sqrt{2} \{\tau(\tau^n - 1) - (1 + \tau^{-n-1})\}} + \frac{(1 - \tau^{-n})(1 + \tau^{-n-1})}{\sqrt{2} \{\tau(\tau^{n+1} + 1) + (1 + \tau^{-n-1})\}} \\
= \frac{(1 - \tau^{-2n-2})}{\sqrt{2} \{\tau^{n+1} - \tau - 1 - \tau^{-n-1}\}} + \frac{(1 - \tau^{-n})}{\sqrt{2} \{\tau^{n+2} + 1\}} \\
> (^1/\gamma_2)\tau^{-n-1}(1 - \tau^{-2n-2})(1 - \tau^{-n})^{-1} + (^1/\gamma_2)\tau^{-n-2}(1 - \tau^{-n})(1 + \tau^{-n-2})^{-1}} \\
> (^1/\gamma_2)\tau^{-n-1}(1 - \tau^{-2n-2})(1 + \tau^{-n}) + (^1/\gamma_2)\tau^{-n-2}(1 - \tau^{-n})(1 - \tau^{-n-2}) \\
= (^1/\gamma_2)\tau^{-n-1}(1 + \tau^{-1} + \tau^{-n} - \tau^{-n-1} - \tau^{-n-3} - \tau^{-2n-2} + \tau^{-2n-3} - \tau^{-3n-2}) \\
= \tau^{-n-1} + (^1/\gamma_2)\tau^{-2n-1}[1 - \tau^{-1} - \tau^{-3} - \tau^{-n-3}(\tau - 1) - \tau^{-2n-2}]$$
(50)

As n is an even positive integer the expression in the square brackets exceeds

$$1 - \tau^{-1} - 3\tau^{-3} = 23 - 16\sqrt{2}$$
,

which is positive. Thus provided ε is smaller than a certain number depending only on n_0 ,

$$\eta_{n+1} - \eta_n > \tau^{-n-1}$$

But

$$\eta_{n+1} - \eta_n = \frac{1 - \tau^{-n-1}}{\sqrt{2}} - \frac{1 - \tau^{-n}}{\sqrt{2}} = \tau^{-n-1}.$$

This contradiction proves that the unique integer n, for which (44), (45) and (46) are satisfied, is odd.

Lemma 9. If $a \ge \tau/\theta$, there is exactly one odd integer n such that the inequalities (44) and (46) are satisfied and

$$\frac{1}{\xi_n} < \alpha < \frac{1}{\xi_{n+1}}.$$
 (51)

Proof. Suppose, if possible, that (44), (45) and (46) are satisfied for some odd integer n, but that

$$\frac{1}{\xi_{n+1}} \leqslant a < \frac{1}{\xi_{n+2}}, \ldots, \ldots,$$
 (52)

As n is odd

$$\xi_{n+1} = \frac{1 + \tau^{-n}}{\sqrt{2}\tau}, \quad \xi'_{n+1} = \frac{1 - \tau^{n}}{\sqrt{2}}\tau$$
$$\eta_{n+1} = \frac{1 - \tau^{-n-1}}{\sqrt{2}}, \quad \eta'_{n+1} = \frac{\tau^{n+1} - 1}{\sqrt{2}}.$$

Using (15) with $\xi = \xi_{n+1}$ and with $\xi = \eta'_{n+1}$, we have

$$(a\xi_{n+1}-1)(\beta|\xi'_{n+1}|+1) \ge 1-\varepsilon, \ldots$$
 (53)

the factors on the left hand sides being positive by (19), (46) and (52).

We use (53) and (54), together with the inequality $\alpha\beta < 2\tau$ obtained from (17), to find lower bounds for α and β . In these calculations we neglect the effect of ε in the first instance. From (53)

$$(\xi_{n+1}\alpha-1)\left(\frac{2\tau|\xi'_{n+1}|}{\alpha}+1\right) \ge 1. \quad . \quad . \quad . \quad . \quad . \quad (55)$$

It is convenient to write $P = \frac{1}{2}\xi_{n+1} |\xi'_{n+1}|$ so that

$$P = \frac{1}{2} |N(\xi_{n+1})| = \frac{1}{4} |N(1 + \tau^{-n})| = \frac{1}{4} (\tau^{n} - \tau^{-n}).$$

Writing $2P/\xi_{n+1}$ for $|\xi'_{n+1}|$ in (55),

$$4\tau P + \xi_{n+1}a - \frac{4\tau P}{\xi_{n+1}a} - 1 \ge 1.$$

It follows just as in DAVENPORT's work 3) that

$$\xi_{n+1} a > 1 + \tau^{-n-1} \ldots \ldots \ldots \ldots \ldots$$
 (56)

Now writing $Q = \frac{1}{2} \eta_{n+1} \eta'_{n+1}$ and using the inequality $\alpha \beta < 2\tau$ in (54) we have

$$4\tau Q - \eta_{n+1}\beta - \frac{4\tau Q}{\eta_{n+1}\beta} + 1 \ge 1.$$

Also

 $\beta \eta_{n+1} < \eta_{n+1} / \eta_n < \eta_{n+1} \eta'_{n+1} < 2 \tau Q.$

It follows just as in DAVENPORT's 4) work that

$$\eta_{n+1}\beta>1+\frac{1}{4\tau Q}$$

We have also

$$\mathbf{Q} = \frac{1}{2} |N(\eta_{n+1})| = \frac{1}{4} \tau^{n+1} (1 - \tau^{-n-1})^2.$$

Hence

$$\eta_{n+1}\beta > 1 + \tau^{-n-2}$$
. (57)

By (56) and (57)

$$\begin{aligned} \alpha\beta > (1 + \tau^{-n-1}) (1 + \tau^{-n-2}) |\xi_{n+1} \eta_{n+1} \\ = (1 + \sqrt{2} \tau^{-n-1} + \tau^{-2n-3}) |\xi_{n+1} \eta_{n+1}. \end{aligned}$$

But

$$\xi_{n+1} \eta_{n+1} = (1 + \tau^{-n}) (1 - \tau^{-n-1})/2 \tau$$

< (1 + $\sqrt{2} \tau^{-n-1})/2 \tau$.

- ³) D. IV (747-48).
- ⁴) D. IV (748).

Thus

$$\alpha\beta > 2\tau + 2\tau^{-2n-2}/(1 + \sqrt{2\tau^{-n-1}}).$$

Provided ε is smaller than a certain number depending only on n_0 , it is clear that, if we carried out these calculations without neglecting ε , we should still be able to conclude that

 $a\beta > 2\tau$,

contrary to (17). This contradiction proves that (51) is satisfied when n is the unique odd integer for which (44) and (46) are satisfied.

Lemma 10. If n is odd

$$|(a_n \xi - 1)(a'_n \xi' - 1)| = 1$$

for the following values of ξ ,

1,
$$\xi_n$$
, ξ_{n+1} , η'_n , η'_{n+1} .

Proof. By (5)

$$a_n - 1 = \frac{(\tau^{n+1} - 1)(\tau - 1)}{\tau^n + 1} - 1$$
$$= \frac{\tau^n (\tau^2 - \tau - 1) - \tau}{\tau^n + 1}$$
$$= \tau \frac{\tau^n - 1}{\tau^n + 1},$$

which has norm 1 as n is odd. Similarly by (5) and (47) we have (since n is odd)

$$a_n \xi_n - 1 = \tau^{-n} \frac{\tau^n - 1}{\tau^n + 1},$$

$$a_n \xi_{n+1} - 1 = \tau^{-n-1},$$

$$a_n \eta'_n - 1 = -\tau^{n+1},$$

$$a_n \eta'_{n+1} - 1 = \tau^{n+2} \frac{\tau^n - 1}{\tau^n + 1},$$

and these all have norm 1.

Lemma 11. There exists a constant C depending only on δ such that, if $a \ge \tau/\theta$, then there is a unique odd integer n, for which

 $|a-a_n| \leq C \varepsilon$, $|\beta-a'_n| \leq C \varepsilon$ (58)

and (44), (46) and (51) are satisfied.

Proof. We take n to be the unique odd integer for which (44), (46) and (51) are satisfied. We write

$$a \equiv a_n + \mu$$
, $\beta \equiv a'_n + \nu$.

By (15), for every integer ξ of $k(\gamma 2)$

$$|\{(a_n+\mu)\xi-1\}|\{(a'_n+\nu)\xi'-1\}| \ge 1-\varepsilon$$

so that

$$\left\{1+\frac{\xi}{a_n\,\xi-1}\,\mu\right\}\left\{1+\frac{\xi'}{a'_n\,\xi'-1}\,\nu\right\}\right| \ge \frac{1-\varepsilon}{N\,(a_n\,\xi-1)}.$$
 (59)

Taking ξ equal to ξ_n , ξ_{n+1} , η'_n and η'_{n+1} and using Lemma 10 we obtain the four inequalities

$$|(1 + \varrho_i \mu) (1 + \sigma_i \nu)| \ge 1 - \varepsilon, \quad i = 1, 2, 3, 4$$

where

$$e_{1} = \frac{\xi_{n}}{a_{n} \xi_{n} - 1} = \frac{1}{\sqrt{2}} \frac{(\tau^{n-1} + 1)(1 + \tau^{-n})}{1 - \tau^{-n}} > 0,$$

$$\sigma_{1} = e_{1}' = \frac{1}{\sqrt{2}} \frac{(1 + \tau^{-n+1})(1 - \tau^{-n})}{1 + \tau^{-n}} > 0,$$

$$e_{2} = \frac{\xi_{n+1}}{\tau^{n}} = -\frac{1}{\sqrt{2}} (\tau^{n} + 1) < 0,$$

(60)

$$\sigma_{2} = \varrho_{2}^{\prime} = \frac{1}{\sqrt{2}} (1 - \tau^{-n}) > 0, \qquad (61)$$

$$\sigma_3 = \varrho'_3 = -\frac{\tau}{\sqrt{2}} (\tau^n - 1) < 0,$$

$$\varrho_{4} = \frac{\eta'_{n+1}}{a_{n} \eta'_{n+1} - 1} = \frac{1}{\sqrt{2} \tau} \frac{(1 - \tau^{-n-1})(1 + \tau^{-n})}{1 - \tau^{-n}} > 0, \qquad (63)$$

$$\sigma_{4} = \varrho'_{4} = \frac{\tau^{n+2}}{\sqrt{2}} \frac{(1 - \tau^{-n-1})(1 - \tau^{-n})}{1 + \tau^{-n}} > 0.$$

It is easy to verify that

$$\frac{1}{\eta_n'} < 0 < \frac{1}{\eta_{n+1}'} < \frac{1}{\xi_n} < a_n < \frac{1}{\xi_{n+1}}$$

and that

$$\frac{1}{\xi'_{n+1}} < 0 < \frac{1}{\xi'_n} < \frac{1}{\eta_{n+1}} < \alpha'_n < \frac{1}{\eta_n}.$$

It follows from (46) and (51) that $a\xi - 1$ and $a_n\xi - 1$ and $\beta\xi' - 1$ and $a'_n\xi' - 1$ have the same signs when ξ takes the values ξ_n , ξ_{n+1} , η'_n , η'_{n+1} . Consequently $(1 + q_i \mu)$ and $(1 + \sigma_i \nu)$ are positive for i = 1, 2, 3, 4 and using the inequality of the arithmetic and geometric means

i.e.

$$1 + \frac{1}{2} (\varrho_i \mu + \sigma_i \nu) \ge 1 - \varepsilon,$$

$$\varrho_i \mu + \sigma_i \nu \ge -2\varepsilon \text{ for } i = 1, 2, 3, 4. ... (64)$$

i

476

Eliminating first ν and then μ from the second and third of the inequalities (64),

$$\begin{aligned} (\varrho_2 | \sigma_3 | + \varrho_3 \sigma_2) \mu \geqslant &- 2 \varepsilon (\sigma_2 + |\sigma_3|), \\ (\sigma_2 \varrho_3 + \sigma_3 | \varrho_2 |) \nu \geqslant &- 2 \varepsilon (| \varrho_2 | + \varrho_3). \end{aligned}$$

But

$$\begin{split} \varrho_{2} |\sigma_{3}| + \varrho_{3} \sigma_{2} &= \sigma_{2} \varrho_{3} + \sigma_{3} |\varrho_{2}| \\ &= \frac{1}{2} \tau^{-1} \left(1 - \tau^{-n} \right) \left(1 + \tau^{-n} \right) - \frac{1}{2} \tau \left(\tau^{n} + 1 \right) \left(\tau^{n} - 1 \right) \\ &= -\frac{1}{2} \left(\tau^{2n+1} - \tau^{-1} \right) \left(1 - \tau^{-2n} \right) < 0. \end{split}$$

Thus the above inequalities imply that $\mu \leq c_n \varepsilon$, and $\nu \leq c'_n \varepsilon$ where c_n and c'_n depend only on *n*. Substituting these bounds for μ and ν in the first or the fourth of the inequalities (64), we obtain $\mu \geq -c''_n \varepsilon$ and $\nu \geq -c''_n \varepsilon$. Since *n* is positive and less than n_0 there is a constant *C* depending only on δ such that

$$|\mu| \leq C \varepsilon, |\nu| \leq C \varepsilon.$$

This proves the lemma.

Lemma 12. If $\alpha \ge \tau/\theta$, then for some odd positive integer n,

$$a \equiv a_n, \quad \beta \equiv a'_n.$$

Proof. Let *n* be the integer of Lemma 11. We define numbers X_r and Y_r of $k(\sqrt{2})$ by the equations

$$a_n X_r - 1 = \tau^{-r(n+1)+1} \frac{\tau^n - 1}{\tau^n + 1},$$

$$a_n Y_r - 1 = -\tau^{-r(n+1)}.$$

It is clear that

$$N(a_n X_r - 1) = 1,$$

 $N(a_n Y_r - 1) = 1;$

we have to prove that X_r and Y_r are integers of $k(\gamma 2)$. Solving the equations for X_r and Y_r , and using (5)

$$X_{r} = \frac{\tau^{n} + 1}{\sqrt{2} (\tau^{n+1} - 1)} \left\{ \tau^{-r(n+1)+1} \frac{\tau^{n} - 1}{\tau^{n} + 1} + 1 \right\}$$
$$= \frac{\tau^{-r(n+1)+1} (\tau^{n} - 1) + (\tau^{n} + 1)}{(\tau - 1) (\tau^{n+1} - 1)},$$

and

$$Y_r = \frac{\tau^n + 1}{\sqrt{2}} \tau^{-r(n+1)} \frac{\tau^{r(n+1)} - 1}{\tau^{n+1} - 1}.$$

It is now clear that Y_r is an integer of $k(\gamma 2)$. Also, since

$$\begin{aligned} \tau^{-r(n+1)+1} (\tau^n - 1) + (\tau^n + 1) \\ &\equiv \tau (\tau^n - 1) + (\tau^n + 1) \pmod{(\tau - 1)(\tau^{n+1} - 1)} \\ &= (\tau + 1) \tau^n - (\tau - 1) \\ &\equiv \tau (\tau - 1) \tau^n - (\tau - 1) \\ &\equiv (\tau - 1) - (\tau - 1) \pmod{(\tau - 1)(\tau^{n+1} - 1)} \\ &= 0, \end{aligned}$$

 X_r is an integer.

We write $a = a_n + \mu$ and $\beta = a'_n + \nu$. By Lemma 11 we must have

$$|\mu| \leq C \varepsilon$$
 and $|\nu| \leq C \varepsilon$.

Applying (59) with $\xi = X_r$ and with $\xi = Y_r$, we obtain

$$|(1+R_r\mu)(1+R_r'\nu)| \ge 1-\varepsilon, \ldots \ldots \ldots (65)$$

where

$$R_{r} = \frac{X_{r}}{a_{n}^{T} X_{r} - 1} = \frac{1}{a_{n}} \left\{ 1 + \tau^{r(n+1)-1} \frac{\tau^{n} + 1}{\tau^{n} - 1} \right\},$$

$$R_{r} = \frac{1}{a_{n}'} \left\{ 1 + \tau^{-r(n+1)+1} \frac{\tau^{n} - 1}{\tau^{n} + 1} \right\},$$

$$S_{r} = \frac{Y_{r}}{a_{n} Y_{r} - 1} = -\frac{1}{a_{n}} \left\{ \tau^{r(n+1)} - 1 \right\}$$

$$S_{r} = \frac{1}{a_{n}'} \left\{ 1 - \tau^{-r(n+1)} \right\}.$$

$$(68)$$

The numbers R_r , $-R'_r$, S_r and $-S'_r$ vary with r in a way which is essentially similar to the variation the numbers R_r , R'_r , S_r and S'_r occurring in DAVENPORT's work ⁵). It follows just as in DAVENPORT's investigation that $\mu = \nu = 0$.

8. Lemma 13. If a, b are of the form (4), then

$$|(\xi-a)(\xi'-b)| \ge \frac{1}{a_n a_n'}, \ldots \ldots \ldots (69)$$

for all integers ξ of $k(\gamma 2)$; equality occurring for an infinite number of integral values of ξ .

Proof. It clearly suffices to consider the case when

$$a=\frac{1}{a_n}, \quad b=\frac{1}{a'_n}$$

⁵) D. IV (911–913).

where n is an odd positive integer. In this case we have to prove that

for all integers ξ of $k(\gamma 2)$; and that equality occurs for an infinite number of integral values of ξ . We have seen in Lemma 12 that (70) is satisfied with equality when $\xi = X_r$ and when $\xi = Y_r$ and that X_r and Y_r are integers of $k(\gamma 2)$ for all rational integers r.

When n = 1 we have $a_n = a'_n = 2$ so that $a_n \xi - 1 = 2\xi - 1$ is a nonzero integer of $k(\gamma 2)$ whenever ξ is an integer of $k(\gamma 2)$. Thus (70) is in this case satisfied for all integers ξ of $k(\gamma 2)$.

When n = 3 we have

$$a_{3} = \frac{4\sqrt{2}}{2\sqrt{2-1}}$$
$$a_{3}' = \frac{4\sqrt{2}}{2\sqrt{2+1}}$$

so that, if $\xi = x + \sqrt{2y}$,

$$a_{3}\xi - 1 = \frac{4 \sqrt{2} (x + \sqrt{2} y) - 2 \sqrt{2} + 1}{2 \sqrt{2} - 1}$$
$$= \frac{2 \sqrt{2} (2 x - 1) + (8 y + 1)}{2 \sqrt{2} - 1}.$$

Thus

$$|N(a_3\xi-1)| = \frac{1}{7} |8(2x-1)^2 - (8y+1)^2|.$$

Now, for any integers x and y

$$8(2x-1)^2-(8y+1)^2 \equiv >7 \pmod{16}$$

Thus

 $|N(a_3\xi-1)| \ge 1$

for all integers ξ of $k(\gamma 2)$.

When $n \ge 5$ we use a different type of argument. We suppose that, for some integer η of $k(\gamma 2)$,

$$|N(a_n\eta-1)| < 1 \dots (71)$$

and we eventually arrive at a contradiction. Consider the substitution

We have

$$\eta = \tau^{n+1}\zeta - \frac{\tau^{n+1} - 1}{a_n} = \tau^{n+1}\zeta - \frac{\tau^n + 1}{\gamma^2}.$$

$$\zeta = \tau^{-n-1}\eta - \frac{\tau^{-n-1} - 1}{a_n} = \tau^{-n-1}\eta + \tau^{-n-1}\frac{\tau^n + 1}{\gamma^2}.$$

Thus using (21) the transformation (72) transforms integers ζ into integers η and vice versa. Also

$$N(a_n \eta - 1) = N(a_n \zeta - 1).$$

It is clear that by repeated application of the transformation (72) or of its inverse we may obtain an integer η of $k(\gamma 2)$ satisfying (71) and such that

It follows from (71) and (73) that

$$|a_n \eta - 1| < \tau^{\frac{1}{2}(n+1)}, |a'_n \eta' - 1| < \tau^{\frac{1}{2}(n+1)}, ..., (74)$$

further one of these two numbers must be less than 1. We consider two cases separately, but first we note that

$$\tau \sqrt{2} > a_n \ge a_5 = (98 + 28\sqrt{2})/41 = 3 \cdot 356 \dots$$

$$\sqrt{2} < a'_n \le a'_5 = (98 - 28\sqrt{2})/41 = 1 \cdot 424 \dots$$
(75)

Case 1. Suppose that

$$|a_n \eta - 1| < 1$$
 and $|a'_n \eta' - 1| < \tau^{\frac{1}{2}(n+1)}$ (76)

The first inequality implies that

by (75).

Suppose, if possible, that $|\eta'| < \tau$. Then by (77),

$$0<|\eta\,\eta'|<\frac{2\,\tau}{3}<2,$$

so that η is a unit of $k(\gamma 2)$. But there is no unit η of $k(\gamma 2)$ with $|\eta| < \frac{2}{3}$ and $|\eta'| < \tau$. This contradiction proves that $|\eta'| \ge \tau$.

Multiplying the inequality

$$|\theta \tau \eta - 1| \leq |a_n \eta - 1| + (\theta \tau - a_n) \eta$$

by $|\alpha'_n\eta'-1|$ and using (71) and (76), we deduce that

$$|(\theta \tau \eta - 1)(a'_n \eta' - 1)| < 1 + (\theta \tau - a_n) \eta \tau^{\frac{1}{2}(n+1)}$$

Now, since $\theta \tau \eta = 1$ is a non-zero integer of $k(\gamma 2)$,

$$|N(\theta \tau \eta - 1)| \ge 1.$$

Hence

$$\left|\frac{(a'_n\eta'-1)}{(\theta'\tau'\eta'-1)}\right| < 1 + (\theta\tau - a_n)\eta\tau^{\frac{1}{4}(n+1)}.$$
 (78)

Now the expression on the left hand side of (78) is either

$$\frac{a'_n|\eta'|-1}{\theta\tau^{-1}|\eta'|-1} \text{ or } \frac{a'_n|\eta'|+1}{\theta\tau^{-1}|\eta'|+1}$$

according as $\eta' > 0$ or $\eta' < 0$. The latter is the smaller, since $\alpha'_n > \theta > \theta/\tau$. Hence, by (78)

$$\frac{\alpha'_n |\eta'|+1}{\theta \tau^{-1} |\eta'|+1} < 1 + (\theta \tau - \alpha_n) \eta \tau^{\frac{1}{2}(n+1)}.$$

As

$$\theta \tau - \alpha_n = \gamma 2 \frac{\tau + 1}{\tau^n + 1} = \frac{2\tau}{\tau^n + 1} < 2\tau^{-n+1},$$

this implies that

Using the fact that $|\eta'| \ge \tau$, (75), (79) and (77) we obtain

$$\frac{\gamma 2\tau + 1}{\gamma 2 + 1} \leqslant \frac{\gamma 2 |\eta'| + 1}{\theta \tau^{-1} |\eta'| + 1} < \frac{\alpha'_n |\eta'| + 1}{6 \tau^{-1} |\eta'| + 1} < 1 + 2\eta \tau^{\frac{1}{3}(3-n)} < 1 + \frac{4}{3} \tau^{-1}.$$

since $n \ge 5$. This is a contradiction since the left hand side has the value 1.828 ... while the right hand side has the value 1.552

Case 2. Suppose that

$$|a_n \eta - 1| < \tau^{\frac{1}{2}(n+1)}$$
 and $|a'_n \eta' - 1| < 1.$. . . (80)

The second inequality implies that

$$0 < \eta' < \frac{2}{a'_n} < \eta' 2 \ldots \ldots \ldots \ldots$$
 (81)

by (75).

Suppose, if possible. that $|\eta| < \tau$. Then

$$0 < |\eta \eta'| < \tau \gamma 2 < 4.$$

and so, as 3 and -3 are not norms in $k(\gamma 2)$, we must have either $|\eta\eta'| = 1$ or $|\eta\eta'| = 2$. If $|\eta\eta'| = 1$, then η is a unit and as $0 < \eta' < \gamma 2$, $|\eta| < \tau$ we must have $\eta = 1$. This is impossible by Lemma 10 and the fact that η satisfies (71). If $|\eta\eta'| = 2$, then necessarily $\eta = \gamma 2\zeta$, $\eta' = -\gamma 2\zeta'$, where ζ is a unit of $k(\gamma 2)$ satisfying $|\zeta| < \tau$, $|\zeta'| < 1$. But there is no such unit of $k(\gamma 2)$. These contradictions prove that $|\eta| \ge \tau$.

Just as in case 1, using (71) and (80)

$$|(\alpha_n \eta - 1)(\theta \eta' - 1)| \leq |(\alpha_n \eta - 1)(\alpha'_n \eta' - 1)| + |(\alpha_n \eta - 1)(\alpha'_n - \theta)\eta'| < 1 + (\alpha'_n - \theta)\eta' \tau^{\frac{1}{2}(n+1)}.$$

Since $\theta \eta' - 1$ is a non-zero integer of $k(\gamma 2)$ this implies that

$$\left|\frac{\dot{a_n}\eta-1}{\theta\eta+1}\right| < 1 + (\dot{a_n}-\theta)\eta'\tau^{\frac{1}{2}(n+1)}.$$

481

The expression on the left hand side is either

$$\frac{a_n |\eta| + 1}{\theta |\eta| - 1} \text{ or } \frac{a_n |\eta| - 1}{\theta |\eta| + 1},$$

according as $\eta \leq -\tau$ or $\eta \geq \tau$. Thus, in any case,

$$\frac{a_n |\eta| - 1}{\theta |\eta| + 1} < 1 + (a'_n - \theta) \eta' \tau^{\frac{1}{2}(n+1)} \dots \dots \dots \dots \dots (82)$$

Now

$$\alpha'_{n} - \theta = \gamma 2 \frac{\tau^{n+1} - 1}{\tau(\tau^{n} - 1)} - \gamma 2 = \frac{2}{\tau(\tau^{n} - 1)} = 2 \tau^{-n-1} (1 - \tau^{-n})^{-1}.$$
 (83)

Using the fact that $|\eta| \ge \tau$, (75), (82), (83) and (81) we obtain

$$\frac{3 \tau - 1}{\sqrt{2} \tau + 1} \leqslant \frac{3 |\eta| - 1}{2 |\eta| + 1} < \frac{a_n |\eta| - 1}{\theta |\eta| + 1}$$

< 1 + (a'_n - \theta) \eta' \tau^{1(n+1)}
< 1 + 2 \gamma 2 \tau^{-1(n+1)} (1 - \tau^{-n})^{-1}
< 1 + 2 \gamma 2 \tau^{-3} (1 - \tau^{-5})^{-1},

as $n \ge 5$. This a contradiction since the left hand side has the value $\gamma 2 = 1.414...$ while the right hand side has the value 1.169.... This completes the proof of the lemma.

University College, London.