Mathematics. - Non-homogeneous binary quadratic forms. II. By P. Varnavides. (Communicated by Prof. J. G. van der Corput.)
(Communicated at the meeting of February 28, 1948.)
7. Lemma 7. There exists a number $n_{0}=n_{0}(\delta)$ depending only on δ such that, if $\alpha \geq \tau / \theta$, then there is exactly one integer n such that

$$
\begin{gather*}
0<n \leqslant n_{0} \tag{44}\\
\frac{1}{\xi_{n}}<a<\frac{1}{\xi_{n+2}} \tag{45}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{1}{\eta_{n}}>\beta \geqslant \frac{1}{\eta_{n+1}} \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi_{n}=\frac{1+\tau^{-n+1}}{\sqrt{ } 2 \tau} \text { and } \eta_{n}=\frac{1-\tau^{-n}}{\sqrt{ } 2} \tag{47}
\end{equation*}
$$

are integers of $k(/ 2)$.
Proof. That ξ_{n} and η_{n} are integers of $k(\gamma 2)$ follows from the congruence (21). We consider the sequence of numbers $\left(\eta_{n}\right)^{-1}$. As n increases from the initial value 1 and tends to infinity, this sequence decreases strictly from the initial value τ and tends to the limit $\gamma 2$. Thus, if n_{0} is sufficiently large

$$
\frac{1}{\eta_{n_{0}}}<\sqrt{2}+\tau^{-2} \delta
$$

Consequently, by Lemma 6,

$$
\frac{1}{\eta_{n_{0}}}<\sqrt{ } 2+\tau^{-2} \delta<\beta<\sqrt{ }(2 \tau)<\tau=\frac{1}{\eta_{1}}
$$

and there is just one integer $n \leq n_{0}$ for which (44) and (46) are satisfied. We have to prove that (45) is satisfied for this value of n.

Now using (17), (46) and (47)

$$
\begin{aligned}
a<\frac{2 \tau}{\beta} & \leqslant 2 \tau \eta_{n+1}=\sqrt{ } 2 \tau\left(1-\tau^{-n-1}\right) \\
& <\frac{12 \tau}{1+\tau^{-n-1}}=\frac{1}{\xi_{n+2}}
\end{aligned}
$$

and so one of the inequalities (45) is satisfied. To prove the remaining
inequality we use (15) with $\xi=1$. If we neglect ε we obtain

$$
\begin{gathered}
a \geqslant 1+\frac{1}{\beta-1}=\frac{\beta}{\beta-1}>\frac{1}{1-\eta_{n}} \\
=\frac{\sqrt{2} \tau}{1+\tau^{-n+1}}=\frac{1}{\xi_{n}}
\end{gathered}
$$

by using (46) and (47). When we do not neglect ε we obviously obtain an inequality of the form

$$
\begin{equation*}
a \geqslant \frac{1}{\xi_{n}}-v_{n} \varepsilon \tag{48}
\end{equation*}
$$

where ν_{n} is a positive number depending only on n. Using (15) with $\xi=\xi_{n}$, we have

$$
\left|\left(\alpha \xi_{n}-1\right)\left(\beta \xi_{n}^{\prime}-1\right)\right| \geqslant 1-\varepsilon
$$

so that, by (37),

$$
\begin{equation*}
\left|a \xi_{n}-1\right|\left\{\gamma(2 \tau)\left|\xi_{n}^{\prime}\right|+1\right\} \geqslant 1-\varepsilon . \tag{49}
\end{equation*}
$$

But, if a were less than or equal to $1 / \xi_{n}$, the inequalities (48) and (49) would give a contradiction, provided ε was less than some positive number depending only on n_{0}. Hence $\alpha \geq 1 / \xi_{n}$, and the lemma is proved.

Lemma 8. If $a \geq \tau / \theta$, the inequalities (44), (45) and (46) are satisfied for just one odd integer n.

Proof. Suppose, if possible, that (44), (45) and (46) are satisfied for some even integer n. Then

$$
\begin{gathered}
\eta_{n}^{\prime}=\frac{(-\tau)^{n}-1}{\sqrt{2}}=\frac{\tau^{n}-1}{\sqrt{2}}, \\
\eta_{n+1}^{\prime}=\frac{(-\tau)^{n+1}-1}{\sqrt{2}}=-\frac{\tau^{n+1}+1}{\sqrt{2}}
\end{gathered}
$$

By (15) with $\xi=\eta_{n}^{\prime}$ and with $\xi=\eta_{n+1}^{\prime}$

$$
\begin{gathered}
\left(\eta_{n}^{\prime} \alpha-1\right)\left(1-\eta_{n} \beta\right) \geqslant 1-\varepsilon \\
\left(\left|\eta_{n+1}^{\prime}\right| \alpha+1\right)\left(\eta_{n+1} \beta-1\right) \geqslant 1-\varepsilon
\end{gathered}
$$

the four factors on the left hand sides being positive, by (46) and our assumption that $\alpha \geq \tau / \theta$. Thus

$$
\begin{gathered}
1-\eta_{n} \beta \geqslant \frac{1-\varepsilon}{\eta_{n}^{\prime} a-1}, \\
\eta_{n+1} \beta-1 \geqslant \frac{1-\varepsilon}{\left|\eta_{n+1}^{\prime}\right| a+1},
\end{gathered}
$$

Eliminating β and using (45) we obtain

$$
\begin{align*}
& \frac{\eta_{n+1}-\eta_{n}}{1-\varepsilon} \geqslant \frac{\eta_{n+1}}{\eta_{n}^{\prime} a-1}+\frac{\eta_{n}}{\left|\eta_{n+1}^{\prime}\right| a+1} \\
& \quad \geqslant \frac{\eta_{n+1} \xi_{n+2}^{\prime}}{\eta_{n}^{\prime}-\xi_{n+2}}+\frac{\eta_{n} \xi_{n+2}}{\left|\eta_{n+1}^{\prime}\right|+\xi_{n+2}} \\
& \quad=\frac{\left(1-\tau^{-n-1}\right)\left(1+\tau^{-n-1}\right)}{\sqrt{2}\left\{\tau\left(\tau^{n}-1\right)-\left(1+\tau^{-n-1}\right)\right\}}+\frac{\left(1-\tau^{-n}\right)\left(1+\tau^{-n-1}\right)}{\sqrt{2}\left\{\tau\left(\tau^{n+1}+1\right)+\left(1+\tau^{-n-1}\right)\right\}} \\
& \quad=\frac{\left(1-\tau^{-2 n-2}\right)}{\sqrt{2}\left\{\tau^{n+1}-\tau-1-\tau^{-n-1}\right\}}+\frac{\left(1-\tau^{-n}\right)}{\sqrt{2}\left\{\tau^{n+2}+1\right\}} \tag{50}\\
& \quad>\left({ }^{1} / V_{2}\right) \tau^{-n-1}\left(1-\tau^{-2 n-2}\right)\left(1-\tau^{-n}\right)^{-1}+\left(^{1} / v_{2}\right) \tau^{-n-2}\left(1-\tau^{-n}\right)\left(1+\tau^{-n-2}\right)^{-1} \\
& \quad>\left({ }^{1} / v_{2}\right) \tau^{-n-1}\left(1-\tau^{-2 n-2}\right)\left(1+\tau^{-n}\right)+\left(1 / v_{2}\right) \tau^{-n-2}\left(1-\tau^{-n}\right)\left(1-\tau^{-n-2}\right) \\
& \quad=\left({ }^{1} / V_{2}\right) \tau^{-n-1}\left(1+\tau^{-1}+\tau^{-n}-\tau^{-n-1}-\tau^{-n-3}-\tau^{-2 n-2}+\tau^{-2 n-3}-\tau^{-3 n-2}\right) \\
& \\
& =\tau^{-n-1}+\left(1 / v_{2}\right) \tau^{-2 n-1}\left[1-\tau^{-1}-\tau^{-3}-\tau^{-n-3}(\tau-1)-\tau^{-2 n-2}\right]
\end{align*}
$$

As n is an even positive integer the expression in the square brackets exceeds

$$
1-\tau^{-1}-3 \tau^{-3}=23-16 / 2
$$

which is positive. Thus provided ε is smaller than a certain number depending only on n_{0},

$$
\eta_{n+1}-\eta_{n}>r^{-n-1}
$$

But

$$
\eta_{n+1}-\eta_{n}=\frac{1-\tau^{-n-1}}{\sqrt{ } 2}-\frac{1-\tau^{-n}}{\sqrt{2}}=\tau^{-n-1}
$$

This contradiction proves that the unique integer n, for which (44), (45) and (46) are satisfied, is odd.

Lemma 9. If $\alpha \geq \tau / \theta$, there is exactly one odd integer n such that the inequalities (44) and (46) are satisfied and

$$
\begin{equation*}
\frac{1}{\xi_{n}}<a<\frac{1}{\xi_{n+1}} \tag{51}
\end{equation*}
$$

Proof. Suppose, if possible, that (44), (45) and (46) are satisfied for some odd integer n, but that

$$
\begin{equation*}
\frac{1}{\xi_{n+1}} \leqslant a<\frac{1}{\xi_{n+2}} \tag{52}
\end{equation*}
$$

As n is odd

$$
\begin{aligned}
& \xi_{n+1}=\frac{1+\tau^{-n}}{\sqrt{ } 2 \tau}, \quad \xi_{n+1}^{\prime}=\frac{1-\tau^{n}}{\sqrt{ } 2} \tau \\
& \eta_{n+1}=\frac{1-\tau^{-n-1}}{\sqrt{ } 2}, \quad \eta_{n+1}^{\prime}=\frac{\tau^{n+1}-1}{\sqrt{2}} .
\end{aligned}
$$

Using (15) with $\xi=\xi_{n+1}$ and with $\xi=\eta_{n+1}^{\prime}$, we have

$$
\begin{gather*}
\left(\alpha \xi_{n+1}-1\right)\left(\beta\left|\xi_{n+1}^{\prime}\right|+1\right) \geqslant 1-\varepsilon, \quad . \quad . \quad . \quad . \tag{53}\\
\left(a \eta_{n+1}^{\prime}-1\right)\left(\beta \eta_{n+1}-1\right) \geqslant 1-\varepsilon, \quad . \quad . \quad . \quad . \tag{54}
\end{gather*}
$$

the factors on the left hand sides being positive by (19), (46) and (52).
We use (53) and (54), together with the inequality $\alpha \beta<2 \tau$ obtained from (17), to find lower bounds for α and β. In these calculations we neglect the effect of ε in the first instance. From (53)

$$
\begin{equation*}
\left(\xi_{n+1} a-1\right)\left(\frac{2 \tau\left|\xi_{n+1}^{\prime}\right|}{a}+1\right) \geqslant 1 \tag{55}
\end{equation*}
$$

It is convenient to write $P=\frac{1}{2} \xi_{n+1}\left|\xi_{n+1}^{\prime}\right|$ so that

$$
P=\frac{1}{2}\left|N\left(\xi_{n+1}\right)\right|=\frac{1}{4}\left|N\left(1+\tau^{-n}\right)\right|=\frac{1}{4}\left(\tau^{n}-\tau^{-n}\right) .
$$

Writing $2 P / \xi_{n+1}$ for $\left|\xi_{n+1}^{\prime}\right|$ in (55),

$$
4 \tau P+\xi_{n+1} a-\frac{4 r P}{\xi_{n+1} a}-1 \geqslant 1
$$

It follows just as in Davenport's work ${ }^{3}$) that

$$
\begin{equation*}
\xi_{n+1} a>1+r^{-n-1} \tag{56}
\end{equation*}
$$

Now writing $Q=\frac{1}{2} \eta_{n+1} \eta_{n+1}^{\prime}$ and using the inequality $\alpha \beta<2 \tau$ in (54) we have

$$
4 \tau Q-\eta_{n+1} \beta-\frac{4 \tau Q}{\eta_{n+1} \beta}+1 \geqslant 1
$$

Also

$$
\beta \eta_{n+1}<\eta_{n+1} / \eta_{n}<\eta_{n+1} \eta_{n+1}^{\prime}<2 \tau Q
$$

It follows just as in Davenport's ${ }^{4}$) work that

$$
\eta_{n+1} \beta>1+\frac{1}{4 \tau Q}
$$

We have also

$$
Q=\frac{1}{2}\left|N\left(\eta_{n+1}\right)\right|=\frac{1}{4} \tau^{n+1}\left(1-\tau^{-n-1}\right)^{2}
$$

Hence

$$
\begin{equation*}
\eta_{n+1} \beta>1+\tau^{-n-2} \ldots \tag{57}
\end{equation*}
$$

By (56) and (57)

$$
\begin{aligned}
\alpha \beta & >\left(1+\tau^{-n-1}\right)\left(1+\tau^{-n-2}\right) / \xi_{n+1} \eta_{n+1} \\
& =\left(1+\sqrt{ } 2 \tau^{-n-1}+\tau^{-2 n-3}\right) / \xi_{n+1} \eta_{n+1} .
\end{aligned}
$$

But

$$
\begin{aligned}
\xi_{n+1} \eta_{n+1} & =\left(1+\tau^{-n}\right)\left(1-\tau^{-n-1}\right) / 2 \tau \\
& <\left(1+\sqrt{ } 2 \tau^{-n-1}\right) / 2 \tau
\end{aligned}
$$

[^0]Thus

$$
a \beta>2 \tau+2 \tau^{-2 n-2} /\left(1+\sqrt{2} \tau^{-n-1}\right) .
$$

Provided ε is smaller than a certain number depending only on n_{0}, it is clear that, if we carried out these calculations without neglecting ε, we should still be able to conclude that

$$
a \beta>2 \tau
$$

contrary to (17). This contradiction proves that (51) is satisfied when n is the unique odd integer for which (44) and (46) are satisfied.

Lemma 10. If n is odd

$$
\left|\left(a_{n} \xi-1\right)\left(a_{n}^{\prime} \xi^{\prime}-1\right)\right|=1
$$

for the following values of ξ,

$$
1, \xi_{n}, \xi_{n+1}, \eta_{n}^{\prime}, \eta_{n+1}^{\prime} .
$$

Proof. By (5)

$$
\begin{aligned}
a_{n}-1 & =\frac{\left(\tau^{n+1}-1\right)(\tau-1)}{\tau^{n}+1}-1 \\
& =\frac{\tau^{n}\left(\tau^{2}-\tau-1\right)-\tau}{\tau^{n}+1} \\
& =\tau \frac{\tau^{n}-1}{\tau^{n}+1}
\end{aligned}
$$

which has norm 1 as n is odd. Similarly by (5) and (47) we have (since n is odd)

$$
\begin{aligned}
& a_{n} \xi_{n}-1=\tau^{-n} \frac{\tau^{n}-1}{\tau^{n}+1} \\
& a_{n} \xi_{n+1}-1=\cdots \tau^{-n-1} \\
& a_{n} \eta_{n}^{\prime}-1=-\tau^{n+1} \\
& a_{n} \eta_{n+1}^{\prime}-1=\tau^{n+2} \frac{\tau^{n}-1}{\tau^{n}+1}
\end{aligned}
$$

and these all have norm 1.
Lemma 11. There exists a constant C depending only on δ such that, if $a \geq \tau / \theta$, then there is.a unique odd integer n, for which

$$
\begin{equation*}
\left|\alpha-a_{n}\right| \leqslant C \varepsilon, \quad\left|\beta-a_{n}^{\prime}\right| \leqslant C \varepsilon \tag{58}
\end{equation*}
$$

and (44), (46) and (51) are satisfied.
Proof. We take n to be the unique odd integer for which (44), (46) and (51) are satisfied. We write

$$
\alpha=a_{n}+\mu, \quad \beta=a_{n}^{\prime}+\nu .
$$

By (15), for every integer $\boldsymbol{\xi}$ of $\boldsymbol{k}(\boldsymbol{\gamma} 2)$

$$
\left|\left\{\left(\alpha_{n}+\mu\right) \xi-1\right\}\left\{\left(\alpha_{n}^{\prime}+\nu\right) \xi^{\prime}-1\right\}\right| \geqslant 1-\varepsilon
$$

so that

$$
\begin{equation*}
\left|\left\{1+\frac{\xi}{\alpha_{n} \xi-1} \mu\right\}\left\{1+\frac{\xi^{\prime}}{a_{n}^{\prime} \xi^{\prime}-1} \nu\right\}\right| \geqslant \frac{1-\varepsilon}{N\left(a_{n} \xi-1\right)} . . \tag{59}
\end{equation*}
$$

Taking ξ equal to $\xi_{n}, \xi_{n+1}, \eta_{n}^{\prime}$ and η_{n+1}^{\prime} and using Lemma 10 we obtain the four inequalities

$$
\left|\left(1+\varrho_{i} \mu\right)\left(1+\sigma_{i} \nu\right)\right| \geqslant 1-\varepsilon, \quad i=1,2,3,4
$$

where

$$
\left.\begin{array}{l}
\varrho_{1}=\frac{\xi_{n}}{a_{n} \xi_{n}-1}=\frac{1}{\sqrt{2}} \frac{\left(\tau^{n-1}+1\right)\left(1+\tau^{-n}\right)}{1-\tau^{-n}}>0, \\
\sigma_{1}=\varrho_{1}^{\prime}=\frac{1}{\sqrt{2}} \frac{\left(1+\tau^{-n+1}\right)\left(1-\tau^{-n}\right)}{1+\tau^{-n}}>0, \\
\left.\varrho_{2}=\frac{\xi_{n+1}}{a_{n} \xi_{n+1}-1}=-\frac{1}{\sqrt{2}\left(\tau^{n}+1\right)<0,} \begin{array}{l}
\sigma_{2}=\quad \varrho_{2}^{\prime}=\frac{1}{\sqrt{2}}\left(1-\tau^{-n}\right)>0,
\end{array}\right\} \\
\varrho_{3}=\frac{\eta_{n}^{\prime}}{a_{n} \eta_{n}^{\prime}-1}=\frac{1}{\sqrt{2} \tau}\left(1+\tau^{-n}\right)>0, \\
\sigma_{3}=\quad \varrho_{3}^{\prime}=-\frac{\tau}{\sqrt{2}}\left(\tau^{n}-1\right)<0, \\
\varrho_{4}=\frac{\eta_{n+1}^{\prime}}{a_{n} \eta_{n+1}^{\prime}-1}=\frac{1}{\sqrt{2} \tau} \frac{\left(1-\tau^{-n-1}\right)\left(1+\tau^{-n}\right)}{1-\tau^{-n}}>0, \\
\sigma_{4}=\quad \varrho_{4}^{\prime}=\frac{\tau^{n+2}}{\sqrt{2}} \frac{\left(1-\tau^{-n-1}\right)\left(1-\tau^{-n}\right)}{1+\tau^{-n}}>0 . \tag{63}
\end{array}\right\} .
$$

It is easy to verify that

$$
\frac{1}{\eta_{n}^{\prime}}<0<\frac{1}{\eta_{n+1}^{\prime}}<\frac{1}{\xi_{n}}<a_{n}<\frac{1}{\xi_{n+1}}
$$

and that

$$
\frac{1}{\xi_{n+1}^{\prime}}<0<\frac{1}{\xi_{n}^{\prime}}<\frac{1}{\eta_{n+1}}<a_{n}^{\prime}<\frac{1}{\eta_{n}} .
$$

It follows from (46) and (51) that $a_{\xi} \xi-1$ and $\alpha_{n} \xi-1$ and $\beta \xi^{\prime}-1$ and $\alpha^{\prime}{ }_{n} \xi^{\prime}-1$ have the same signs when ξ takes the values $\xi_{n}, \xi_{n+1}, \eta_{n}^{\prime}, \eta_{n+1}^{\prime}$. Consequently $\left(1+\varrho_{i} \mu\right)$ and $\left(1+\sigma_{i} \nu\right)$ are positive for $i=1,2,3,4$ and using the inequality of the arithmetic and geometric means

$$
1+\frac{1}{2}\left(\varrho_{i} \mu+\sigma_{i} \nu\right) \geqslant 1-\varepsilon,
$$

i.e.

$$
\begin{equation*}
Q_{i} \mu+\sigma_{i} r \geqslant-2 \varepsilon \text { for } i=1,2,3,4 . \tag{64}
\end{equation*}
$$

Eliminating first ν and then μ from the second and third of the inequalities (64),

$$
\begin{aligned}
& \left(\varrho_{2}\left|\sigma_{3}\right|+\varrho_{3} \sigma_{2}\right) \mu \geqslant-2 \varepsilon\left(\sigma_{2}+\left|\sigma_{3}\right|\right), \\
& \left(\sigma_{2} \varrho_{3}+\sigma_{3}\left|\varrho_{2}\right|\right) \nu \geqslant-2 \varepsilon\left(\left|\varrho_{2}\right|+\varrho_{3}\right) .
\end{aligned}
$$

But

$$
\begin{aligned}
\varrho_{2}\left|\sigma_{3}\right| & +\varrho_{3} \sigma_{2}=\sigma_{2} \varrho_{3}+\sigma_{3}\left|\varrho_{2}\right| \\
& =\frac{1}{2} \tau^{-1}\left(1-\tau^{-n}\right)\left(1+\tau^{-n}\right)-\frac{1}{2} \tau\left(\tau^{n}+1\right)\left(\tau^{n}-1\right) \\
& =-\frac{1}{2}\left(\tau^{2 n+1}-\tau^{-1}\right)\left(1-\tau^{-2 n}\right)<0 .
\end{aligned}
$$

Thus the above inequalities imply that $\mu \leq c_{n} \varepsilon$, and $v \leq c^{\prime}{ }_{n} \varepsilon$ where c_{n} and $c^{\prime}{ }_{n}$ depend only on n. Substituting these bounds for μ and ν in the first or the fourth of the inequalities (64), we obtain $\mu \geq-c_{n}^{\prime \prime} \varepsilon$ and $\nu \geq-c_{n}^{\prime \prime \prime} \varepsilon$. Since n is positive and less than n_{0} there is a constant C depending only on δ such that

$$
|\mu| \leqslant C \varepsilon, \quad|\nu| \leqslant C \varepsilon
$$

This proves the lemma.
Lemma 12. If $\alpha \geq \tau / \theta$, then for some odd positive integer n,

$$
\alpha=a_{n}, \quad \beta=a_{n}^{\prime}
$$

Proof. Let n be the integer of Lemma 11. We define numbers X_{r} and Y_{r} of $k(/ 2)$ by the equations

$$
\begin{aligned}
& \alpha_{n} X_{r}-1=\tau^{-r(n+1)+1} \cdot \frac{\tau^{n}-1}{\tau^{n}+1} \\
& \alpha_{n} Y_{r}-1=-\tau^{-r(n+1)}
\end{aligned}
$$

It is clear that

$$
\begin{aligned}
& N\left(\alpha_{n} X_{r}-1\right)=1 \\
& N\left(\alpha_{n} Y_{r}-1\right)=1
\end{aligned}
$$

we have to prove that X_{r} and Y_{r} are integers of $k(\gamma 2)$. Solving the equations for X_{r} and Y_{r}, and using (5)

$$
\begin{aligned}
X_{r} & =\frac{\tau^{n}+1}{\sqrt{2\left(\tau^{n+1}-1\right)}\left\{\tau^{-r(n+1)+1} \frac{\tau^{n}-1}{\tau^{n}+1}+1\right\}} \\
& =\frac{\tau^{-r(n+1)+1}\left(\tau^{n}-1\right)+\left(\tau^{n}+1\right)}{(\tau-1)\left(\tau^{n+1}-1\right)},
\end{aligned}
$$

and

$$
Y_{r}=\frac{\tau^{n}+1}{\sqrt{2}} \tau^{-r(n+1)} \frac{\tau^{r(n+1)}-1}{\tau^{n+1}-1}
$$

It is now clear that Y_{r} is an integer of $k(/ 2)$. Also, since

$$
\begin{aligned}
\tau^{-\tau(n+1)+1} & \left(\tau^{n}-1\right)+\left(\tau^{n}+1\right) \\
& \equiv \tau\left(\tau^{n}-1\right)+\left(\tau^{n}+1\right) \quad\left(\bmod (\tau \cdot 1)\left(\tau^{n+1}-1\right)\right) \\
& =(\tau+1) \tau^{n}-(\tau-1) \\
& =\tau(\tau-1) \tau^{n}-(\tau-1) \\
& \equiv(\tau-1)-(\tau-1) \quad\left(\bmod (\tau-1)\left(\tau^{n+1}-1\right)\right) \\
& =0
\end{aligned}
$$

X_{r} is an integer.
We write $\alpha=\alpha_{n}+\mu$ and $\beta=\alpha^{\prime}{ }_{n}+\nu$. By Lemma 11 we must have

$$
|\mu| \leqslant C \varepsilon \text { and }|\nu| \leqslant C \varepsilon .
$$

Applying (59) with $\xi=X_{r}$ and with $\xi=Y_{r}$, we obtain

$$
\begin{align*}
& \left|\left(1+R_{r} \mu\right)\left(1+R_{r}^{\prime} v\right)\right| \geqslant 1-\varepsilon \tag{65}\\
& \left|\left(1+S_{r} \mu\right)\left(1+S_{r}^{\prime} \nu\right)\right| \geqslant 1-\varepsilon, \tag{66}
\end{align*}
$$

where

$$
\left.\begin{array}{l}
R_{r}=\frac{X_{r}}{a_{n}^{2} X_{r}-1}=\frac{1}{a_{n}}\left\{1+\tau^{r(n+1)-1} \frac{\tau^{n}+1}{\tau^{n}-1}\right\} \\
R_{r}^{\prime}= \\
S_{r}=\frac{1}{a_{n}^{\prime}}\left\{1+\tau^{-r(n+1)+1} \frac{\tau^{n}-1}{\tau^{n}+1}\right\} \tag{68}\\
S_{n}^{\prime} Y_{r}-1
\end{array}=-\frac{1}{a_{n}}\left\{\tau^{r(n+1)}-1\right\}\right\} .
$$

The numbers $R_{r},-R^{\prime}{ }_{r}, S_{r}$ and $-S^{\prime}{ }_{r}$ vary with r in a way which is essentially similar to the variation the numbers $R_{r}, R_{r}^{\prime}, S_{r}$ and S_{r}^{\prime} occurring in Davenport's work ${ }^{5}$). It follows just as in Davenport's investigation that $\mu=\nu=0$.
8. Lemma 13. If a, b are of the form (4), then

$$
\begin{equation*}
\left|(\xi-a)\left(\xi^{\prime}-b\right)\right| \geqslant \frac{1}{a_{n} a_{n}^{\prime}}, \tag{69}
\end{equation*}
$$

for all integers ξ of $k(/ 2)$; equality occurring for an infinite number of integral values of ξ.

Proof. It clearly suffices to consider the case when

$$
a=\frac{1}{a_{n}}, \quad b=\frac{1}{a_{n}^{\prime}}
$$

$\left.{ }^{5}\right)$ D. IV (911-913).
where \boldsymbol{n} is an odd positive integer. In this case we have to prove that

$$
\begin{equation*}
\left|N\left(a_{n} \xi-1\right)\right| \geqslant 1 \tag{70}
\end{equation*}
$$

for all integers ξ of $k(\sqrt{2})$; and that equality occurs for an infinite number of integral values of ξ. We have seen in Lemma 12 that (70) is satisfied with equality when $\xi=X_{r}$ and when $\xi=Y_{r}$ and that X_{r} and Y_{r} are integers of $k(/ 2)$ for all rational integers r.

When $n=1$ we have $a_{n}=a_{n}^{\prime}=2$ so that $\alpha_{n} \xi-1=2 \xi-1$ is a nonzero integer of $k(\gamma / 2)$ whenever ξ is an integer of $k(\gamma / 2)$. Thus (70) is in this case satisfied for all integers ξ of $k(\gamma 2)$.

When $n=3$ we have

$$
\begin{aligned}
a_{3} & =\frac{4 \sqrt{2}}{2 \sqrt{2}-1} \\
a_{3}^{\prime} & =\frac{4 \sqrt{2}}{2 \sqrt{2}+1}
\end{aligned}
$$

so that, if $\xi=x+\gamma 2 y$,

$$
\begin{aligned}
\alpha_{3} \xi-1 & =\frac{4 \sqrt{ } 2(x+\sqrt{ } 2 y)-2 \sqrt{ } 2+1}{2 \sqrt{2}-1} \\
& =\frac{2 \sqrt{ } 2(2 x-1)+(8 y+1)}{2 \sqrt{2}-1}
\end{aligned}
$$

Thus

$$
\left|N\left(a_{3} \xi-1\right)\right|=\frac{1}{7}\left|8(2 x-1)^{2}-(8 y+1)^{2}\right| .
$$

Now, for any integers x and y

$$
8(2 x-1)^{2}-(8 y+1)^{2} \equiv>7 \quad(\bmod 16)
$$

Thus

$$
\left|N\left(a_{3} \xi-1\right)\right| \geqslant 1
$$

for all integers ξ of $k(\gamma 2)$.
When $n \geq 5$ we use a different type of argument. We suppose that, for some integer η of $k(\sqrt{ } 2)$,

$$
\begin{equation*}
\left|N\left(a_{n} \eta-1\right)\right|<1 \tag{71}
\end{equation*}
$$

and we eventually arrive at a contradiction. Consider the substitution

$$
\begin{equation*}
a_{n} \eta-1=\tau^{n+1}\left(a_{n} \zeta-1\right) \tag{72}
\end{equation*}
$$

We have

$$
\begin{gathered}
\eta=\tau^{n+1} \zeta-\frac{\tau^{n+1}-1}{a_{n}}=\tau^{n+1} \zeta-\frac{\tau^{n}+1}{\sqrt{2}} \\
\zeta=\tau^{-n-1} \eta-\frac{\tau^{-n-1}-1}{a_{n}}=\tau^{-n-1} \eta+\tau^{-n-1} \frac{\tau^{n}+1}{\sqrt{2}} .
\end{gathered}
$$

Thus using (21) the transformation (72) transforms integers ζ into integers η and vice versa. Also

$$
N\left(a_{n} \eta-1\right)=N\left(a_{n} \zeta-1\right) .
$$

It is clear that by repeated application of the transformation (72) or of its inverse we may obtain an integer η of $k(/ 2)$ satisfying (71) and such that

$$
\begin{equation*}
\tau^{-n-1} \leqslant\left|\frac{\alpha_{n} \eta-1}{a_{n}^{\prime} \eta^{\prime}-1}\right|<\tau^{n+1} \tag{73}
\end{equation*}
$$

It follows from (71) and (73) that

$$
\begin{equation*}
\left|\alpha_{n} \eta-1\right|<\tau^{\ddagger}(n+1), \quad\left|a_{n}^{\prime} \eta^{\prime}-1\right|<\tau^{\ddagger(n+1)}, \tag{74}
\end{equation*}
$$

further one of these two numbers must be less than 1 . We consider two cases separately, but first we note that

$$
\left.\begin{array}{rl}
\tau / 2>a_{n} \geqslant a_{5} & =(98+28 / 2) / 41=3 \cdot 356 \ldots \tag{75}\\
\gamma 2<a_{n}^{\prime} \leqslant a_{5}^{\prime} & =(98-28 / 2) / 41=1 \cdot 424 \ldots
\end{array}\right\} .
$$

Case 1. Suppose that

$$
\begin{equation*}
\left|a_{n} \eta-1\right|<1 \text { and }\left|a_{n}^{\prime} \eta^{\prime}-1\right|<\tau^{\frac{1}{(n+1)}} \tag{76}
\end{equation*}
$$

The first inequality implies that

$$
\begin{equation*}
0<\eta<\frac{2}{a_{n}}<\frac{2}{3} \tag{77}
\end{equation*}
$$

by (75).
Suppose, if possible, that $\left|\eta^{\prime}\right|<\tau$. Then by (77),

$$
0<\left|\eta \eta^{\prime}\right|<\frac{2 \tau}{3}<2
$$

so that η is a unit of $k(/ 2)$. But there is no unit η of $k(\sqrt{ } 2)$ with $|\eta|<\frac{2}{3}$ and $\left|\eta^{\prime}\right|<\tau$. This contradiction proves that $\left|\eta^{\prime}\right| \geq \tau$.

Multiplying the inequality

$$
|\theta \tau \eta-1| \leqslant\left|\alpha_{n} \eta-1\right|+\left(\theta \tau-\alpha_{n}\right) \eta
$$

by $\left|a^{\prime}{ }_{n} \eta^{\prime}-1\right|$ and using (71) and (76), we deduce that

$$
\left|(\theta \tau \eta-1)\left(\alpha_{n}^{\prime} \eta^{\prime}-1\right)\right|<1+\left(\theta \tau-\alpha_{n}\right) \eta \tau^{\frac{1}{(n+1)}}
$$

Now, since $\theta \tau \eta-1$ is a non-zero integer of $k(\gamma 2)$,

$$
|N(\theta \tau \eta-1)| \geqslant 1
$$

Hence

$$
\begin{equation*}
\left|\frac{\left(\alpha_{n}^{\prime} \eta^{\prime}-1\right)}{\left(\theta^{\prime} \tau^{\prime} \eta^{\prime}-1\right)}\right|<1+\left(\theta \tau-\alpha_{n}\right) \eta \tau^{\sharp(n+1)} \tag{78}
\end{equation*}
$$

Now the expression on the left hand side of (78) is either

$$
\frac{a_{n}^{\prime}\left|\eta^{\prime}\right|-1}{\theta \tau^{-1}\left|\eta^{\prime}\right|-1} \text { or } \frac{a_{n}^{\prime}\left|\eta^{\prime}\right|+1}{\theta \tau^{-1}\left|\eta^{\prime}\right|+1}
$$

according as $\eta^{\prime}>0$ or $\eta^{\prime}<0$. The latter is the smaller, since $\alpha_{n}^{\prime}>\theta>\theta / \tau$. Hence, by (78)

$$
\frac{a_{n}^{\prime}\left|\eta^{\prime}\right|+1}{\theta \tau^{-1}\left|\eta^{\prime}\right|+1}<1+\left(\theta \tau-a_{n}\right) \eta \tau^{\frac{1}{(n+1)}} .
$$

As

$$
\theta \tau-a_{n}=\sqrt{ } 2 \frac{\tau+1}{\tau^{n}+1}=\frac{2 \tau}{\tau^{n}+1}<2 \tau^{-n+1}
$$

this implies that

$$
\begin{equation*}
\frac{a_{n}^{\prime}\left|\eta^{\prime}\right|+1}{\theta \tau^{-1}\left|\eta^{\prime}\right|+1}<1+2 \eta \tau^{\frac{1(3-n)}{}} \tag{79}
\end{equation*}
$$

Using the fact that $\left|\eta^{\prime}\right| \geq \tau$, (75), (79) and (77) we obtain

$$
\frac{\gamma^{\prime} 2 \tau+1}{\sqrt{ } 2+1} \leqslant \frac{\gamma^{\prime} 2\left|\eta^{\prime}\right|+1}{\theta \tau^{-1}\left|\eta^{\prime}\right|+1}<\frac{a_{n}^{\prime}\left|\eta^{\prime}\right|+1}{6 \tau^{-1}\left|\eta^{\prime}\right|+1}<1+2 \eta \tau^{\frac{1}{13-n)}}<1+\frac{4}{8} \tau^{-1}
$$

since $n \geq 5$. This is a contradiction since the left hand side has the value $1.828 \ldots$ while the right hand side has the value $1.552 \ldots$.

Case 2. Suppose that

$$
\begin{equation*}
\left|\alpha_{n} \eta-1\right|<\tau^{\frac{1}{(n+1)}} \text { and }\left|\alpha_{n}^{\prime} \eta^{\prime}-1\right|<1 \tag{80}
\end{equation*}
$$

The second inequality implies that

$$
\begin{equation*}
0<\eta^{\prime}<\frac{2}{a_{n}^{\prime}}<l^{\prime} 2 \tag{81}
\end{equation*}
$$

by (75).
Suppose, if possible, that $|\eta|<\tau$. Then

$$
0<\left|\eta \eta^{\prime}\right|<\tau \gamma^{\prime} 2<4
$$

and so, as 3 and -3 are not norms in $k(/ 2)$, we must have either $\left|\eta \eta^{\prime}\right|=1$ or $\left|\eta \eta^{\prime}\right|=2$. If $\left|\eta \eta^{\prime}\right|=1$, then η is a unit and as $0<\eta^{\prime}<\sqrt{\prime}$, $|\eta|<\tau$ we must have $\eta=1$. This is impossible by Lemma 10 and the fact that η satisfies (71). If $\left|\eta \eta^{\prime}\right|=2$, then necessarily $\eta=\sqrt{ } 2 \zeta$, $\eta^{\prime}=-\sqrt{\prime} \zeta^{\prime}$, where ζ is a unit of $k\left(\gamma^{2}\right)$ satisfying $|\zeta|<\tau,\left|\zeta^{\prime}\right|<1$. But there is no such unit of $k(/ 2)$. These contradictions prove that $|\eta| \geq \tau$.

Just as in case 1 , using (71) and (80)

$$
\begin{aligned}
\left|\left(\alpha_{n} \eta-1\right)\left(\theta \eta^{\prime}-1\right)\right| \leqslant & \left|\left(\alpha_{n} \eta-1\right)\left(\alpha_{n}^{\prime} \eta^{\prime}-1\right)\right|+\left|\left(\alpha_{n} \eta-1\right)\left(\alpha_{n}^{\prime}-\theta\right) \eta^{\prime}\right| \\
& <1+\left(\alpha_{n}^{\prime}-\theta\right) \eta^{\prime} \tau^{\frac{1}{(n+1)}} .
\end{aligned}
$$

Since $\theta \eta^{\prime}-1$ is a non-zero integer of $k(/ 2)$ this implies that

$$
\left|\frac{\alpha_{n} \eta-1}{\theta \eta+1}\right|<1+\dot{\left(\alpha_{n}^{\prime}-\theta\right)} \eta^{\prime} \tau^{\frac{1(n+1)}{}}
$$

The expression on the left hand side is either

$$
\frac{\alpha_{n}|\eta|+1}{\theta|\eta|-1} \text { or } \frac{\alpha_{n}|\eta|-1}{\theta|\eta|+1}
$$

according as $\eta \leq-\tau$ or $\eta \geq \tau$. Thus, in any case,

$$
\begin{equation*}
\frac{\alpha_{n}|\eta|-1}{\theta|\eta|+1}<1+\left(\alpha_{n}^{\prime}-\theta\right) \eta^{\prime} \tau^{1(n+1)} . \quad . \quad . \quad . \tag{82}
\end{equation*}
$$

Now

$$
\begin{equation*}
a_{n}^{\prime}-\theta=\sqrt{ } 2 \frac{\tau^{n+1}-1}{\tau\left(\tau^{n}-1\right)}-\sqrt{ } 2=\frac{2}{\tau\left(\tau^{n}-1\right)}=2 \tau^{-n-1}\left(1-\tau^{-n}\right)^{-1} \ldots \tag{83}
\end{equation*}
$$

Using the fact that $|\eta| \geq \tau$, (75), (82), (83) and (81) we obtain

$$
\begin{aligned}
\frac{3 \tau-1}{\sqrt{2 \tau+1}} & \leqslant \frac{3|\eta|-1}{2|\eta|+1}<\frac{a_{n}|\eta|-1}{\theta|\eta|+1} \\
& <1+\left(\alpha_{n}^{\prime}-\theta\right) \eta^{\prime} \tau^{\frac{1(n+1)}{\prime}} \\
& <1+2 \sqrt{ } 2 \tau^{-\frac{1}{(n+1)}\left(1-\tau^{-n}\right)^{-1}} \\
& <1+2 \sqrt{ } 2 \tau^{-3}\left(1-\tau^{-5}\right)^{-1}
\end{aligned}
$$

as $n \geq 5$. This a contradiction since the left hand side has the value $\sqrt{ } 2=1.414 \ldots$ while the right hand side has the value $1.169 \ldots$. This completes the proof of the lemma.

University College, London.

[^0]: ${ }^{3}$) D. IV (747-48).
 $\left.{ }^{4}\right)$ D. IV (748).

