Mathematics. — Non-homogeneous binary quadratic forms. 1. By P.
VARNAVIDES. (Communicated by Prof. J. G. vAN DER CORPUT.)

(Communicated at the meeting of February 28, 1948.)

7. Lemma 7, There exists a number no = ny(48) depending only on ¢
such that, if a = 1/0, then there is exactly one integer n such that

0<nng, « « v « « o« .« . (49
1 1
— P |
En < 4 < £n+2 ( 5)
and
1 1
— = — . 46
Nn >Fb = Nan ( )
where
1 —n+1 l_ —n
én= %— and 7, = —-}/—21— (47)

are integers of k(y2).

Proof. That {; and 7. are integers of k(y2) follows from the con-
gruence (21). We consider the sequence of numbers (#2)—1. As n increases
from the initial value 1 and tends to infinity, this sequence decreases
strictly from the initial value 7 and tends to the limit y2. Thus, if n, is
sufficiently large

1
MNno

<y2+4 2.

Consequently, by Lemma 6,

1
N,

<V2+z‘26<ﬂ<v/(21)<t=%.

and there is just one integer n = n, for which (44) and (46) are satisfied.
We have to prove that (45) is satisfied for this value of n.
Now using (17), (46) and (47)

a<Z<2epu=12:0—m)
y2¢ 1
< 14+ &y’

and so one of the inequalities (45) is satisfied. To prove the remaining
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inequality we use (15) with & — 1. If we neglect ¢ we obtain

1 B 1
‘21 =7
_ }/21___L
_1+,-n+1—en'

by using (46) and (47). When we do not neglect ¢ we obviously obtain
an inequality of the form

agfln_y,.e. N 7T

where v, is a positive number depending only on n. Using (15) with
& = £&a, we have

(@én—1)(BEn—1)|=1—¢,
so that, by (37), 4
lagn—1]{YQ27) |p] +1}=1—e. . . . . . (49)

But, if a were less than or equal to 1/£,, the inequalities (48) and (49)
would give a contradiction, provided ¢ was less than some positive number
depending only on ny. Hence a = 1/£5, and the lemma is proved.

Lemma 8. If a = 1/6, the inequalities (44), (45) and (46) are satisfied
for just one odd integer n.

Proof. Suppose, if possible, that (44), (45) and (46) are satisfied for
some even integer n. Then

_{=r—=1_»—1

A F I T
. (—t)".'”—-l __,n+| +1
Nn+1 = __—_Vz = 72

By (15) with & = %, and with & = 7},
(na—1)(1—n. ) =1—¢
(|7nsr| a4+ 1) (a1 f—1)=1—¢,

the four factors on the left hand sides being positive, by (46) and our
assumption that a = /0. Thus

1—¢

l'—’)nﬂB m.

1—e
N1 f—1 Bm.
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Eliminating g and using (45) we obtain

Na+1—Yn Nn+1 Nn
l—e “"mpa—1 " |gpp|a+1
Nn+1 Ens2 Nn En+2
= 7];1— Ens2 |7};1+1| + &ns2

(=) (14"

(1—7) (1 4 )

TV =) — (1)

(1 —7-21-2)

+

V2{z(e* 4 1) + (1 + )}
(1—zn)

= Vz ;tn-l-l_.‘_l_.,:—n—l; +

V2 [+ 1]

(50)

> () (1= (1—r ) o () 72 (1= ) (14
> (et (=) (147 + (yg) "2 (1=27) (1—27"7)
= (I/VZ) g—n-1 (1 + 1! + g R—q—n—=1__g—n—-3__;-2n-2 + 1—2n—3_t—3n—2)

=== 4 (1y,) v [l —g- =33 (r— 1) — 1720-2]

As n is an even positive integer the expression in the square brackets
exceeds
1—r1—3:3=23—-16Y2,
which is positive. Thus provided ¢ is smaller than a certain number
depending only on ny,
Nn+1=—Nn gl

But
1—1¢n1 11—

Y2 V2

This contradiction proves that the unique integer n, for which (44), (45)
and (46) are satisfied, is odd.

— ¢ n-1 .

Nn+1—Nn =

Lemma 9. If a = /0, there is exactly one odd integer n such that the
inequalities (44) and (46) are satisfied and

1 1
E—n<a<5n+l.

Proof. Suppose, if possible, that (44), (45) and (46) are satisfied for
some odd integer n, but that

(51)

1 1
En1 Se g Enyz {22)
As n is odd
1 —n ; 1—1"
$n+1=%. En+l=}/—217
1 — ¢—n-1 . eS|

Nn+1= T- Nn+1 = ——}/2—
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Using (15) with & = &,4 and with & = 7,4, we have

(a5n+l'—‘1)(ﬂ|f;,+1]+1)21—6, o e e e . (53)
@i —1) Brasi—)=1—e, . . . . . (54)

the factors on the left hand sides being positive by (19), (46) and (52).

We use (53) and (54), together with the inequality af << 2tv obtained
from (17), to find lower bounds for a and B. In these calculations we
neglect the effect of ¢ in the first instance. From (53)

~

(5,.+1a—1)(2’|5"+‘|+1> R 1)

It is convenient to write P — 4£,,, |&p41] so that
P=}|N(m)|=FINQ + )= (" —")
Writing 2P/é,4y for |&h41| in (55),

41P+5n+1a—;rp

—1>1

n+1Q

It follows just as in DAVENPORT's work 3) that

Epppa>1l4ent, L L L . . . . (56)

Now writing Q = %%n41 7141 and using the inequality of <27 in (54)
we have

4:Q

1>1.
Also

Brntr < Nnsrna < Rt < 27 Q.
It follows just as in DAVENPORT's 4) work that

1
']n+1 ﬂ > 1 + m .
We have also
Q=4 |N@ur)| =11 (1— rn-1)2,
Hence

1]n+1ﬂ>1+!_"_2.. P S S (57)
By (56) and (57)

af> 14+ (1 4+ ¢rs1 s

=(14+yV2r '+ 2 /sy N
But

Enmipnn =1 F ) (1 —v1)/2¢

< 4y2e )2

3) D, IV (747—48).
4) D. IV (748).
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Thus
aB> 21+ 20Y(1 4 y20m).

Provided ¢ is smaller than a certain number depending only on n,, it is
clear that, if we carried out these calculations without neglecting &, we
should still be able to conclude that
aff > 2r,
contrary to (17). This contradiction proves that (51) is satisfied when n
is the unique odd integer for which (44) and (46) are satisfied.
Lemma 10. If nis odd
l(ané—1)(ané’—1)[=1
for the following values of &,

11 5’!! Eﬂ-’-l' ﬂ;h ’7'n+l-

Proof. By (5)
_ @ —=1)(—1)
- 41
(=t —1)—1
41
. -1
41’
which has norm 1 as n is odd. Similarly by (5) and (47) we have (since n
is odd)

—1

a"—

-1
apé, —1=v" 1"-}-1
apépp—1=- 177,
anfp —1=—1"¥,
Gnfpry— 1 =2 2 —!

41’

and these all have norm 1.

Lemma 11. There exists a constant C depending only on & such that,
if a = 1/0, then there is_a unique odd integer n, for which

l[a—an| < Ce, [f—an|<Ce . . . . . (58)
and (44), (46) and (51) are satisfied.

Proof. We take n to be the unique odd integer for which (44) (46)
and (51) are satisfied. We write

a=antp B=dy+t.
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By (15), for every integer & of k(y2)
[{(an+ ) E—1}{an+7) &' —1} | =1—¢
lg1+ §§1+ % > 1=
llu /N(a,,é 1)

Taking & equal to &, £pt1, n and 7p41 and using Lemma 10 we obtain the
four inequalities

(I+om)(1+oy)|=1—e i=1,2234

so that

(59)

where
o & _LE Nk,
&= anbn—1 — 2 1—vn o (60)
— , _ 1+l =)
o, = 01 —75 l+‘t_" >0'
_ éan i
2= an5n+|—l 2(t +1 <0, (61)
n= @ =V—2(1—I"")>°:
— M 1
23— an']’n'—l _V21(1+1 )>0' (62)
6= =—7’§(z"—1)<o.
pm Tt L (l—rm) e
4 anfprr—1 VZ: l—1n 2 (63)
. , ‘ n+2 1— -1 (] — ¢
It is easy to verify that
1 1
—< <nn+.<5<a”<?,fﬁ

and that

5n+l

It follows from (46) and (51) that a¢ — 1 and ané —1 and p&’—1 and
a’»& — 1 have the same signs when ¢ takes the values &n, &ntts Nme Zntr.
Consequently (1 + gix) and (1 + oiv) are positive for i = 1,2, 3,4 and
using the inequality of the arithmetic and geometric means

L+ {lopu+toiv) =1—e¢
ie.

gin+oir>—2¢ for i=1,2,3.4 . . . . (64
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Eliminating first » and then x from the second and third of the inequ-
.alities (64),

(02 +93°2)/‘2'—25(°2+|"3 )"
(0205 + 03 |02|) ¥ = — 2 (| 02| + 03)-

03

But

Q2 |°3| + 030, = 0303 + 03 |92|
=} (I (L) — f e 4 1) (= 1)
— _lf (12n+l —'t_l) (l _I—Zn) < 0

Thus the above inequalities imply that 4 = cne, and v = ¢’ne where cn and
c’n depend only on n. Substituting these bounds for x and » in the first

1"

or the fourth of the inequalities (64), we obtain u = —cpeand v=—c; &.
Since n is positive and less than n, there is a constant C depending only
on ¢ such that

lul < Ce [v|< Ce

This proves the lemma.

Lemma 12. If a = 1/, then for some odd positive integer n,
a=a, f=apn

Proof. Let n be the integer of Lemma 11. We define numbers X and
Y: of k(y2) by the equations

n__
ag X, —1=q¢rin+n+ 1

10
an Y, —1 = — ¢—r(n+n),
It is clear that
N (e, X;-—1)=1,
N, Y, —1)=1;

we have to prove that X, and Y, are integers of k(y2). Solving the
equations for X and Y, and using (5)

Tt _(H)_Hz"—l
Xr_V——Z(l"'H—-l) T—rin T"+l+1
. - rint)+1 (t"— 1) _|_ (z" + ])
(z—1) (1 —1) ’
and
Y, _ " + 1 - rat) grintl)

1/2 il 1
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It is now clear that Y, is an integer of k(y2). Also, since

DL (g

"—1)+ "+ 1)

@ — 1)+ 6+ 1) 1) e+ — 1))

(r4+1)n—(z—1)

(mod (=

=t(r—1)1"—(z—1)
=@r—1)—(@—1) (mod (r—1) (z#*1—1))
=0,

X is an integer.
We write a =an + y and f = a’s +». By Lemma 11 we must have

|u| < Ce and |»| < Ce.
Applying (59) with § = X, and with ¢ = Y, we obtain

I+R, ) (1 + Ry =1—¢,. (65)
[(14+Srn)(1+Sry)|=1—¢,. (66}
where
R,:T{Y’—T:lgl + zrnt-1 %_—F—}g,
an r Qan T n— (67)
R, = al',, % 1 4 rrintH :n :; } §‘ ‘
Y 1
Si=m—L = — fernen — 1}
_ an
an Yr 1 (68).
S, = L1 —emrmeny,

Qan

The numbers R;, —R’;, Sr and —S’, vary with r in a way which is
essentially similar to the variation the numbers R, R’r, Sr and S’ occurring
in DAVENPORT's work 5). It follows just as in DAVENPORT's investigation
that u = » = 0.

8. Lemma 13. If a, b are of the form (4), then
’ 1
(€ —a) (' =) = .. .. (69)

for all integers & of k(y2): equality occurring for an infinite number of
integral values of &.

Proof. It clearly suffices to consider the case when
1 1
a——, —_—
Qn Qan

5) D. IV (911—913).
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where n is an odd positive integer. In this case we have to prove that
IN(@&—1)|=1. . . . ., . . . (70

for all integers & of k(y2); and that equality occurs for an infinite number
of integral values of &, We have seen in Lemma 12 that (70) is satisfied
with equality when £ = X, and when £ = Y, and that X, and Y, are
integers of k(y2) for all rational integers r. '

When n = 1 we have an = a’n = 2 so that apn§ —1 —='26—1 is a non-
zero integer of k(y2) whenever & is an integer of k(y2). Thus (70) is in
this case satisfied for all integers £ of k(y2).

. When n = 3 we have

__4y2
%= 2y2—1
o 312

=272+ 1

so that, if £ = x + y2y,
1 =4V2(x+y2y)—2y2+1

a3 §—

2yY2—1
_2/2Qx—1)4+By+1)
- 2y2—1 ’

Thus
IN(as6—1)[=4[8(2x—1)?—(8y + 1)*|.
Now, for any integers x and y

8(2x—1—@By+1?=>7 (mod16)
Thus
IN(as6—1)| =1

for all integers & of k(y2).
When n =5 we use a different type of argument. We suppose that,
for some integer 7 of k(y2),

IN(@n—1|<1 . . . . . . .. (71)
and we eventually arrive at a contradiction. Consider .the substitution
app—1 =" (az—1).. . . . . . . (72
‘We have
p==T — ’M;:' 1 _ ne (.’.’"}:;1‘
L=rn-ly _.’_t"n_l = -y R e o .

Gp Y2
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Thus using (21) the transformation (72) transforms integers ( into
integers 7 and vice versa. Also

N(a,n—1)=N(a,{—1).

It is clear that by repeated application of the transformation (72) or of its
inverse we may obtain an integer 5 of k(y2) satisfying (71) and such that

—n—1
il g

an’i ‘<,n+l P £ |

a
It follows from (71) and (73) that
lann—1] <A@, oy —1| <40, | (74)

further one of these two numbers must be less than 1. We consider two
cases separately, but first we note that

1Y2>ap = as=(98 +28y2)/41 = 3-356..

(75)
V2 < ap <as=(98—28y2)/41=1-424...

Case 1. Suppose that

lann—1|<1 and |apy’ —1|<zdtd, . . . . (76)

The first inequality implies that

0<n< i<t oo )
by (75).
Suppose, if possible, that | %’ | <z. Then by (77),
g2
o< || <F <2,

so that # is a unit of k(y2). But there is no unit  of k(y2) with || < §
and |7’ | <. This contradiction proves that |7 | = 7.
Multiplying the inequality

|Gy —1| < lann—1|+ (@1 —an)n
by |a’»7’ — 1| and using (71) and (76), we deduce that
(@1 —1)(@ny’ —1)| <1 4 (1 —an) nrd*h.
Now, since 87— 1 is a non-zero integer of k(}y2),

{N@tn—1)| = 1.

Hence

i(;,"?, l)|<1+(0t—an)ﬂt“"+” N )

31
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Now the expression on the left hand side of (78) is either
an|y’|—1  _an|n’[+1
Gy |—1 Gy |+1

according as %’ > 0 or #/ < 0. The latter is the smaller, since a’a> 6> 6/r.
Hence, by (78)

an | 77, | +1 _ Hn+1)
Bt_lln"+l<l+(61 aﬂ)"]‘r .
As
I 41 2t 1
G+ an_VZt—n+l—t——n+l<2tn "
this implies that
a;-,ln’H-l 13-n) b
———az_lln,l+l<l+2nr O 4°)]
Using the fact that |%"| =7, (75), (79) and (77) we obtain
V2e+1 - V2[9'|+1 _ anly’|+1 _ _
= 3-n) 1
V2T SEety [+l ety g1 < TR

since n = 5. This is a contradiction since the left hand side has the value
1.828 ... while the right hand side has the value 1.552 .... ‘
Case 2. Suppose that

lapn—1] <) and |apyp’'—1|<<1. . . . . (80)

The second inequality implies that

o<n’<a%<v2. N {31}

by (75).
Suppose, if possible, that || <z. Then

o< || < y2<4, )

and so, as 3 and — 3 are not norms in k(y2), we must have either

|| =1 or |ny'| = 2. If | py’| = 1, then % is a unit and as 0 <7’ <2,

|| <7 we must have 7 = 1. This is impossible by Lemma 10 and the

fact that # satisfies (71). If |#y'| =2, then necessarily %= y2¢,

7 = —y2¢’, where [ is a unit of k(y2) satisfying |{| <7, |¢’|<1. But

there is no such unit of k(y2). These contradictions prove that | 7| = =.
Just as in case 1, using (71) and (80)

[(ann—1)(Fn" — 1) < [(an 7 —1) (an " —1)| + |(an n—1) (an — E) 7|
<1+ (aa— ) of i,
Since 67’ — 1 is a non-zero integer of k(y2) this implies that

apn—1

2 — @) 7 A+
671 < 14 (ap—6) p’ thintn,
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The expression on the left hand side is either

an|n| 41 oF an|n|—1
6|n[—1 6nl+1’

according as # = —7 or # = 7. Thus, in any case,

an|’7|—1 r 7 _}n
_70|1H+1<1+(a" )y Aty . (82)

Now

2

—f — /) — — 92 -1 (] —¢—n)-1,_
o=y21 - —y2= =1 2t (1=—zn) (83)

( 1)
Using the fact that || = 7, (75), (82), (83) and (81) we obtain

31—1 _3|9g|— an |n|—1
=
1’2r+1\2|17|+1<¢9|77|+1

<1+(an— ) n' 0+
<1 2y2 e (1 —zn)
<142y23(1 =97,
as n=5. This a contradiction since the left hand side has the value

Y2 = 1414 ... while the right hand side has the value 1.169 .... This
completes the proof of the lemma.

University College, London.



