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1. In connection with preparatory work for the International Rheo
logical Congress to be held in September 1948 at Scheveningen (Holland) 
I had to study some papers by WEISSENI3ERG referring to the stresses 
called forward by deformation in visco-e1astic materiaIs, where laminar 
flow is accompanied by e1astic deformations 1). WEISSENBERG's treatment 
is rather of an abstract character and the reader is puzzled by the problem 
how a continuously progressing deformation as is found in laminar flow 
and a permanent e1astic deformation can be present together, in particular 
as attention is drawn to the circumstance that the principal directions of 
these deformations may be different . However, a tangible picture can be 
obtained if we start ·from the idea that flow is possible in consequence of 
a relaxation phenomenon and bear in mind that, owing to the finite rate at 
which the re-arrangement of molecular structure takes place, every element 
of volume of a f10wing medium will bear in its molecular pattern reminis
cences of its past. In consequence of this circumstance thc actual pattern 
during flow deviates from the equilibrium pattern. Therc is thus a state 
of physical deformation, which must be c1early distinguished from the 
progressivcly incrcasing deformation of thc boundary surface of an element 
of volume as it occurs in flow. 

In the ordinary theory of viscosity based on this idea it is supposed that 
the state of physical deformation is proportional to the instantaneous ra te 
of deformation, as will be the case when the re-arrangement of the mole
cules takes place sufficiently quickly. On the othcr hand in liquids or 
f1uids where this is not the case, "memory" will extend further into the 
past and the physical dcformation will be determined by less simple 
relations. 

The idea of a "memory" in matter has been introduced by BOLTZMANN, 
and was afterwards taken up by VOLTE I~RA and by VON KARMAN 2). It 

1) Compare in p<lrticular: K. WEISSENBERG. La mécanique des corps déformables, 
Arch. Sciences phys. et natur. (Genève) (5) 17, p. I-lOS, 1935. - Of more recent 
publications may be mentioned: K. WE:lSSENBERG, A continuum theory of rheological 
phenomena, Nature 159, p. 310, March I, 1947. 

2) See: V . VOI.TERRA. Drei Vor\esungen über neuere Fortschritte der mathematischen 
Physik, Archiv d. Mathematik u .. Physik (3) 22, p. 97-182, 1914, in particular p. 155-171. 

TH. VON KÁRMÁN, Das Gedächtnis der Materie, Die Naturwissenschaften 4, p. 489, 1916. 
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is present also in an important model proposed by PRANDTL for the 
explanation of hysteresis and relaxation 3). Although VOLTERRA has given 
some attention to the general case. the examples mainly considered refer 
to systems with displacements in a single direction. so that the problem of 
non coinciding spatial directions does not occur. In the foIIowing lines it 
will be shown how such a problem can arise for the elementary case of 
laminar motion. even if we keep to an extremely simplified qualitative 
treatment. 

2. A few words on the theory of hydrodynamic viscosity may preêede 
the consideration of the example. In hydrodynamical theory the components 
of the viscous stresses in a fIowing liquid of constant density 4) are 
assumed to be proportional to the corresponding components of the in~ 
stantaneous ra te of deformation. If the velocity components are denoted 
by Ui (i= 1. 2. 3. corresponding to the three axes of a system of rectangular 
coordinates Xl' X2. X3)' the components of the instantaneous rate of 
deformation are given by 5) : 

Dik = OUk + OUi (1) 
OXi OXk 

and the components of the stress tensor have the values : 

(2) 

where ?] is the viscosity. 
The theoretica I explanation of this relationship starts from the idea that 

(a) every deformation of an element of volume of the liquid ca Us forward 
a change in the arrangement of the molecules. and that (b) when the 
element is left to itself a short but fini te interval of time is needed before 

. the norm al statistical distribution of molecular di stances and velocities has 
been restored. Whereas in the norm al equilibrium state of an ordinary 
liquid the molecular field is statistically isotropic. th ere can be present 
consequently an anisotropy for a short period. The anisotropy of the 
arrangement gives rise to anisotropy of the field of inter~molecular forces. 
and as a result of this. to the appearance of stresses. 

When deformations are changed or repeated periodically in intervals 
of time short compared with the time necessary for re~arrangement" the 

3) L. PRANDTL. Ein Gedankenmodell zur kinetischen Theorie der festen Körper. 
Zeitschr. f. angew. Mathem. u. Mechanik 8 .• p. 85-106. 1928. Compare: First Report ón 
Viscosity and Plasticity. Verha:1d. Kon. Neder!. Akademie v. Wetenschappen. (1) 15. 
no. 3. p. 41-64 (1939). 

4) To simplify incompressibility has been assumed so that the equation of continuity 
èJU / èJ xi = 0 (summation with respect to repeated indices) is satisfied by the components 
of the velocity. Also it is assumed that the stress components 'ik refer to the deviatoric 
stresses only. so that 'ii = O. No attent i on is given to the hydrostatk part of the stress 
(hydrostatic pressure ). 

5) A factor t is sometimes inserted; in that case the factor 1'/ in eq. (2) must be 
replaced by 21'/ . 
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medium in general will shà-w e1astic behaviour, in first approximation with 
proportionality between stress and strain. On the other hand when the 
material is subjected to a process of progressive deformation. in particular 
when a stationary state of flow is present, the resuitant effect of defor
mation and re-arrangement leads to the appearance of a statistically 
stationary anisotropic state of the molecular field, and thus to the appear
ance of a stationary system of stresses. 

In the usual form of the theory the permanent state of physical defor
mation of the fIowing medium, i.e. the state of anisotropy which is to be 
found in the pattern of molecular arrangement and of velocity distribution, 
is assumed to be equal to the product of the rate of deformation into a 
quantity having the dimensions of a time and called the "relaxation time" À. 

When the stress is put equal to the product of the permanent physical 
deformation into the shear modulus G, the stress becomes equal to the 
rate of deformation multiplied by G} .. The product G}, thefore represents 
the viscosity 1], which can be calculated theoretically when it is possible 
to find G and À 6) . 

It is assumed in this mode of reasoning that the time of relaxation }, is 
very short compared with the time in which an appreciable geometrical 
deformation of the boundary surface of an element of volume takes place. 
The resulting physical deformation then will be slight, and as the equi
librium state itself is isotropic, the directions characterising the resulting 
anisotropy of the field will be the same as the directions characterising 
the tensor of the rate of deformation Dik. 

On the contrary when the relaxation time becomes large we must expect 
that the deviation of the molecular arrangement will bear reminiscences of 
a more remote past. The physical deformation will then no longer be simply 
proportional to the instantaneous rate of deformation, but will be determined 
by some integrated quantity. This brings the possibility that the tensor 
describing the physical deformation in general will not be parallel and 
proportional to the tensor of the instantaneous rate of deformation. At the 
same time the physical deformation may assume such a magnitude that in 
calculating the stresses account must be taken of stress-strain relationships 
for large deformations, which in general cannot be represented by linear 
formulae. 

3. We now turn to the case of laminar flow. We assume the velocity u 
(parallel to the x-axis) to be given by k y: the component v being zero 
(we restrict ourselves to the x, y-plane) . The tensor of the instantaneous 
rate of deformation is then given by: 

(3) 

G) The modern development of th is theory is due to M. BORN and H. GREEN, and a 
particularly clear exposition is given by GREEN in a paper to be read before the Inter
national Rheological Congress, which will be published in the Proceedings of the Congress. 
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Now consider a point which at the instant t has the coordinates x, y; 

at the instant t = t - À the coordinates have been: 

x= X -kJ..y 
-

y=y, 
from which : 

y = y. (i) 

The physical state of deformation to be found at the instant t may be 
dependent on the whole series of preceding states, so that it should pro~ 
perly be ca\culated by means of an integral extending over the time from 

t = - co until t = ( 7) . However, the features necessary to explain 
WElSSENBERG'S formulae co me out already if we assume that the physical 
state of deformation is described by equations (4) in which À. will be 
considered as some given , fini te quantity. The point of importance is that 
in this case we have to do with a physical deformation of finite magnitude 

and that account must be taken of this circumstance in ca\culating the 
stresses. Various methods have been proposed for dealing with finite 
deformations and the stresses accompanying them; in the present case it is 
convenient to make use of the system of formulae deve10ped by WElSSEN~ 

BERG for that purpose 8) . The transformation from the coordinates x , y 
to the coordinates X, y is de:;cribed with the aid of the matrix equation: 

II x , y II = II x, y II ·11 k\ ~ 11· (5) 

Here 11 x, Y 11 and 11 x , y 11 are matrices with a single row only, while the 
usual rule for matrix multiplication must be applied. We write ljJ for the 

transformation matrix, V; for its transposed form , so that: 

(6) 

The matrix lp is unsymmetrical and combines in itself a rotation with a 
deformation. The latter can be described by means of either of two sym~ 
metrical matrices {}(]', {} p , determined by the equations !l): 

(7a) 

(7b) 

7) See VOLTER'RA, l.e. (footnote 2) above), p. 157 seq. - V OLTERRA, however, 
calculates the deformation at a given instant from the forces applied during the previous 
period, whereas i:1 the text we are interested in the present state of physicaI deformation 
as it resuits from the geometrical deformation experienced by the material in the previous 
period. 

8) K. WEISSENBERO, Arch. Scienees phys. et natur. (Genève) (5) 17, p. 11 seq., 1935. 
9) It is reminded that any power of a symmetrical matrix can be obtained as foIlows: 



791 

The matrices {}a and {} p differ in the order in which they must be combined 
with a matrix cp describing the rotation so as to obtain back the matrix 11" 

This matrix cp (which is anti-symmetrical) is given by: 

cp= 11 a - -}kJ..al l 
~. Ua a 

(8) 

where a has been written for (1 + kk2},:!)-1/2. and we have the equations: 

'lp = {}a . cp = cp . {}p, . (9) 

Hence {Ja represents a transformation which must precede the rotation, 
while {} p is the transformation to be applied when thc rotation is performed 
first. 

Now the stress tensor is a function of {Jp 10). For our purpose it is not 
so important which function is chosen. but the point to be observed is that 
the principal axes of the stress tensor are parallel to those of {} p. It is not 
difficult to find the directions of the principal axes of {} pand to calculate 
the corresponding eigenvalues. The first axis makes the angle cp with the 
x-axis (counted anticlockwise from x to y) given by 

(10) 

which is smaller than I, so that cp < 45 ° ; the second axis is perpcndicular 
to the first one. The eigenvalues are: 

t kJ.. + Y 1 + t k2 J.. 2 (11) 

so that there is extension in the dircction of the first axis and compression 
in that of the sccond axis. 

Hence we see that when kJ. is treated as a fini te quantity the principal 
direction of extension is turned towards tlle x-axis . We must expect the 
same for the principal tension stress. This is the result which is brought 
forward by WEISSENI3ERG; it can be interprcted by saying that a tcnsion 
stress directed according to thc x-axis is superposed on the lIslla l system 
of shearing stresses T y x and Tx y. 

The principal directions of the givcn matrix a re determined a nc! its eigenvalues PI. p;!, pa 
(for the threedimensional case) are calculated. The m-th power of the ma trix then is a 
matrix with eigenvalues: 

having the same orientation as the original matrix . lts ex pression wi th respect to any 
~ystem of rectangular coordinates can be casily found in th is way. By way of example 
we mention : 

{}p=ll(l ~ ~- k2J..2)a ~- kaJ..all. 
-~ kJ..a 

where a = (1 + ~k2À2 )-1/2 . 

](') Compare K. WEISSENBERG, l.c. p. 93, sub b). - It is confirmed by applying 
the equations given by R. S . RIVLLN, Large clastic deformatiDns of isotropie materiaIs, 
Philos. Trans. Roy. Soc. London A 240, p. 459, 1948, eqs. (3.9) and (3. 10). 

51 
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4. It win be possible to extend the formulae of th.e preceding section 
in such a way that they embrace the general case of a homogeneous field 
of deformation. On the other hand, when the velocity components are 
non linear functions of the coordinates, other features will come into the 
picture. It is doubtful whether a phenomenological treatment of such a case 
would be worthwhile, as it is to be expected that the actual physical 
relations and a proper analysis of the relaxation phenomenon and of the 
range of the inter-molecular forces (which range may be considerably 
extended in certain directions when the molecules are very long) will play 
an important part. We therefore leave aside the case of non-homogeneous 
fields . 

Résumé. 

Le but de cette note est de montrer comment certaines formules de 
WEISSENBERG ayant trait aux relations entre tensions et déformations dans 
un milieu "plasto-élastique" peuvent obtenir une ilIustration si on se base 
sur la théorie de la relaxation pour expliquer la possibilité d'un mouvement 
ilIimité d'un tel corps, et si on suppose que Ie temps de relaxation soit assez 
grand pour que l'état physique du corps en mouvement diffère beaucoup 
de I' état normal. 

Resumo. 

La jena artikolo celas montri kiamaniere kelkaj formuloj de WEISSENBERG 
pri la rilatoj inter tensioj kaj aliformigoj en medio plastik-elasta povas 
esti ilustrataj , kiam oni bazas sin sur la teorio de la malstretigo por klarigi 
la eblon de nelimita movado de tia korpo, supozante ke la tempo de malstre
êigo dauru sufiêe longe por ke la stato fizika de la korpo moviganta 
diferencu muite de la stato normala. 


