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The set
V’:(17+S)—%’D,

is a neighbourhood of. V; its boundary R(V’) is a (proper or improper)
subset of S and contains all nondegenerate components C; and an unknown
number of degenerate components. Therefore R(V’) is the sum of
countably many components, q.e.d.

If M has a quasiorder < &y and M’ = f(M) is a continuous mapping,
we must prove that the quasiorder of M” is < R,. For an open neigh-
bourhood U’ = U’(p’) of p’ in M’ one may determine an open neigh-
bourhood U = U(D) in M of the compact set D = [-1(p) with

fQycu.

According to b), there is a neighbourhood O = O(D)c U of D in M
with R(O) being the sum of countably many components. Since D = f~1(p),
[ is continuous and M compact, one may find a compact neighbourhood
N = N(p) — chosen sufficiently small — such that

' (N)c O.

In particular R=FfF'R(N)c O.

R and D are disjoint compact subsets of M. Therefore there is a compact
neighbourhood O’ = O’(D) c O 2) not intersecting R, such that R(O’)

is the sum of a countable number of components (again according to b)).
Therefore

Rc O—-0' c O-0O
while R(O — O’) consists of a countable number of components. But then

O—0O’also has a countable number of components, since M is a continuum
(proof analogous to that of a)).
The set

V" =N+ f(0O—0))
is a neighbourhood of p in M’ contained in U’. f{(O—O") is a compact

set which is the sum of a countable number of components, and which
does not contain p:

pd f(O—0O’)= 3 C:.
K
Take in every nondegenerate C’; a subset D; with
D;=C;—D;=C,.
Then
V=V — Zij}

is the required neighbourhood of p” contained in U’ while its boundary
R(V’) is the sum of a countable number of components.

2)  We may even assume 0' c 0 — R (0).
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4. Just like the classification according to the order of a point, known
in the theory of curves, may be further refined — for sets of order £ Ry —
according to “‘genus” and “typus” (conf. K. MENGER, Kurventheorie,
p. 293), likewise one may give a further classification of the sets quasiorder
< Ry according to “quasigenus’” and “quasitypus”. While these classific-
ations naturally give topological invariants, the classification according to
quasigenus has, moreover, the advantage — for continua — that it gives
continuous invariants (and not countably many at that), contrary to the
class, according to “genus’, which does not give continuous invariants
(which follows immediately from the fact that a segment may be mapped
continuously on a square).

Definition of quasigenus. The derived sets of a compact countable
set A may be well-ordered:

A:AoDA]DAzD...Ar.,CAg,,-}—]D..-Am.ZD...Aa:o.

Here « is an ordinal number of the first or second class, As the intersection
of all sets Ay with y <<f, if § is a limit-number; and As the derived set
of As_, if § has a predecessor f—1.

M is of quasigenus < « (u being an ordinal number of the first or second
class), if any point p of M is contained in arbitrarily small neighbourhoods
with boundaries N such that for the component-space 3) A = C (R) of
N, Az — 0. The smallest number « for which this is true is the quasigenus
of M4),

A set of quasiorder < « for instance is of quasigenus 0 or 1 (0 in case
the set is O-dimensional). According to Theorem I the locally connected
continua are identical with the continua of quasigenus 1. — One may
construct continua of any quasigenus «, To this end one takes a compact
countable set A with A. =0, Az 70, f <« on the segment 0 S x <1,
y — 0. Each point of A is connected by a straight line with the point (0,1).
The so-formed continuum is apparently of quasigenus a.

Now we may generalize Theorem II in the following way:

Theorem III. The property “being a continuum of quasigenus < a’ is
a continuous invariant, where « is an arbitrary ordinal number of the [irst
or second class.

Proof. We shall not give an extensive proof, because it is running
along the same lines as the previous proof; that is, if one only takes into

3)  'We assume the existence of boundaries R which are the sum of a countable number
of components: th = 2'C. By identifying the components C to one point, the component-
space A = C(R) comes into being; since M is compact, A is a countable compact space,
being the upper semi-continuous decomposition-space of Y.

4) It is easy to prove, that for any compact set M of quasiorder < Ny the quasi-
genus in one definite number d.
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account that the following is true: The simple fact used in the previous
proof, that a space which is the sum of a countable number of components
keeps this property when it is mapped continuously, must now be altered
to: If N is a compact space with a countable component-space A = C (R),
for which A« = 0, then for any continuous mappong R’ = f(R), with
A’ =C(W):

A.=0.

This is, however, true. For, the continuous mapping R* = f(R) induces
a continuous mapping of the component-space A on the component-space
A’. Both are compact countable spaces. For these are all continuous
invariants known (see Proc. Ned. Akad. v. Wetensch., Amsterdam, 48
(1945), p. 246, Theorem V); especially Ax = 0 leads to A’ = 0.

Amsterdam, 1948.



