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1. Introduction. 

The operational calculus, as often used by technicians, goes back to 
OLiVER HEAVISIDE, who introduced his heuristic methods with very great 
practical success. Although his approach is far from being mathematically 
rigorous, HEAVISIDE himself already drew attention to the fact that his 
methods and procedures could be derived from the Laplace transform 1). 

HEAVISIDE'S operational methods were mainly meant as a tooi for in
vestigating linear electrical systems to which at the time t = 0 suddenly 
an electromotive force was applied, the system being originally at rest. 
Therefore the transform f* (p) of the time function h (t), as used by 
HEAVISIDE and most of his followers , is the following : 

00 

r (p) = p J e- pf h (t) dt, 

o 

with 0 as lower limit of integration. 

(1) 

All the work by BROMWICH, CARSON, VAN DER POL, NIESSEN, WAGNER, 
HUMBERT, McLACHLAN and many others in this field is based on the one
sided Laplace transform. However, already before 1940 we worked out an 
operational calculus, well suited for practical applications, which is based 
ab initio on the two-sided Laplace transform 

00 

((p) = p J'e-pf h (t) dt (2) 

-00 

with - oe as lower limit of integration instead of O. Henceforth, the 
integral relation (2) is shortly written as follows: 

((p) --:-'- h (t), 

where the strip of convergence of the integral (2) , viz., a < Re p < p, has 
to be specified explicitly. When, moreover, an 'original' h(x, y) of two 
variables x and y is transformed as 

00 00 

{(po q)=pqj'e- pxJ'e- qy h (x, y) dxdy, 

-00 -00 

1) O. HEAV,ISIDE, Electromagnetic Theory. London, Benn Brothers, 1922. Vol. 111. 
p.236. 
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we write for short 

{(p, q) :: h (x, y), etc. 2) 

Although the Laplace transform as such has long been known, there is 
certainly room for an operational calculus based on this Laplace transform 
(particularly the two-sided) because the operational (or symbolic ) methods 
often lead in an extremely short way to a solution of complicated problems, 
once the rules and theorems of this calculus have been mastered. This is 
true not only for many technical problems, but also for large parts of the 
analysis, e.g ., linear differentialequations (both with constant and variabIe 
coefficients) , difference equations, partial differential equations, integral 
equations, potential theory, number theory, etc. The situation here is 
analogous to that of the theory of linear equations or vector analysis where 
complicated calculations can of ten be reduced to simple procedures, owing 
to the introduction of determinants, matrices and concepts such as 
gradients , curl-vectors. 

It is just this new symbolism of the two-sided Laplace transform which 
shows its great heuristic value, and many new results have been obtained 
during the eight years of its application 3) . 

In practical applications of the operational calculus as expounded below, 
it is very seldom necessary to refer to the inversion integral corresponding 
to (2), viz . 

c+ia> 

h (t) = - I- .fept ((p) dp. 
2:nr p 

(3) 

C-iCD 

Moreover, an explicit use of the Laplace integral (2) as such is only 
rarely needed since the available rules usually enable us to find the solution 
of our problem right away. However, the Laplace transform being the 
rigorous mathematical basis , every step in the process of an operational 

2) We originally introduced the symbol .' for a one-sided Laplace transform. Some 
authors use with the same meaning the symbol ::::> , which, however, might he confused 
with a similar symbol used in the theory of sets and which has al ready a different 
mathematical meaning. We shall therefore adhere to the definition of . ' as given above 
and which therefore represents the two-sided Laplace transform. The upper dot is always 
towards the original 50 that we can write either 

{(p) .' h (t) 

or 

h (t) ' . ((p), 

both being short-hand notations for (2). 
3) An extensive volume on the operational calculus based on the two-sided Laplace 

transform is now in course of publication at the Cambridge University Press. Several 
new results were already published during and af ter the war in the 'Wiskundige Opgaven', 
Groningen, NoordhoH; 1943, numbers 33, 34, 35, 36, 38; 1946, numbers 77, 120. 
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solution of a problem can fully be interpreted in terms of these transforms: 
thus a completely rigorous control of all the steps is always possible. 

It is the purpose of the present paper to expound the general lines and 
also the advantages of this new form of the operational calculus and to 
point out the improvements and gains with respect to the ol der form based 
on the one-sided Laplace integral. 

2. The strip of convergence. 

In the consideration of one-sided Laplace integrals, the indication of 
the strip of convergence is usually omitted. This will cause no misunder
standing since, in that case, the strip is always a domain of the p-plane 
reaching to infinity at the right whereas the left boundary Re p = a is 
determined by the condition of convergence of the one-sided Laplace 
integral. In the case of two-sided Laplace integrals, however, there may 
exist several strips for which one and the same image function f(p) 
corresponds to different originals h (t) . Consequently, the specification of 
the strip is absolutely necessary. In special cases th is strip may cover the 
total p-plane, e.g., when the original is l1on-vanishing in a fini te interval 
of t only. Less trivial examples showing strips coinciding with the total 
p-plane, are: 

2. 7l -V
- p' 

e-"'/ . ~ pe"'" , - 00 < Re p < 00, 

~ (;t: - ~) ~ e~ fJ 3 (0, eH) ~ '. p~ (p + t), -oo<Rep< 00, 

wh ere 

00 

83 (0, x) = :E e- nn'x, 
n=-co 

and 

~(p)=(p-l)7t-% JI( ~) C(p) 

is, as usual. defined so that the functional equation for Riemann's C-function 
is equivalent to the observation that ~ (p + Y2) is an even function of p. 

3. The unit function. 

The discontinuous function U (t) defined by 

U(t)= l~ 
(t> 0) 

(t= 0) 

(t < 0) 

is called the 'unit function' . It was al rea dy considered by CAUCHY, who 
named it 'coefficient limitateur' or 'restricteur'''). For Otlr purpose, this 

4} Enz,yklopaedie Math. Wiss. H, 1. 2, p. 1324. 

65 



1008 

function is particularly important because in using it we can consider the 
one~sided operational calculus as a special case of the two~sided calculus. 
In fact, originals vanishing for t < ° may be written as 

h*(t) = h(t) U(t), 

while the corresponding two~sided Laplace transform 

00 00 

p J e-pt h (t) U(t) dt= p J c pt h (t) dt, 

-00 0 

is automatically reduced to a one-sided transform. When using therefore 
the two-sided calculus, it is not allowed to omit the factor U (t) in one~ 
sided originals (which are therefore zero for t < 0). This is clear sin ce a 
given original h (t) may have an image without more, as well as another 
image after it has been replaced by zero for t < o. An illustrative example 
is the following 

:Tlp 
et + 1 ----;- sin (:Tl p) , -1 <Rep<O. (4a) 

e~ ~t)l .. ~ ~ ~ ( ~ ) - ~ (p 2 1) ~ , -1 < Rep < 00 (4b) 

(~= logarithmic derivative of GAUSS's n~function). 
The unit function also plays a role in many other questions occurring in 

the operational calculus. In this respect we mention the notation 

h(t) U(t-a) 

for an arbitrary function h (t) which is made · to vanish for t < a (compare 
the example of section 9). 

4. The shift rule. 

In the two~sided calculus most of the elementary 'rules' have a slightly 
simpIer form than in the older one-sided calculus. E.g., in the differ~ 

entiation rule (stating that a differentiation of the original corresponds to 
a multiplication by p of the image) the restriction h (0) = 0 of the one~ 
sided calculus can be dropped (see section 7). 

A simplification also occurs in the case of the 'shift rule'. In the one
sided calculus, which only concerns positive arguments of the originaI. this 
rule reads : 

Given 

then we have 

(I) iE 2>0, 

(2) if 2 < 0, 

h (t) . • {(p), 

el. p {(p) . . h (t + 2); 

(t> -2) 

(0 < t< -2). 
(5a) 
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In the two-sided calculus, however, the distinction between positive and 
negative values of ), disappears. The final formulation there simply 
amounts to: 

Given h (t) '. {lp}, a < Rep<p, 

then we have 

h (t + 2} ~;:: ei
. p {(p), a< Rep< p. (Sb) 

The one-sided rule (Sa) is obtained as a special case of the two-sided 
rule (Sb) by substituting in the latter h(t)U(t) for h(t) . 

We give here two applications of the general shift rule (Sb) illustrating, 
moreover, the usefulness of the unit function. 

(A) The construction of the image of 'step functions'. i.e ., of functions 
h(t) that are constant between two consecutive integer values of t. As an 
example we consider the one-sided function that increases by unity at each 
of the points t = log n (n integer). This function may be represented by 

ro CXl [et] 
1: U(t-IoJn}= 2,' U(et-n}= .l: 1 = [et] 

n = l n = l n=1 

([xl = greatest integer not greater than x). 
Starting from the fundamental relation 

U(t) ' . I. o < Rep < 00, 

which follows at once from (2), the shift rule yields 

U(t-Iog n} '. e-pl,,~ n = :p' 0< Rep < 00, 

so that we have 

00 00 1 
[el] = 1: U (t-Iog n) -~ 1.' p' 

n=1 n=l n 

The image here found is the Oirichlet series for the (-function; sin ce this 
series only converges for Re p > I, we obtain at once the operational 
relation 

1 < Re p < 00. 

This transform can be 17Iade the basis of a large part of modern arith
metic ij). 

(B) A function given originally in the interval 0 < t < 1 can easily 
be continued periodically outside this interval. In these cases we can start 
from the relation 

h(t)lU(r)-U(t-lll . {(pl, - 00 < Re p < 00, 

5) See BALTH. VAN DER POL, Application of the Operational or Symbolic Calculus 
to the Theory of Prime Numbers, Phil. Mag. 26. 925 (1938). 
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ex pressing th at the given function, which is zero for t < 0 and t > I, will 
in general have some image f (p). The periodie function in question is 
representable by 

h (t-[t]) U(t) = h (t) IU(t)- U (t-I)I + 
+ h (t-I)! U(t-I)- U(t-2)1 + 
+ h (t-2) I U(t-2)- U(t-3)1 + ... 

The shift rule at once leads to the corresponding image, viz. 

h (t- [tJ) U (t) . . f(p) + e- P f(p) + e-2p f(P) + ... 
The summation of this geometrie series is possible for all p having positive 
real part. Thus we arrive at the final result 

h (t- [tJ) U (t) '. I 0.~) p' O<Rep< 00. 

5. The rule lor the composition product. 

In the one~sided calculus this rule reads: 

Given hl (t) '. fl (p) ; hl (t) ' . f2 (p), 

then it follows that 

. . . (6a) 

The corresponding rule in the two~sided calculus is simpIer insofar as the 
composition integral (sometimes the term . convolution' is used) 6) has 
constant limits of integration. In fact, the complete rule now becomes: 

Given 

th en it follows that 

hl (t) .. fl (p). 

h2 (t) '. f2 (p). 
al < Re p < PI' 
a2 < Re p < P2. 

. (6b) 

It has to be stressed that an image of a composition product exists only 
when the two initial strips of convergence overlap. The existence of the 
corresponding common strip is guaranteed in the case of one~sided originals 

6) We prefer the term 'composition product' (as given by VOL TERRA) instead of 
'convolution' because the fundamental principle can be extended to more (and even to 
an infinite number of) dimensions, in which case the 'folding' idea is lost. 
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(since each strip extends to infinity in the rig ht part of the p-plane). In 
the two-sided calculus, however, the condition of overlapping is not self
evident; it is expressed analytically by 

max (a1,a2) <Rep<min ((Jt,{J2)' 

In this connection we remark that, if a common strip is lacking, the rule 
(6b) is still applicable af ter a transformation, of one or both of the primary 
relations, with the aid of the 'attenuation rule'. 

The latter states, in both the one-sided and the two-sided calculus: 

Given h (t) .. {(p), a < Rep < {J, 

then it follows that 

e-at h (t) . p {(p + a) 
. (p + a) , a - Re a < Re p < (J - Re a . 

An example may illustrate the possibility of such an indirect application 
of the composition-product rule. We start from the relation 

O<Rep< 00,. . (7) 

which is easily verified by reducing its Laplace integral to Euler's second 
integral for the n -function. According to the rule concerning the trans
formations of tinto - t, we have also: 

-00 < Rep< 0. (8) 

The strips of convergence of (7) and (8) are not overlapping but adjacent. 
In order to construct a composition product, we replace (7) by the following 
relation, obtained with the aid of the attenuation rule, 

-1 < Re p < 00. (9) 

Now, the relations (8) and (9) have a common strip, viz . -1 <Rep<O. 
The composition-product rule can now be used and leads to 

00 J e- T e-e-~ . e-e t- T dI '. - n (p) n (-p), -I < Re p < 0.. (10) 
-00 

The substitution e- T = s transforms the integral into the original of the 
re\ation (4a) , so that each of the two functions 

-II(p) n(-p) and - sinn(~p) 

are found as image of -t-~1 (for - 1 < Re p < 0). By virtue of the 
e + 

uniqueness of the Laplace integral, we thus have demonstrated the relation 

II( ) II(-)= np 
p p sin (np) 
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for - 1 < Re p < 0. The validity of this formula for ot her va lues of p 
th en follows from the principle of analytic continuation. 

We conclude our considerations on the composition~product rule with 
two remarks: 

( 1 ) The one~sided form (6a) is obtained as a special case of the two~ 
sided form (6b) by a substitution of hdt) U(t) and h2 (t) U(t) for hdt) 
and h2 (t) respectively, which substitution automatically introduces the 
limits of integration of (6a); 

(2) By identifying h2 (t) '. f2(P) with the operational relations 

U(t) '. 1. 

- U (-t) '. 1. 
0< Rep < 00, 

-00 < Rep <0, 

respectively, we get the new integration rule: 

Given h (t) •. f(p), 

then it follows that 

t .f h (1) de '. ~ f(p), 0< Rep< (3, 

-CD 

t J h (1) dl '. ~ f(p), a< Rep <0. 

00 

6. General advantages of the two~sided calculus. 

Some very striking advantages are: 
( 1 ) A simple formulation of the general operational rules (compare 

the two preceding sections ) . 
(2) The possibility of treating functions whose two~sided image is 

simpIer than their one~sided image or whose one~sided image even is 
lacking . In this respect we rder to the examples (4) and (7). Another 
typical two~sided original is 

~1_ '. II(p) '(p), 
ee -1 

1 < Rep < 00, 

while many other relations of this kind are dealt with in section 10. 
(3) The possibility of considering images having no original at all in 

the one~sided calculus. The increase of the numbe~ of available image 
functions follows, e.g., from the theorem that in the one~sided calculus 
there do not exist images f (p) having equidistant zeros on a line parallel 
to the real p~axis. Such a restriction does not occur in the two~sided 

calculus. An example showing such a two~sided Laplace transform with 
an infinity of zeros on the real p~axis itself, is given by 

2- f sin ( ~ p ) II (p) .' e-e-t sin (e- t ), -1 < Rep < 00. 


