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2.33 Dynamical wave operators. We can write down an explicit expres­
sion for the preliminary dynamical wave operators if we have a complete 
system of orthonormal solutions (satisfying (6)) of 

KI xt I (xt I 'Ijl = 0 (20) 
in many-times theory or of 

(K I XI' ... Xn-Io X; tl- KI XI' ... Xn-I: tl)(xt l 'Ijln=O (20') 

in single-time theory. In single-time theory the solutions (xt Ilpn I ft) will 
in general depend on the variables (Xl •... Xn _ t). In many cases of single­
time theory and in all interesting cases of many-times theory the operator 
K and therefore also the solutions (xt Ill'n I ,u) (the suffix n has to be 
dropped in many-times theory) contain creation and annihilation operators 
of particles of another kind (in particular of carrier particles ) with which 
those of the considered kind interact. All th is makes them extremely 
complicated. 

The dynamica I wave operators are then given by 

(ys Itl,' lxto I (xltlQ' ... xntnoI P ' =2(ys I 'Ijln I p.)f(dxn)(p.llfJ~ Ixto)n'/2Sn 
tu ) 

111 xntnol Q I xntnol (Xlt IO ' ... xntnoIP'. 

Ixto ItI,'t I ys)(xi tlQ •.. . Xn-Itn- IO: ys lP' = 2 Sn n'/, (Xntno I 'Ijl~ I P.)(P. l lp~ I ys) 
(,u) 

(XI tiO' ••. Xn-Itn-IO: ys lP'. 

(21) 

if operating to the right and by the HERMITIAN adjoint relations (2It). if 
operating to the left and with s = tn everywhere. Thc tp' appear as a 
generalization of the ti,. IE we rep la ce the tko by tk. we get the undashed l/J 
again. 

The dynamical wave operators satisfy the commutation relations 

[(ys Il/"I xto 1.1 xto IIp't I y' s')]±=}; (ys IlfJn I p.) (p.I1j'~ I y's') Sn. etc.. (22) 
(ft) 

similar to (11). only s and s' may now have different values. The sum 
satisfies the wave equations similar to (20) or (20') with K{ys} (at the 
left) as weil as with K{y's'} (at the right). For s = s' it has the properties 
described in (6). 

2.34 Dynamical substitution operators. If we form the dynamical sub­
stitution operators similar to (12). (12 t ). their meaning can still readily be 
demonstrated. 

We shall say that with respect to the kth set of variables a wave function 
is up to date if the time coordinate has the value tk and th at it is at the 
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beg inning if the value of the time coordinate is lto. In the representation 
SI the IJ' are up to date in all sets (xt) and (ys). In S3 the IJl' are at the 
beginning in all sets (xto) and (yso). In S2 . with which we are dealing for 
the moment. the IJl' are at the beginning in the sets (xto) and up to date 
in the sets (ys). 

IE we compare the dynamical substitution operators with the statical 
ones. particularly observing the time dependence. we see that: 

Sd The dynamical substitution operators have the same properties as 
the statical substitution operators as summed up in Ss. but in addition 
a dynamical annihilation substitution operator brings the wave 
function up to date in the set (ys). which replaces the last set 
(XktkO). and a dynamical creation substitution operator puts the 
wave function back to the beginning in the new set (XktkO). which 
replaces the set (ys). 

2.35 Dynamical particle operators. IE in (16) or (17). (17t) the tp are 
replaced by tp'. we find the dynamical homogeneous partic1e operators 
R,(m){X1t1 . .. . }. which contain the entire motion of the system. Operators 
of the type R'{Xltl . ... ; Y1S1 • ... } will be dynamical in the sets (xt). not 
in the sets (ys). 

IE in many-times theory R(l){X1t1' ... } is formed from the individuaI 
operators R{Xktk} . we can de fine the dynamical individual operators R'{xt} 
by R'(1){X1t1' ... ; xt} - R'(l){X1t1' .. . }. 

The dynamical K'{xt} in many-times theory or K'{X1 . ... ; t} in single­
time theory vanish according to the .. superquantized wave equation" (19) 
or (19'). 

IE af ter having formed the dynamical partic1e operators one forgets 
everything about wave operators. one is left with the elementary HElS EN­

BERG representation e2' 

3. Special cases. 

Before facing the general formalism developed so far with present 
theories. we first derive the explicit expression for the right hand member 
of (22) (in which we omit Sn) in some special cases of typical kinds of 
partic1es. Successively we consider partic1es of spin Yl. 0 and 1. 
3.1 Spin Yl. The 1-partic1e wave functions are spinors. In many-times 
theory the o~ators K{xt} in (1) r.ead 

(23) 

--+ 
The 4-velocity operator is (1 . a). so the density operator Q = 1. This is 
positive definite. therefore 'tI = 1. 

--+ 
For free partic1es (zero extern al field (<p. a) or zero charge e) a complete 
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system of orthonormal solutions (satisfying (6)) of (20) is given by 
. -+-+ 

-~ (± (f' + 11Z 2c,)'/, c t- ; xl 
(xt l lp l ~±r)=b l ~±r)e hc /(he)'I. (24) 

-+ 
with two spinors b I ~± r) (r = 1. 2). for which 

(r7± lb· b 11± s) = drs. l 
-+ -+ -+-+ . (25) 

fb I ~± r) (rf", I b = (±(e + m 2 e1
)'/, + a ~ + (j m c 2)/± 2(~2 + m2 e1)'/2. 

This gives for the right hand member of (22) 
-+ -+-+ 

~ ~f (d~) (ys 111' I hr)(rh 11pt l y' s') = 
r ± 

-+ . (26) 

= ( - ~ aàs +; "f)ie 
àày + (jme2

) Da(Y-Y', s-s'). 

3.2 D-fuetions. The functions Da above in 3.1 and D s below in 3.3 and 
304 are given by 

= - Fa -le2e-x2I" = 1 a (me , ) 
4 ;Tt "f) ex àx s 0 "f) 

. (27) 

= -4: "f)2 F~, (~e I e2 t2-x21"' ) /1 e2 t2-x2 1'/,. 

Inside and outside the lightcone Fa and F s stand for various kinds of 
BESSEL functions as indicated in fig. 1. 

Fig . 1. 

(Instead of ± J rcad ± iJ.) 

For m = 0 (27) degenerates into 

Da = - hie b (e2 t2-xl) , . . (27*) 
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3.3 Spin O. The 1 ~particle wave functions are scalars or pseudoscalars. 
We consider the scalar case. The wave equations can be derived from 

(~e O:%k + e qJ<1.k (Xk)) 'l' = m e2 <1.k 'P, 

( b.e ~ + eqJ<1.k(Xk)) <1.k'l'= - me2 'P. 
t UXk<1.k 

• (28) 

This gives for the operator K{it} 

(
be 0 ) (be 0 ) Klxtl= T OX'" + eqJ<1. (x) T ox<1. +eqJ<1.(x) +m2 e1

• (29) 

In 4~dimensional time~space the metric is indefinite 

(-Uoo = Ull = U22 = U33 = 1), 

but since the wave functions are scalars this' has no direct consequence 
for the metric in HILBERT space. Meanwhile the 4~velocity operator 

gives the density operator 

(~~-~~-2em(x) ) iöt iot T 

which happens to be indefinite as weil (à is meant to operate to the right, 
b to the left). So we have to determine the operator 1/. 

The conditions Cl, C2' C3 of 2.15 can readily be satisfied, but C4 is some~ 
what knotty. In an external field the components of the 4~velocity operator 
commute neither with cach other, nor with K{xt}. Therefore there are no 
simultaneous eigenstates. IE we brush aside this difficulty, we might say 
that, if acting on a solution of the wave equation, the 4~velocity operator 
behaves time~like with positive and negative eigenvalues of the time 
component separated by a gap (of 2mc2) . IE 1/ acts on a solution of the 
wave equation (and that is all we need), c4 is satisfied as long as there 
is such a distinct and invariant separation between positive and negative 
solutions. This holds exactly in zero external field, but is liable to break 
down in "hard" fields (hard enough for pair creation and annihilation ). 

For free particles a complete system of orthonormal solutions (satisfying 
(6)) of (20) is given by 

-+ _l...(±W+ m1 c')'/2ct--;;' 
(xt 11j1 1 ~±) = e hc /(~2 + m 2 C1)'1. (2 h 3 c3)"'. (30) 

This gives for the right hand member of (22) 

-+ -+-+ 
~ f(d~)(ys 11j1 1 ~±) (~± l1j1t I y' s')=Ds (y - y', s -s') • (31) 
"= 



1095 

3.4 Spin 1. 3.41 m -=j:- O. The l~particle wave functions are vectors or 
pseudovectors. We consider the vector case. The wave equations can be 
derived from 

(~c O~k + eIP"'k(Xk)) .. . ,Bk'" 1['- (~e O;~k + eIPh (Xk)) .. . "'k '" I[' 

=mc2 
'"('''kf'k)''' 1[', (32) 

( b.c ~ + eIP"'k(Xk)) ... (a.k.Bk) ' " I['=-mc2 
••• 19k ... 1['. 

r UXka.k 

This gives for the operator K{ xt} (operating on . . . a. ... I[' or I['t . . . f' ... ) 

K~ I xtl = (~c o:y + e IPY (X)) (~c 0:" + e lP" (X)) (<5~ <5~ - <5; <5~) + m2 c· (33) 

or the adjoint representation. (It should be observed that for r -=j:- <5 the 
factor operators cannot be commuted). 

The 4~velocity operator (acting between 'Pt ... /~ ... and ... a. .. . I[' is 

-:-~ - -:-~ - 2 e IPo (x) (gyi g 13'" - gy'" g 13" - gyp g",,,) • (34) (
bC <5 bc 0 , ) 
r uX" luX" 

The densityoperator (r = 0) is indefinite like for zero spin. The indefinite 
U' s ;ven threaten to lead to further difficulties. In fa ct they do not for free 
particles (as we shall see) , but they are liable to do so in "hard" fields. 

For free particles the wave equations reduce to two sets 

( b.
C ~ °t3k b~ ~ + m~ ei) · .. "'k··· 1['= O'l I uXk I UXkpk 

be 0 . . . (35) 
- - - 1['-0 i OXk«k ' .. "'k··· - • 

The second set of equations can be regarded as supplementary conditions 
to the first set. Owing to them the second and third term in the last factor 
of (34) can be dropped. That makes the density operator equal to 

( ~~ - ~~) UP"'. 
i<5t lot 

A complete system of orthonormal solutions (satisfying (6)) of (35) is 
given by 

. -+-+ 
-+ -+ _...!....(±(ç.+m·e·)'/.et-çx) 

(xt 1",1jI[ ~± r) = .. b I ~± r) e he /W + m2 ci)'I. (2 h 3 c3)'/. • (36) 
with 3 4~vectors ab I ~± r) (r = 1,2, 3) satisfying the supplementary con~ 
ditions 

-+ 
~~ a.bl~±r)=O . . • . (37) 

(where ~~ = -+- (~2 + m 2c4 ) 'I.) and for which 

. . (38) 

71 
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Because of (37) the b's are space~like, so that with regard to them ga/3 
behaves positive definite. That is why there are (for free partic1es) no 
further difficulties with the indefinite metric than for zero spin. The right 
hand member of (22) becomes 

Z Z f (d~ (ys 1"'I'lt",r) (r1", I Vlj3 I y' s') = l 
r '" (39) 

_ ( + he a he a I 2 1) D ( , ')' 
- g".a T a y" i a yf3 mes y-y • s-s . 

3.42 m = O. Zero restmass forms a singular case for which the foregoing 
treatment breaks down af ter (37). ~a is now a zero~vector and not all b' s 
satisfying the supplementary conditions are space~like. This gives diffi~ 

culties with the indefinite ga/3. Invariant relations similar to (38) cannot 
be formed. Instead of helping any longer. the supplementary conditions 
(37) only stand in the path. Now the supplementary conditions in (35) 
apply to the wave functions '1'. They may be imposed on the complete 
system of individual reference functions VI and on the wave operators VI if 
such is possible and useful. but they need not if it is a nuisance or 
impossible. So we only impose them on the '1'. IE we like we can write 
them as 

~ a (ys I j3lP"l xt I (XI ti • ... 1", ... '1' = 0 
uY/3 

in SI representation or as 

~ () (ys I .8lP'" I xto I (XI t iO' ... 1"1 '" '1" = 0 
UY/3 

. (iO) 

(i 1) 

in 5 2 representation. With the supplementary conditions imposed on the 
lP. al ready the operators to the left of '1' in (40) and (41) would them~ 
selves have been identically zero. 

As we suppose the zero mass partic1es to be uncharged. the density 

operator IS ----- 9 f3 . (h b ha)" 
ibt iàt . 

The positive and negative states of the 

first factor are the same as for zero spin. In order to distinguish between 
positive and negative states of the second factor we choose an arbitrary 
time~like 4~vector ja. As positive vectors we take those orthogonal to ja. 

as negative vectors those parallel to ja. The operator 11 is then the product 
of the corresponding operator for zero spin (which because of e = 0 
exactly satisfies C4) and the 4~tensor (ga/3 + 2jaj/3). The latter factor does 
not satisfy C4 because it depends on the choice of ja. 

As we drop (37). we now get in (36) (with m = 0) 4 4~vectors 
-+ 

abl~± r) (r= 1.2.3.4) forwhich 

~ ~ !. (rhlbt"·.bl~±s) = drs. 

~ ~ 

Z "bl~",r)(rhl b~ =g"j3 + 2j"i;3. 

. (42) 

r 
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3 b's are space~like, 1 is time~like. The right hand member of (22) becomes 

-+ -+-+ 
Z Z f (d~) (ys I «1jJ I ~",r) (rh 11jJ~ I y' 5') = (g«t9 + 2j«jp) Ds (y-y', s-s'). (43) 
r '" 

4. Present theories. 

Now we compare the results of our primitive form of "superquantization" 
with the starting point of the present theories. 
4.1 Notation. In the present theories the functions on which the wave 
operators act are in general hardly taken into consideration. Consequently 
the variables on which they depend are usually not explicitly mentioned 
even in the wave operators. In our notation that would mean that in the 
expressions for the wave operators not the (xt). but only the (ys) are 
written down. This incomplete notation, which is quite sufficient for 
every~day use, is perhaps one of the main factors, which make th at the 
meaning of the wave operators is not always clearly understood. 

4.2 Commutation relations. IE our wave operators shall be isomorphic to 
those of the present theories, they have to satisfy the same commutation 
relations. 
4.21 Field quantization. In the present theories the field operators (more 
precisely the sum of creation and annihilation field operators, which is 
HERMITIAN) resulting from quantization of classical fields represent field 
observables. We have not considered this kind of observations. As soon 
as the desired isomorphy has been established, our field operators can be 
interpreted in the same way. The question how far field measurements can 
be interpreted by particle measurements belongs to problem Q2. 

For the moment we are only interested in the consequences with regard 
to the commutation relations. Because there can be no signals between 
two world points with a space~like connection, field observations in two 
such points cannot affect each other. Therefore the corresponding field 
operators in two such points must commute with each other. 

Incidentally this aIso indicates that carrier particles obey B-E statistics. 
The problem whether that can be explained again belongs to Q2. 

4.22 SuperquantizafJion. More generally all wave operators of the present 
theories obey PAUU's postulate 7) that in world points with a space~like 

connection they commute or anti~commute. In other words their (anti~) ~ 

commutators vanish outside the light cone. 

4.23 Discrepancies. The commutation relations (31). (39) and (43) of 
the wave operators as we have preliminary defined them contain Ds, which 
according to fig. 1 does not vanish outside the light cone. Therefore our 
preliminary wave operators cannot be isomorphic with those of the present 
theories. We must try to modify the preliminary definition (10) of the 
wave operators in such a way, th at they fit into the recognized commutation 
relations, without spoiling those properties, which are already all right. 
Now Ds in (31), (39) and (43) has to be replaced by Da and moreover 
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(gatJ + jajtJ) in (43) by gatJ. More generally the right hand member of (22) 
has to be replaced by 

I1J IY-'I (Y$I'Pnl,u) (,u1'Ptl y's') Sn = Z(ysl'Pnl,u)(,u l'Ptl y's')1J1 y's'l Sn. (44) 
(,u) (u.) 

This modified expression satisfies the same wave equation as the original 
one. For s = s' it has also the properties described in (6), which now only 
should be read in a different way. 

4.3 Modified wave operators. We can make the modification in two 
different ways, which establish the required isomorphy with two different 
types of present theories: DIRAc's 1942 theory and the current hole theories. 

4.31 DIRAC's 1942 theory. One way to obtain the modification (44) is to 

define the modified wave operators (ys I"'D I xt} and (xt I "'bl ys) by 

(ys I "'DI xtl =(ys 1",1 xt I, ! 
. . . . . (lOD) 

I xtl"'b I ys)= Ixtl",t I YS)1J I ys I, 
if they are operating to the right and 

(Y$I"'Dlxtl = 1J I YSI(YSI",lxtl,! 

I xtl "'bl ys) = I xtl",t I ys). 
. . . . (lODt). 

if they are operating to the left. They are HERMITIAN adjoint to each other. 
In S2 representation they satisfy the "superquantized wave equations" (19) 
or (19'). Their commutation relations yield the required form (44). IE (12), 
( 12t ) and (17), (17t ) are written with the D~modified wave operators, 
the factors 1J are swallowed up by the creation wave operators: the resulting 
expressions remain unaltered. (IE we let also the factors Q be swallowed 
up, we get a description with canonical conjugates). 

IE the substitution operators are correspondingly modified, we see that: 

S D The D~modified substitution operators are almost identical with the 
preliminary ones. The D~modified creation substitution operators 
only give an extra factor - 1 wherever a negative density function 
in (ys) is replaced by the same function in (Xktt). 

The D~modified wave operators (ys I"'D I xt} and (xt I "'bl ys) are now 
isomorphic with the fields U (y) and U· (y) (in PAULI' s notation 6)) of 
DIRAC's 1942 theory. A further discussion of the latter theory belongs to 
problem Q3' 

4.32 Current theories. 4.321 Positive and negative states. Up to now we 
could completely avoid to speak about positive and negative energy states 
and positive and negative particles. They are, however, so narrowly inter~ 
woven with already the wave operators of the current theories, that we 
have todeal with them in some extent. A complete discussion would lead 
into problem Q3' ' 
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4.3211 Energy states. For all spin va lues the energy~momentum operator 

of a particle is (~c !5~ - ~c à~ )/2. The kinetic energy~momentum operator 

is therefore (~C !5~ - ~c à~ - 2e qJa. (x) ) /2. The kinetic energy operator 

(a = 0) is indefinite in exactly the same way as the density operator for 
zero spin. We distinguish between positive and negative energy states in 
exactly the same way as between positive and negative density states for 
zero spin by means of an operator ;. which is identical with 11 of the latter 
caSe and therefore also makes the same difficulties . 

4.3212 Charge conjugated states . We con si der two kinds of particles. 
which only differ in the sign of their charge e (for e = 0 the two kinds are 
identical) . They can also be considered as particles of one kind with a 
charge operator e with eigenvalues -+- e. To each particle state corresponds 
another state (the charge conjugated state) with the opposite charge and 
energy~momentum vector (the charge conjugated state of 'tJl is e.g . the 

complex conjugate lP in case of integer spin; in case of spin Yz it is Q.ii' 
-+ 

in a representation in which a and (>3 have real matrixelements) . Then also 
the kinetic energy~momentum is opposite. If one of the states is a positive 
energy state. the other is a negative energy state. The charge conjugate of 

'tJl I ft) will be written as ljJ lp) . 
The connection between creation of a particle in one state and anni~ 

hilation of a particle in the charge conjugated state is one of the funda~ 
mental topics of problem Q3' 

4.322 Hole theories. We now turn to the current theories . but leave aside 
for a moment the photon case (spin 1. m = 0). which we shall deal with 
later on. 

4.3221 H~revision. In order to obtain isomorphy with the current wave 
operators we have to replace in (10) the creation and annihilation operators 
of negative energy states respectively by the annihilation and creation 
operators of the charge conjugated states. This H~revision is a part of 
the hole trick. The other part is the omission of the interaction between 
the two opposite particles during a process of pair creation or annihilation. 
but that entirely belongs to Q3' The H~revised wave operators become 

(ys ltl'Hlxtl = .2'(1 +; 1 ysD/2 (ys 1'tJl l.u)(.u lat Ixtl 
Cu) 

+ .2' (1 - ; I ys 1)j2 (ys I 'tJl I.uH xt 1 alp). 

1 xtltliJi·1 ys)=.21 xt l al.u) (.ut I ys) (1 + ; 1 ys 1)/2 
(,,) 

. (lOH) 
(1') 

+ .2(plat lxtl (.u I 'tJlt I ys) (1-;lysl)/2. 
tul 

They are HERMITIAN adjoint to each other. In S2 representation they 
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satisfy the "hyperquantized wave equations" (19) or (19'). In the same 
representation they satisfy the commutation relations 

[(ysltfJnlxtol.lxtoltfJJly' s')]:!:=I rol
l 1 (yslV'nl,u)(,uIV'!ly' S')Sn l 

(/I) ~ ys ( ) 
• 45 

= ,2'(ys I 1J'n I ,u){,u IV'!I y' s') 1 Sn. etc. 
(/I) ;IY'$'I 

The upper factor refers to F~D statistics. the lower factor to B-E 
statistics. 

4.3222 Spin and statistics. The right hand part of (45) is equal to the 
required form ( 44) for half-odd spin (11 = I) only in case of F-D 
statistics, for integer spin (11 = ;) only in case of B-E statistics. The 
theoretical derivation 7) of this connection between spin and statistics. 
which is due to PAULI and BELINFANTE. is based on 

bi PAULI'S postulate (cf. 4.22); 
b2 the H -revision (hole trick). 

bi is not satisfied by our preliminary wave operators defined by (10). 
b2 has neither been performed in our preliminary picture nor in its D­
modified form, whichis equivalent to DIRAc' s 1942 theory. The necessity 
of bi and b2 has not been unshakably established. bi and b2 are sufficient 
but not necessary conditions for the connection between spin and statistics. 
The latter connection is the only point. which is directly backed by 
experimental evidence. 

4.3223 H-revised operators. In order to make (17). tI7 t ) isomorphic 
with the corresponding expressions in the current theories, they have to 
be written with the H -revised wave operators and the factors 11 have to be 
dropped. IE the same is done with (12), (12t ), the relation (16) remains 
unaltered. But the substitution operators and the particle operators are 
essentially changed. 

4.32231 Substitution operators. The former are revised in such a way 
that: 

S H The H -revised creation/ annihilation substitution operators differ 
from the preliminary on es in so far as, when taking out/inserting a 
negative energy function in (ys), the latter insert/take out the 
corresponding function in (xt) or (xto). but the former take out/ 
insert the charge conjugated function in (xt) or (xto); further the 
H-revised creation operator gives an extra factor -1 if it takes out 
a negative density function in (ys). 

4.32232 Partiele operators. The particle operators are essentially changed 
by the H-revision. That makes that the whole theory is essentially changed. 
This change is not a matter of quantization, it is only a result of the hole 
trick (which moreover omits the interaction between the two opposite 
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particles during a process of pair creation or annihilation). The discussion 
of the change belongs to problem Q3' 

4.3224 Photons. In the photon case there is a slight complication, because 

both factors of the density operator (~ ft - ~ gt) grx.;3 in 3.42 are indefinite. 

One way to meet with these difficulties is to perform the interchange of 
creation and annihilation operatore of "charge" conjugated states for those 
negative energy functions, which are positive vectors, and for those positive 
energy functions, which are negative vectors. There are other ways. None 
of these ways has been followed in the current theories, for the current 
theories do not ask for an explicit realization of the wave operators. In fact 
they need not and that is also why the theory is ultimately independent of 
the choice of j" in 3.42. As a starting point of quantum electrodynamics 
one can take the commutation relations and they do not depend on ja . Then 
the usual course is to choose a time axis and to perform a transformation, 
which eliminates the scalar and longitudinal field operators, so that only 
the transverse on es are left. Because they are space-like, there are no 
further difficulties with the indefinite metrical tensor. (In our way of 
reasoning we might say that ja is chosen in the direction of the time axis). 
Though this representation depends on the choice of the time axis, the 
processes which it describes do not. So the theory is ultimately (in its 
observable consequences) invariant and independent of ja . 
4.4 Half-odd and integer spin. One remark might be added about the 
characteristic difference between half-odd and integer spin in problem Q1' 

The differential operator K{xt} is (in particular in the time coordinate) of 
lst order for haH-odd spin and of 2nd order for integer spin. The density 
operator is a zero order differential operator, which is even equal to 1, in 
the first case. It is a Ist order differential operator in the time coordinate 
and even indefinite in the second case. The different density operators 
can be regarded as characteristic for the difference between the two cases. 
The 2nd order wave equations for integer spin can be reduced to 1 st order 
equations of more complicated wave functions as (28) and (32) . This gives 
for various purposes a simpier description indeed. But it does not reduce 
the density operator to 1. It is this density operator, which can be hold 
responsible for many of the complications in case of integral spin. 

5. Conclusion. 

5.1 Plus and minus troubles. Not all difficulties mentioned in 1.3 could 
be shifted to problem Q3 and none of them has been solved. Those of 
1.311 appeared already in our preliminary picture in case of integral spin, 
those of 1.312 and ·1.32 only in its H -revised form. 

5.11 Distinction of negative states (dd. We have postulated an operator 
1/. which is + 1 for positive and - 1 for negative density states and an 
operator ç, which is + 1 for positive and - 1 for negative energy states. 
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These operators have only been determined in case of free particles and 
their existence in pres en ce of hard extern al fields has not even been 
warranted. 

5.12 Elimination of negative states (d2 ). In the ordinary quantum theory 
of particles we have multiplied the original indefinite density operator by 
11. In this way we have provisionally brought about an artificially definite 
metric in HILBERT space. 

In the H~revision the negative energy states have been attended by 
means of the hole trick. 

5.2 "Superquantization". 5.21 Wave operators. By introducing creation 
and annihilation operators and wave operators we have brought the ordi~ 
nary quantum theory of particles in "superquantized" form. The wave 
operators form an indispensable tooI for describing interaction processes 
in which particles are created or annihilated (e.g. P2 and Ps). 

The wave operators have first been defined preliminary by (10). 

5.22 Present theories. 5.221 DIRAC's 1942 theory. In order to obtain 
DIRAC's 1942 theory we had to rede fine the wave operators according to 
the D~modification: 

D the operators 11 {ys} are taken up in the creation wave operators. 

Then the original indefinite density operator is left unaccompanied by 11. 
That makes the artificially definite metric look indefinite. 

Though DIRAC' s 1942 theory is the youngest of the present theories. its 
starting point is the most primitive. The discussion of its consequences 
belongs to Qs. 

5.222 Hole theories. In order to obtain the older current theories we had 
to apply the H ~revision: 

Hl creationjannihilation operators of negative energy states are replaced 
by annihilationjcreation operators of the charge conjugated states; 

H 2 the operators 1j(Ys} are replaced by 1. 

Again the original indefinite density operator is left unaccompanied by 11. 
Contrary to the D~modification. the H~revision makes a real change in the 
theory. This change is not a quantization process. 

5.23 Quantization processes. Thus our picture of the quantization pro~ 
cesses is: 

PQ Starting from classical particle theory. ordinary particle quantization 
is the first and only step of quantization. The ordinary quantum 
theory of particles is equivalent to DIRAC'S 1942 theory. If after~ 
wards the hole trick is performed we get the hole theories. 

FQ Starting from classical field theory. field quantization is the first 
and only step of quantization. The quantized field theory is equi~ 
valent to ordinary quantum theory of particles. 
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Therefore all present theories are equivalent with ordinary quantum 
theory of particles in w hich in some cases (hole theories ) the hole trick 
has been performed. None of them contains a second step of quantization. 
which goes beyond the first step. 

Summary. 

It of ten appears that one is not always clearly conscious of the 
relations between ordinary quantization of classical particle theory. 
quantization of classical field theory and superquantization of ordinary 
quantum theory of particles. In this paper the situation has been looked at 
from a perhaps unorthodox point of view. All present quantum theories 
can without a further process of quantization be derived from ordinary 
quantum theory of particles. The latter is already equivalent with 
DIRAC's 1942 theory. The older current theories can be obtained by 
performing a trick. which is not a matter of quantization and which is 
characteristic for hole theories . 
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