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CORPUT.) 

(Communicated at the meeting of October 30. 1948.) 

L. RÉDEI and A. RÉNYI called the set of integers al. a2 • •••• ak(n) in their 
paper I) a difference-basis with respect to n if every positive integer Y; 

0< Y <: n can be represented in the form Y = ai - aj. Let n* = min k(n) 
denote the minimal value of k(n) for a given n. L. RÉDEI ancl A. RÉNYI 
proved. that 

1$) lim ~~ exists, 
n~oorn 

$ $ 

2$) lim * = inf in (inf denotes the greatest lower bound) 

3$) V 2 + 3i n :s; !~moo ;~ :s; l1 holds. 

Somewhat earlier A. BRAUER 2) considered the similar problem of a 

difference-basis al < a2 < ... < al(n) with respect to n. the elements of 
which satisfy the inequality 0 <: ai <: n; i = 1. 2 . .. .• n . In what follows 
difference-bases of A. BRAUER's type shall be called "restricted difference
basis with respect to n". 

L. RÉDEI proposed the following question: Let no = min l(n) denote the 
minimal number of terms of a restricted difference-basis with respect to n, 

minimum being meant Eor fixed n. Does the set of numbers ;~ converge to 

a limit? Further if the limit exists. how can it be estimated Erom above? In 
this no te we prove the following results: 

Theorem: ff no = min l(n) far fixed n, where l(n) denates the number 
of terms of a restricted difference-basis with respect to n, then 

I. no . 
Im -;;=- eXlsts, 

n~oo r n 

I· no . f no 
Im~= In Vn' 

V 2 + 3~ :s; lim ;~ :s; V~ holds. 

1) L. RÉDEI and A. RÉNYI. On the representation of 1. 2 ..... N by differences. 
Recueil Mathématique. T. 61. 1948. 

2) A. BRAUER. A problem of additive number-theory and its application in electrical 
engineering. Journ. of the Elisha Mitchell Scientific Society. Vol. 61. pp. 55-66. 
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Proof: Obviously if we can prove 10 ). then the inequality 

V2 + 3: ~ lim ;~ 
follows at on ce from 3*). Similarly it can be seen from 20 ) that 

lim ;~ ~ lim ;~ ~ V~. 
Namely the numbers O. 1. 4. 6 form a restricted difference~basis with 
respect to n = 6. therefore 

. f n* ---. f no --- 4 VB 
In in ~ In in ~ 16 = 3' 

Consequently it is sufficient to prove the statements 10 ) and 20 ). The 
following proof of these re su lts contains a new proof of 1*) and 2*) too. 
only the restriction 0 <: al <: n; i = 1. 2 •...• n must be omitted 3) . 

I. Consider a fixed value of n and denote 

al < a2 < ... < no : (0 ~ al ~ n ; i = 1. 2 •... no) • (1) 

the (restricted) difference~basis with respect to n. having a minimal number 
of terms. Further Iet us have N >- 7 (n + 1) and choose the prime p such 
that 

M = N - (n + 1) (p2 + p + 1) ~ O. • (2) 

Later we shall determine the exact value of the prime p. 
J. SINGER 4) has proved that there exist p + 1 integers bk; k = 1. 2 ..... 

p + 1 such that the differences bk - bi represent a complete system of 
residues modulo p2 + p + 1. We can choose these residu es bI' b2 • ••.• bp +l 

in such a manner that 

o ~ bI < b2 < ... < bp+I < p2 + p + 1 = m . • (3) 

Hence if 0 <: v <: m - 1 (v integer) there exist two residues bk and bi 
such that either v = bk - bi or v - m = bk - bi . 

Now Iet us consider the integers 

i = 1. 2 •...• n ; k = 1. 2 •...• p + 1 · (4) 

(IE 0 <: ai <: n; i = 1.2 ....• n then according to (2) we have 0 <: alm + 
+ bk < m n + m <: N). Every v; 0 <: v <: m n is the difference of two 
numbers aim + bk and ajm + bi. In fact put v= Vlm + V2. 0 <: VI <: n-1, 
o <: v2 <: m - 1. IE v2 has a representation V2 = bk - bi then al and 
a j shall be choosen so that v I = ai - a j. Consequen tly we obtain a 

3) Dur proof is similar to that of RÉDEI and RÉNYI. 
4) J. SINOER. Trans. Amer. Math. Soc. 1938. T. 43. pp. 377-385. 

and VIJAYARAOHAVAN-S. CHOWLA. Proc. Nat. Acad. Sci. India. Se ct. A. T. 15. 
1945. p. 194. 
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representation 'V = (alm + bk) - (ajm + bL). If however 'V2 - m can 
be represented in the form bk - bi then 'V = ('VI + 1) m + ('V2 - m) 
where 'VI + 1 <: n. Consequently th ere exists a pair al. aj with the property 
'VI + 1 = al-aj. Thus 'V = (alm + bk)-(ajm + bL)o Taking all these 
facts into account. it follows that the set of the integers alm + bk in (4) 
is a restricted difference-basis with respect to mn. 

Finally we consider the integers 

0.1. 2 •.... [YM]. N. N-[y M]. N-2 [y M] ....• N-([Y M]+ 1) [y M]. (5) 

(Every one of these numbers satisfies the condition 0 <: 'V <: N.) Obviously 

we can represent every satisfying N - [y M] ( [y M] + 2) <: 'V <: N as the 
difference of two members of the set (5). Taking into account the in-

equality [yM] > yM-l we obtain Erom (2) that 

N-[yM] ([yM] + 2) < N-(YM-l) (YM+l) = N-M+ 1 = n m + 1 

and thus N - [y M] ([ Y M] + 2) <: mn. Consequently every 'V satisfying 
mn <: 'V <: N is the difference of two members of the set (5). 

Therefore every 'V; 0 <: 'V <: N is the difference of two integers of the 
sets (4) and (5) respectively. That is to say. the union of the sets (4) and 
(5) gives a restricted difference-basis of N. The sets (4) and (5) having 

n (p + 1) and 2[yM] + 2 terms respectively. we obtain 

11. Hitherto we have for pand N only the restrictions N :> 7 (n + 1) 
and the inequality (2). Now we shall determine the exact value of the 
prime p . An immediate consequence of the prime nu mb er theorem is the 
following fact: If Ö > 0 and x:> x (ö). there exists a prime such that 
x <: p < (1 + ö)x. Therefore x 2 <: p2 < (1 + Ö)2x2 and thus 

x 2 + x + 1 <: p2 + p + 1 < (1 + ö) 2 (x2 + X + 1). 

Let us denote 

N e2 

(1 + (J)2 (x 2 + x + 1) = n + 1 and (1 + 15)-2 = 1- 36' 

Consequently if e> 0 is an arbitrary small fixed number. there exists a p 
such that 

( 1 - ;~) n ~ 1 ~ p2 + p + 1 < n ~ 1 

e2 

if only N :> N de. n). Thus 0 < M = N - (n + 1) (p2 + p + 1) <: 36 N 

that is to say we can choose p such a manner that 

. . • • . . (7) 
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if only N >- NdE. n). According to (2) we have N >- mn = n(p2 + 
+ p + 1) > np2 i.e. 

iN 
p < -y;; . . . . . . . . . . (8) 

if N >- 7 (n + 1). Taking into account that Ti -< n and the fact that n and 

e> 0 are fixed. we have no < ; -yN if only N >- N 2 (E . n). 

Consequently according to (6). (7) and (8) it follows 

No < ;~ -y N + ; -y N + 2 + no < -y N ( ;~ + e) 
i.e. 

No no 
-yN < -y;; + E • . . . • (9) 

for arbitrary smalI. fixed E > O. if only N >- N 3 (E. n). 

111. From the inequality (9) we have at once the estimate 

1-.- No :::::: no 
lm -y N ~ i;; + e 

for arbitrary positive E. Thus it follows 

and since the integer n is arbitrary we have 

Therefore 

I· No no :::::: I· No 
lm , /- :::::: inf ,/- ~ ~ --:;p- . 

rN ~ r n rn 

1-·- No -1· No -I· no _. f no 
lm -yN - lm -yN - Im -y;; -lD -y;;' 

Thus 1 0 ) and 2° ) is proved. the proof of 1*) and 2*) is clearly the same 
except that the condition 0 -< al -< n has to be omitted. 


