
Mechanics. - Damped ascillatians af a spherical mass af an elastic fluid. 
By J. M. BURGERS. (Mededeling Na. 59 uit het Laboratorium 
voor Aero- en Hydrodynamica der Technische Hogeschool te Delft.) 

(Communicated at the meeting of November 27. 1948.) 

1. Intraduction. - Professor BUNGENBERG DE JONG had asked me if a 
theoretical treatment could be given which would throw light on the 
results of his investigations on the oscillatory movements presented by 
certain soap solutions 1) . Since the most striking features of his beautiful 
experiments are the regularity of the observed oscillations and the geo
metrical pattern of the motion . it is natural that one should turn to the 
theoretica I work of LAMB on the oscillations of a viscous spheroid and on 
the vibrations of an elastic sp here 2) . It is the object of the following lines 
to consider in which way the theory developed by LAMB can be applied in 
a discussion of BUNGENBERG DE JONC's experimental results. and to get 
information concerning the phenomena responsible for the dumping of 
the motion. 

AIthough it is not possible to extend LAMB's classical investigations. it 
may be of help to the reader to substitute for his highly mathematical and 
rather abstract deductions a more simple and direct treatment. adapted to 
the particular cases investigated by BUNGENBERG DE JONG . These cases are: 

a) motion in concentric spherical layers or sheIls ; 
b) axially symmetric motions in meridian plan es. 

It will be assumed that the amplitude of the oscillations is small. so that 
velocities and accelerations can be calculated by means of the partial 
derivatives with respect to the time. Hence if u is any component of dis
placement. the corresponding velocity will be öujöt. the acceleration ö2uj(}t 2. 
wh ere these two quantities refer to the same point of space as does u 

itself. 
A few general remarks may precede the deduction of the equations. 
The fact that isochronous oscillations are obtained. proves that elastic 

forces are operative which are linear functions of the deformations. 
The general relation between the dimensions of the field of motion. that 

1) H . G. BUNGENBERG DE JONG. Elastic-viscous oleate systems. containing KCI 
(Part I). these Proceedings 51. 1197-1210 (1948). Parts 11 and III wil! appear in the 
next issues. 

2) H . LAMB. On the oscillations of a viscous spheroid. Proc. London Mathem. Soc .. 
13. 51 (1881) ; On the vibrations of an elastic sphere. ibidem 13. 189 (1882); On the 
motion of a vis co us liquid contained in a spherical vesseI. ibidem 16. 27 (1884); Hydro
dynamics (Cambridge 1932) . art. 354 (p. 637) and 356 (p. 642) . The elastic vibrations 
of a sphere are a lso treated in A. E . H. LOVE's Theory of Elasticity (Cambridge 1920). 
Ch. XII (p. 281). 
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is in the case considered the radius R of the spherical vessel. and the 
period T of the oscillation, can be deduced from the following argument. 
IE all linear dimensions of a given field of motion are changed in the same 
ratio, so that angles and angular displacements remain unaltered, the 
magnitude of the deformations will remain unaltered likewise; consequently 
the elastic stresses per unit area will remain the same. The resulting 
moment, e.g. over a spherical surface, changes proportionally with R3. As 
the moment of inertia of a spherical mass is proportional with R5, it follows 
that the angular accelerations produced by the elastic reactions will change 
proportionally with R-2. On the other hand, as angular displacements are 
not changed, angular accelerations must be proportional with T-2. Hence 
we must conclude that the period of the elastic oscillation will be pro~ 
portional to the radius R, as was found in the experiments. 

IE we keep to the case of oscillations which are not heavily damped, it 
will be evident that when viscous forces are present, depending 'on the 
rate of deformation, the viscous stresses per unit area will be proportional 
with T-l. The moment of the friction al stresses will be proportional to 
R3 T-l; and the angular accelerations or decelerations produced by them 
will be proportional to R-2 T-l, that is, to R-3. Hence with increasing 
radius R the decelerations due to viscosity will decrease in comparison with 
the accelerations due to the elastic reactions, and it follows that the 
damping per period will decrease with increasing R. This has the conse~ 
quence that the logarithmic decrement A of the oscillations will be pro~ 
portional to R-l. 

Damping can also be due to relaxation of the elastic stresses. This 
phenomenon is characterised by a constant of the nature of a time, the 
relaxation time, which is a property of the fluid and does not dep end on 
the period of the motion or the dimensions of the field. It follows that 
the effects produced by relaxation will increase with the period of the 
motion, and it is found that in such a case the logarithmic decrement 
becomes proportional to T, that is, to R. 

Damping finally can be a consequence of slipping of the fluid (more 
accurately: of the elastic system in the fluid) along the wall of the vessel. 
As the angular displacements are supposed to be the same, the linear 
displacements are proportional with Rand the velocity of slipping will be 
proportional to R T-l . IE we suppose that the frictional force per unit 
area called into play by the slipping is proportional to the latter quantity, 
its moment will be proportional with R4 T-l; the angular deceleration 
produced by it will be proportional with R-l T-l, that is, with R-2. Hence 
in this case the deceleration will be proportional to the elastic accelerations 
and it is found that the logarithmic decrement becomes independent of R. 

As will be seen from BUNGENBERG DE JONG'S account of his observations, 
a logarithmic decrement independent of the radius of the vessel has been 
found in the case of certain dilute soap solutions, while more concentrated 

solutions show a decrement proportional to the radius. 
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2. Motion in concentric spherical shells. - In order to show that a 
motion in concentric spherical layers, performing rotational oscillations 
about a common axis, is possible, we denote the angular displacement of a 
particular layer by q; (r, t). The shear along a paraBel circle at the angular 
distance () from the pole of the axis is th en given by: 

r = r sin () . àqJ/àr. . (1) 

The shearing stress ., acting across a spherical layer, in the direction of 
the paraBel circIes, will be a function of r. When ordinary elastic behaviour 
is present we must take: 

.=Gr. (2a) 

where G is the shear modulus. In the case where the elastic reaction is 
accompanied by viscous friction we may take: .= Gr +'] (àr/àt). (2b) 

with 1] = viscosity. H, instead of viscosity, relaxation of the elastic stresses 
makes itself feIt, we must write the relation between • and J' in the form 3): 

àr/àt = G (àr/àt) -1/2 

where J.. is the relaxation time. 

(2c) 

In the case of harmonie, or damped harmonie, osciBations we can write: 

q; = e,·t . <p (r) . (3) 

with v imaginary or complex. In that case: àqJ/àt = vq;, from which 
è}y/àt = v r. Equations (2a)-(2c) can then be brought into the general 
form: 

r=Lr (4) 

with either: 

L=G (Sa) 

or: 

L=G+v1] (Sb) 

or: 
L = G (1 + 1/'1'2)-1 ~ G (I-I/d) (Sc) 

corresponding to the th ree cases represented by (2a), (2b), (2c) respec
tively. The expression for L can also be adapted to more complicated cases; 
L will always be an algebraic function of v, independent of r. 

Introduction of (1) into (4) gives: 

r = Lr sin {} . àqJ/à1' .. (6) 

We now consider the motion of a ring-shaped mass of Huid, contained 
between two concentric spherical sheBs with radii rand l' + dl', and two 

3) Compare e.g. "Fir~t Report on Viscosity and Plastici~y", Verhand. Kon. Ned. 
Akad. v. Wetenseh., Amsterdam (Ie sectie) vol. 15, no. 3, p. 18 (1939). 



1214 

conical surfaces with semi-angles 0 and 0 + dO (compare fig. 1). The 

Fig. 1. 

resulting moment of the shear stress acting on the exterior and interior 
surfaces (described by the arcs AB and CD) of th is ring is: 

0(2:i'H3 sin2 8· 'I:)/or· drd8. 

As the moment of incrtia of the ring amounts to: 2]1; r4 sin3 0· (! dr dO, 
wh ere (! is the density of the fluid, its equation of motion takes the form : 

When use is made of (3) and eq. (6) is substituted for 1", it will be seen 
that both the exponentiai factor and the factor 2]1; sin3 0 drop out, 50 that 
we obtain: 

(7) 

The fact th at this equation does not contain the angle 0 proves that the 
angular dis placement cp of each spherical shell can be independent of the 
polar distance, 50 that each shell can move as a whoIe. 

We write: 

a 2 = - (!v2/L . 

which makes it possible to bring (7) into the form: 

;,. (r1 ~;) + a 2 
(1 q> = o. . 

(8) 

. (9) 

The solutions of this equation have been given by LAMB; with the omission 
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of an arbitrary constant factor the solution applicable to the present case 
(field extending to r = 0) is: 

flJ _ sin ar cos a r 
-0rV - (ar)2 · (10) 

We assume that the wall of the spherical vessel (radius R) is at rest. 
When there is no slipping at the boundary. the function cp must vanish 
for r = R. When slipping is possible. the angular displacement at the 
wall will be given by qJ . so that the linear displacement of the fIuid 
relative to the wall is equal to qJ R sin (J and the velocity of slipping will 
be given by: (öqJ / öt) R sin (J = '/IqJ R sin (J . Introducing a friction coeffi~ 
cient u. we assume the relation: 

(I)R = - u v qJ R sin (). . . (11) 

Making use of (6) we find: 

L (dflJ/dr)r=R + U '/I CP(R) = o. . . . . (12) 

Inserting the expression (10) for cp and writing. for shortness. aR = C. 
th is equation can be transformed into: 

tg C - C = - (Lju '/I R) W tg C - 3 tg C + 3 C). · (13) 

We suppose that u is large. so that slipping will be no more than a small 
disturbing effect. The solution of (13) will th en differ only slightly from 
the solution of tg C = C. the first root of which is 4.493 . This first root 
corresponds to the most simple type of motion . which was observed by 
BUNGENBERG DE JONG in his "rotational oscillations". We shall distinguish 
the values of C. a. '/I and T for this type of motion by the subscript o. We 
then write Co = 4.493 + 6Co on the left hand si de of (13) and Co = ' 4.493 
on the right hand side which has the large value of u in .the denominator; 
this gives: 

. (13a) 

With the aid of this result we ob ta in the following expression for the 
root of (13): 

ao R = Co = 4.493 (1- L/x"oR). 

Now equation (8) gives us: 

ev~ _ 2 _ (4.49)2 ( L)2 -L --aO-- - R2- l--
R 

. 
u '/10 . 

Three cases will be considered. 

· (14) 

· (15) 

(I) Damping through viscous forces (I, = (Xl ; u = (Xl ) . in which case L 
is given by (Sb). Equation (15) becomes: 
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from which the following approximate value of Vo is obtained: 

_.4.49 liG (4.49)2fJ 
Vo -, R r e - 2 R2 e . 

The period T 0 and the logarithmic decrement Ao become: 

2nR lle 
To= 4.49 r TI ; 

A - 4.49nfJ 
o-R-YGe' 

(16) 

(11) Damping through relaxation (fJ = 0; " = CD), in which case L is 
given by (Sc). Equation (15) becomes: 

v2 __ (4,49)2 G (1- _1 ) 
0- R2 e voÀ. • 

giving the approximate solution: 

vo=i4~91/~ - dÀ.' 

The period T 0 and the logarithmic decrement Ao become 4) : 

2nR lri 
To= 4.49 r G ; (17) 

(lIl) Damping through slipping. We take fJ = 0; À. = CD but retain ", 
and use eq. (Sa) for L. In this case eq. (15) takes the form: 

v2 __ (4,49)2 G (1- _~)2 
o - R2 e " Vo R . 

4) The accurate equation for the calculation of Vo in the case of damping through 
relaxation has the form: 

lts roots are: 

from which: 

If we write: 

. V('I.'I9)2 GIl 
Vo = ± I R2 e - 'I }..2 - 2}.. , 

~ (1.19)2 G2 1 ?_1/, 
Tob. = 2:n: ( R 2 e - 'I J.2 ~ ; Aob. = TObs/H. 

2:n:R '; 
Teorr = '1.'19 V G' 

the following relation exists between T eorr and Tob.: 

Teorr = Tob. I 1 + (Aob./2 ",)21-
1

/ •• 

This formula has been applied by BUNGENBERG DE JONG in those cases where a more 
accurate determination of the shear modulus G is desired. 
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giving the approximate value: 

_.4.191 / G G 
Vo - ! R V e - "R' 

The period T 0 and thc logarithmic decrement Ao now become 5): 

21lR 1 re 
To= 4.49 I C;; 

A _ 21l YGe 
0-'1.49 " . 

(18) 

3. Motion in meridian planes. - The discussion of this case is less 
simple than that of the former one. However, as the fluid can he considered 
as incompressible (the shear modulus proves to he very much lower than 
the modulus of compressibility can he expected to be) . we may take the 
equations of motion of an elastic body in the form 6): 

( 19) 

where the Wi are the components of the rotation (not of the rotational 
velocity, or vorticity, which is given by àWi/ àt) of an element of volume 
of the fluid , with respect to rectangular coordinates; 6, is the Laplacian ; 
and L is the same quantity as in (4) and (5a)-(5c) . 

Motion in meridian places can he descrihed with the aid of a function 
'!jJ (r, (J , t), analogous to STOKES' stream function used in hydrodynamical 
prohlems with axial symmetry. The components of the linear displacement. 
defined with respect to spherical pol ar coordinates, are given hy: 

1 à'!jJ -1 à'!jJ 
u r = r2 sin B à () ; U I) = r sin () (k" (20) 

and the only component of rotation (rotation in the meridian plane about 
an axis perpendicular to that plane, that is, tangen tial to a parallel circle) 
becomes: 

We assume: 

W = et . Q (r. B). . (22) 

5) The deduction of more accurate formulae for this case leads to certain complications 
which require careful inspection. It is hoped to come back to this point in connection with 
the IIlrd part of BUNOENBERO DE JONO's paper (to be published in one of the following 
issues of these Proceedings). 

0) This form corresponds to that used in hydrodynamics for a number of problems of 
slow motion. wh en terms of the second degree in the velocities can be neglected. The 
hydrodynamical equations for that case are obtained from (19) if L is replaced by 
1) (% t) . 

For several of the formulae used in the text the reader may be referred to the analogous 
hydrodynamical equations as given in S. GOLDSTEIN, Modern Developments of Fluid 
Dynamics (Oxford 1938), vol. 1. pp. 103-105 and 114-115. 
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In applying eq. (19) to the system of spherical polar coordinates used 
here, we must keep in mind that the W defined by (21) is directed along 
the tangent to a parallel circle and thus has a different meaning from the 
rectangular comportents WI used in (19). Whereas in the case of a scalar 
quantity W the Laplacian would be given by: 

_ 1 0 ( 2 OW) 1 0 (. OW) 
l::" W - ~ or r or + r2 sin () 0 () sm () o{) . 

we must now add to this expression the amount - w/r2 sin2 0, cor~ 

responding to the derivative of the second order taken in a fixed direction 
normal to a particular meridian plane, of the component of w along that 
norm al 7). With this addition eq. (19) takes the form: 

o ( 2 o,Q) + 1 0 (. Ll OD) D 2 2 n - 0 
or r or sin () o{) sm 0 00 - sin2 e + a r :'4_ 

(23) 

where a2 is the same quantity as defined by (8). 
We look for solutions of the type: D = h(r) . k(O). Introducing a 

number m to be determined afterwards. it is found that the function k (0) 
must satisfy the equation: 

k" + k' cot O-k/sin2 0 + m k = O. 

IE we put: k = dl! dO, where 1 (0) is another function of O. we find that 1 
must be a solution of the equation of the Legendre functions: 

i" + i' cot 0 + m i = O. 

The constant m must have one of the values n(n + 1). n being an integer, 
if we desire solutions which are regular in the domain 0 <: 0 <: n with the 
endpoints included. The cases corresponding to BUNGENBERG DE JONG'S 

"meridional oscillations" and "quadrantal oscillations" respectively. are 
obtained with: 

n=l 
n=2 

m=2 
m=6 

11 = cos () k l = - sin () 

12 = ï cos2 {)-t; k2 = - 3 sin () cos e. 
The corresponding equation for the function h becomes: 

r2 h" + 2 r h' + (a2 r2 - m) h = 0, 

and its solutions for the cases mentioned are: 

n=l m=2 hl = sin ar _ cos ar 
(ar)2 ar 

n=2 m=6 
h _ (3-a2r2) sin ar _ 3 cos ar 

2 - (ar)3 (ar)2 . 

7) When the meridian plane is taken as x,-y-pJane, we can write Cl}z = Cl} cos lP 
(cp being the position angJe of a point, measured from this plane). We then have: 

t:;, Cl} z = cos cp . t:;, Cl} - ho (2 sin cp ~ Cl) + Cl} cos cp) • 
rstnv ucp 

which re duces to the termsgiven in the text when cp is taken zero. 
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We must now find lp from (21). To th is end we write: 

1f1 = e,·t. 'P(r. 8) = e,·t H (1') K(8). 

Af ter some calculations the following expressions are obtained: 

n = 1: KI = sin2 8 

n =2: K2=3sin28cos8; 

Hl =-ar hl +CI (a 1')2 ~. 

H 2 = -ar h2+ C2(arp \ 

where Cl and C2 are integration constants. 

. (24) 

(25) 

The following boundary conditions must be observed. In the first place 
the radial velocity of the fluid must be zero at the wall of the spherical 
vessel; this requires P to become a constant for l' = R. which necessitates 
that H (R) shall be zero. This condition fixes the va lues of the constants 

Cl ' C2 · 

The velocity of slipping along the wall is then given by: 

(
Ouo) ( v 01f1) 
at r=R=- rsin8 ~ r=R' 

and the equivalent of cquation (11) takes the form : 

(-lrO)r=R = - X (OÀ
UO

) . 
ut r=R 

(26) 

The shearing stress '/: ' 0 appearing in this equation is given by the formula: 

'/:r o =G~r~(Uo)+~OUr~=G~ _ _ r ~ (!01f1)+!~(_1 01f1)L 
? or l' r 08 ~ ? sin 8 or 1'2 Or 1'3 08 sin 8 0 8 ~ 

When the expres sion (24) is inserted for 1f1 and attention is given to the 
fact that the function H(r) vanishes for l' = R. the following equation is 
obtained. w hieh takes the place of eq. (12) in the case of section 2: 

d 2 H 2 dH x v R 1 dH 
d (ar)2 - ar d (ar) + L ar d (ar) = 0 (for l' = R). . (27) 

The case of no slipping is obtained by making x infinite. in which case thc 
condition becomes: dH/ d(ar) = O. This gives: 

for n = 1 (meridional oscillation ) '1 = 5.76 

for n = 2 (quadrantaloscillation) 1;'2 = 6.99. 

In the case of a finite (but large) value of x we write: ' 1 = 5.76 + 6'1; 
'2 = 6.99 + 6'2' It is found that for both values of n thc correction is 
given by the expression: 6' = - LU xvR. so that the roots of eq . (27) 
become: 

for n = 1 : al R = 'I = 5.76 (l-Ljxvl R)( 
for n=2: a2R=t;2=6.99(I-Llxv2R)~ . (28) 

We can now calculate the values of V 1 and V2 and the corresponding 
periods and logarithmic decrements. in the same way as was do ne at the 
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end of section 2. It will be seen that the only difference is the substitution 
of the numerical factor 5,76 (for the meridional oscillation) or 6,99 (for 
the quadrantal oscillation) in the place of the factor 4,49. It follows that 
the period of the oscillation is decreased in such a way that: 

Trot/Tmer = at/ao = 1.282 

Trot I Tquadr = a2/aO = 1.556. 

Having re gard to (17) and (18) it is further seen that both in the case 
of damping through relaxation and in the case of damping through slipping 
the logarithmic decrement changes in the same ratio as the period. The 
way in which the decrement depends on the radius is not changed when 
we pass from the rotational oscillations to the meridional or the quadrantal 
oscillations. 

4. Magnitude of the shear stress. - Numerical data concerning the 
shear modulus G, the relaxation time ), and the coefficient of friction :x 

operative in slipping will be given in BUNOENBERO DE JONO'S papers. 
It may be of interest to have an estimate of the magnitude of the elastic 

stresses active in the system. This can easily be obtained for the case of 
the rotational oscillation. The angular displacement is given by the formula: 

l'tI _ A sin ar - ar cos ar -t/2< 211: t 
't' - (ar)3 e cos T ' 

A being a coefficient determining the amplitude. Leaving aside the time 
factors, the linear displacement at () = 90° is determined by: 

r cp = A sin ar - ar cos ar. 
a (ar)2 

The maximum of this expression is found in the neighbourhood of r = -! R. 
that is ar = 2,25, giving 0,433 AI a = 0,096 A R. Hence if we write a 
for the maximum deviation actually observed, we shall have: A = 10,4 aiR. 

The maximum value of the shearing stress is found at the wall of the 
vessel, at () = 90°. Equation (2a) gives (when the time factor is again 
left aside): 

_GR!i~ASinar-arcosar~ _GAsinaR_0217 GA 
1'max - d ( )3 - R - , . r ar r=R a 

With the value of A given above there results: T max ~ 2,25 GaIR. 
According to a footnote to BUNOENBERO DE JONO'S second paper, the 

deviation from the equilibrium position at the moment the determination of 
the damping ratio was started, amounted to ca. 3 mm, but larger deviations 
had 'been observed before that instant. IE we choose a = 5 mm = 0.5 cm in 
a vessel of 7.5 cm radius. we Eind: 

1'max ~ 0,15 G. 
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Résumé. 

Afin d'obtenir des formules qui puissent élucider lës résultats obtenus 
par BUNGENBERG DE JONG dans ses expériences sur les oscillations 
élastiques présentées par certaines solutions d'oléates (v. I'article 
précédent), il a été donné dans l' article ci~dessus une déduction directe 
de certaines formules de LAMB pour les oscillations d'un fluide élastique, 
con ten u dans un réservoir sphérique. En même temps on a calculé Ie degré 
d'amortissement, provoqué soit par une résistance visqueuse, soit par 
rélaxation des tensions élastiques, soit par un glissement du fluide Ie long 
du paroi du réservoir. 

On trouve que la période des oscillations est toujours proportionelle au 
rayon du réservoir. O 'autre part Ie décrément logarithmique dans les trois 
cas se comporte différemment: Ie décrément est inversement proportionnel 
au rayon dans Ie cas d'une résistance visqueuse, directement proportionnel 
au rayon dans Ie cas de rélaxation, et indépendant du rayon dans Ie cas de 
glissement. Le deuxième cas est présenté par les résultats obtenus par 
B UN GENBERG DE JONG avec des solutions d'oléates à concentration supé~ 

ri eu re à ca. 1,1 %' Ie troisième pour des solutions à concentration inférieure 
à ca. 0,9 %. 

Les calculs ont trait aux trois formes d'oscillations observées: rotationel~ 
les, méridionales et quadrantales. 

Resumo. 

Por trovi formulojn kiuj povos klarigi la rezultojn de la esploroj de 
BUNGENBERG DE JONG rilate al la elastaj osciloj kiujn montras iuj solvajoj 
de oleatoj (vidu la antauan artikolon). oni donas en la êi~supra artikolo 
rektan derivadon de kelkaj formuloj de LAMB por la osciloj de elasta 
fluidajo entenata en sfera vazo. Samtempe oni kalkuIas la gradon de 
amortizo, kauzitan tu per viskozeca rezisto, êu per perdo de elastaj 
stretoj , êu per glito de la fluidajo lau la paria de la vazo. 

ani trovas ke la periodo de la osciloj tiam estas rekte proporcia al la 
radio de la vazo. Kontraue, la logaritma dekremento kondutas diference 
en la tri kazoj: la dekremento estas inverse proporcia alla radio en la kazo 
de viskozeca rezisto, rekte proporcia al la radio en la ka zo de stretoperdo, 
kaj nedependa de la radio en la kazo de glito . La duan kazen prezentas 
la rezultoj akiritaj de BUNGENBERG DE JONG kun solvajoj de oleatoj de 
koncentriteco pli ol cirkau 1,1 % a, la trian tiuj kun solvajoj de koncen~ 
triteco malpli ol êirkau 0,9 % a . 

La kalkuloj rilatas al la tri observitaj formoj de osciloj: rotaciaj, meri~ 
dianaj kaj kvadrantaj. 


