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9. The strictionsurface of a non~degenerate D~system. 

The strictionpoint at a rule 2! of a regulus is the intersection with the 
common perpendicular of 2! and a rule infinitesimally near to 2!. It is the 
origin of the Blaschke~system of the regulus. which is also the invariant 
'orthogonal system of the related D~system at the considered line. The 
strictionsurface of a D~system is the locus of strictionpoints of the reguli 
in the D~system. It is the locus of origins of first invariant orthogonal 
systems of the D~system. 

We first determine the strictionpoints on the lines 2! (T) = 2! (t) + 
+et~(t) = 2!(t) + etP(t) 2!dt) (t fixed. t variabIe) of a D~system. 
These strictionpoints lie in the plane 2! (t) . 2!2 (t). and on the lines (resp.) 

These strictionpoints are therefore the points of the line 

q \ll + p212 • 
V (p2 + q2) = cos q; . \ll + SlO q; • \ll2 (T = t) . 

The strictionsurface of the D~system is the ru led surface 

Cl) q \ll + P \ll2 ilY. 
"l (t) = V (p2 + q2) = cos q; . ~ + SlO q; . \ll2 . . (16} 

The line 2!d T) is at the line 2!( T) perpendicular to any of the striction~ 
curves of the reguli in the D~system . Hence 2!1 (T) is a norm al of the 

strictionsurface. 2!1 (t + et) (t fixed. t variabIe) has a constant direction 
ad t) . The surfacenormals along a rule of ffi (t) have constant direction 
and so ffi(t) is deve1opable. 

Theorem 7. The strictionsurface of a non~degenerate D~system 2!( T) 
is a developable regulus. The D~system 2!1 (T) consists of the normals of 
this strictionsurf ace. 

10. The intrinsic equations of a D~system 5). 

\ll ( T). representing a D~system. was assumed to be analytic: 

5) Compare: BLASCHKE [3]. DWINGER [4] . 
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From the equations (9). and equations obtained by derivation with respect 
to T from (9). ~(T) is seen to be determined by ~(O). ~dO). ~2(0). 
P(T)andQ(T) (or <I>(T)) . (~~1~2)(0) can be transformed into any 
other equally oriented orthogonal system by a motion. The D-system is 
therefore. but for a motion. determined by the "intrinsic equations" 

P=P(T). Q=Q(T) . (17) 
or also by 

P = P(T). lP = lP (T) ((9) and (11)) (17) 

A non-degenerate D-system can be represented with the help of the in
variant dual parameter. We get one intrinsic equation: 

lP = lP (5) . (18) 

In § 3 we stated that D-systems are in better analogy with sphere-curves 
than reguli. Indeed: a non-degenerate D-system can be characterised 
intrinsically by one equation (18) . analogous to an intrinsic equation of a 
sp here curve. This is not true for a regulus (with invariant b; § 6). 

11. The second invariant orthogonal system at a line of a D-system. 

In the theory of threedimensional curves an invariant orthogonal system 
r at a point of a curve consists of the tangent. normal and binormal. The 
first invariant system of § 4 is not strictly analogous to th is system. It was 
possible to choose it because we consider dual unit vectors . We caB the 
system r analogous to r. the second invariant orthogonal system at a line 
of a non-degenerate (assumed) D-system. The three mutually perpendicular 
and intersecting axes of this system are (~= ~(S)) 

2( = ~I' 21; = 21dV~(~. 21; = ~I X~; (19) 

It is related with the first system as follows (11)) 

~l; = - sin lP . 21 + cos lP . ~(2 ~ 

~l; = - cos lP . 21 - sin cp . ~2 (= - 6) ~ 
(20) 

The formulas analogous to the formulas of FRENET-SERRET for th ree
dimensional curves are (( 11 ). (19). (20). (9)) 

lli l = C21; 

lli; = -- C21 1 

lli; = -T~i 

cosec lP~; . ! 
+ T21; = - cosec lP· 21 1 + cP~; 

-q,~i 

(21) 

C = cosec <I> is the dual curvature of the non-degenerate D-system; T = <Î> 
is the dual torsion. We have the formula: 

d 
dual torsion = dS cosec l (dual curvature) . (22) 

D-systems for which the dual tors ion vanishes. have a constant dual 
curvature. Their momentanous axis el = -~; is constant. They are 
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analogous to circles, and each consists of Hnes whieh have a constant dual 
angle with a constant Hne. IE this dual angle is qJ = '/t12 + E· 0 then 
consists ,~(S) of the perpendieulars to a Hne. Such a D~system is analogous 
to a geodesie on the sphere. IE we take two non~paralle1 non~intersecting 
Hnes of the "geodesie D~system", th en there exists a doubly infinite set of 
Hnes in the D~system, for any of whieh in combination with the given Hnes 
the triangle~equaHty holds (6). 

(21) can be considered as the system of equations (9) with respect to 
the D~system ~; = - es. The invariant parameter of ~; is - qJ (+ K). 
Under the assumption that ~3 is not degenerated, the equations (11) 
for~; become ((see (21)) 

(
d6 _) d~l; = 
dqJ - d-qJ 

d~i =-m; 
d-(/) 

d~1 
d-qJ -

The formulas (11) for the enveloped D~system es = -- m:; are 

d6 
d(/) -

d61 __ 
6 d(/) - . (23') 

The angle qJ(2) between a mIe of the "enveloped D~system" es and its 
momentanous axis es(2), arclength of es(2), is obtained from (23') and (11): 

co tg (/)(2) = - cosec (/) I~: l. 
. (24) 

~(2) _ d cos (/) 
tg'F - dS 

(24) is analogous to the following formula for a Euclidean plane curve 

, dr 
r =r ds 

s is the arclength of the curve, r is the radius of curvature of the curve, 
r' is the radius of curvature of the evolute of the curve. 

From (20),(23), (23') we get: 

6 = cos qJ . m + sin (/) . ~I' 6 1 = - sin (/) . m + cos cp . m2 ~ (25) 

m = cos (/). 6 - sin qJ • 6 1 ~ 
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12. Osculating D-systems. 

In general one can de fine the n-th enveloped 0(n) (T) of a D-system 
~(T). if it exists. inductively by: 0(k+1l(T) is the enveloped D-system 
with respect to the developed D-system 0(k) (T) . k = O. 1 ... . n - 1. 
A generalisation of the formula (24) is 

t 
...... (k+l) _ d cos rIJ(k) __ . ......(k) d c!J(k)/d rIJ(k-l) 

g'P - d 4i(k-l) - Sin 'P dT dT . . (26) 

4i(i) (T) is the dual arclength of 0(i) (T). 
The existence of the n-th enveloped at a line of a D-system. admits us 

to construct a rat her simple D-system which osculates of order n with the 
given D-system at the considered line. 

Two non-degenerate D-systems ~ (S) and )8 (S) are said to osculate of 
order n at the line S = O. when (compare SABAN [9]) 

. di ~ di 'iS 
21 = 'iS and d Si = d Si i = 1. .... n + 1 S = O. 

equivalent to: 
di cp di 4ib 

21= 'iS. m1='iS1• rIJa=rIJb • dS
a=dS;i=I. .... n-l S=O. 

equivalent to (( 25) and equations obtained by differentiation of (25)): 
m _ m In - m ...... _...... ......U) - ...... Ul • . - 2 n S - 0 
:a - "U. :al - "UI. 'Pa - 'Pb. 'Pa - 'Pb • 1 - ••..• -. 

equivalent to: 

m _ffi ~U) - ~U). '-1 n 8-0 :a-;u. 0a -Ob. 1- ••••• -. 

A rather simple D-system which osculates of order n with a given D-system 
~(S) with existing n-th developable at the line S = O. is the D-system 
)8(S) for which: 

'iS (0) = 21 (0). 6~) (0) = 6~) (0) ; i = 1 •...• n-l. 6~) (8) = 6~) (0). 

hence also 

4i~) (0) = 4i~) (0) ; i = 1 •...• n-l. 4i~) (8) = 4i~) (0). 

Examples. 

1) A simple D-system which osculates of order 1 with a non-degenerate 
D-system ~ (S) at the line S = O. consists of the lines that make the same 
dual angle K = 41(0) with 0(0) as ~(O). 

Putting: 
0(0) = (0. 0.1). ~(O) = (0. sin K. cos K) 

the required D-system is found to be: 

)8 (8) = (sin .8K · sin K. cos .8
K 

. sin K. cos K) . (27) 
Sin Sin 

2) ~(T) be a D-system with a non-degenerate enveloped D-system. 
We want to construct a simple D-system which osculates of order 2 with 
~(T)' at the line T = O. 
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Let 10(2)(0) = (0,0,1),10(0) = (0, sin A, cos A). A = «1>(2)(0). 
The dual angle between ~(O) and 10(0) be K. 
Then is the enveloped D~system of the required D~system: 

( 
«1>-K tP-K ) ~ (<<1» = sin . A . sin A , cos . A sin A, cos A 
sm sm 

(28) 

«1> is invariant parameter of <r and is also the dual angle between 58 (<<1» 

and <r ( «1> ), where 58 ( «1» is the required D~system. 
By differentiation of (28) we get: 

( 
«1>-K «1>-K) . 

~.( «1» = cos . A ' - sin . A ,0 . 
sm sm 

The' required D~system is found from (25): 

58 (<<1» = cos «1> . ~ (<<1»- sin «1> . ~I (<<1» = 
cos «1> . sin A . sin - sin «1> . cos -----,,-( 

«1>-K «1>-K 
sin A sin A ' 

«1>-K «1>-K ) cos (jJ . sin A . cos . A . sin (jJ . sin . A ' cos «1> cos A 
sm sm 

. (29) 

The formula is also applicable when ~ (T) is degenerate at T = 0 (the 

enveloped D~system of ~(T) however non~degenerate: K = 0 + Ek, 
A ~ 0 + eI). 

13. A formula of EULER-SAVARY and the analogue in linegeometry. 

A formula (f), like the formula of EULER-SAVARY (31) in the geometry 
on the sphere, reduces to a set (i) of rea I identities in real variables, when 
the involved entities (e ) are replaced by their definitions (d). The 
functional identities (i), hold equally weIl for differentiable functions of 
dual variables (§ 1; KUIPER [7] eh. 1), if only (assumption Z) we 
exclude those values of the duaI variables for which a division by a zero~ 
divisor would occur in the identities. Under assumption Z we can de fine 
entities (E) in linegeometry by definitions (D) analogous to (d). The 
defining formulas (D) are the differentiable duaI continuations of the 
formulas (d). The formula (F), analogous by differentiable continuation 
to (f), holds true Jor the entities (E). 

So here we have a method to construct. and at the same time to prove. 
formulas (theorems) on D~systems. 

Examples of entities (E) are the duaI curvature sin «1> (21) and the 
momentanous axis 10 of a D~system. An example of a formula is (24). 
According to the theory above, (24) follows without further proof from 
the formula for a curve on a unitsphere 

(2) d cos qJ 
tg qJ = --:---..:.... 

ds 
• (30) 
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S is the arclength in radials; tg cp. resp. tg cp(2). is the geodesie curvature 
of the curve. resp. of the evolute of the curve. (The evolute or developable 
is defined by a formula analogous to (13)). 

We will conclude with another application of the theory. namely to the 
formula of EULER-SAVARY on the sphere: 

co tg CPI-cotg cp = - (co tg CPI-cotg CPm) cosec tp. (31) 

This formula is related with the motion of a mobile unitsphere S m con~ 

taining a curve Cl. over a fixed concentric unitsphere Sf. The moving curve 
Cl envelopes a curve C of Sf. Those momentanous invariant points of Sm. 
with respect to which the velocity of Smis positive (compare the remark 
af ter (15); at each moment we have the choice between two invariant 
points). generate a curve cf on sf and a curve Cm on Sm. At the moment 
under consideration be p the invariant point of the motion. q the tangent 
point of Cl and c. tp + 11/2 is the positive angle between the tangent at p 
to cf and the tangent at q to c. both tangents equipped with the direction 
of increasing arclength. as seen from the direction of the outside-sphere~ 
normal at p. CPi. cp. cpf. cpm are the arclengths from p to the curvature~ 
centres of Cl' c. Cf. Cm. 

Pram (31) foIIows the analogous formula concerning linegeometry: 

cotg tPl - co tg tP = - (cotg tPl - cotg tPm) cosec IJl, (32) 

equivalent to the two rea I formuIas 6) 

j 
cotg epi - cotg cp = - (cotg cp 1- cotg CPm) cosec IJl 

- - - -
cp) CP. CPI CPm -

( -'-2- - -'- 2- ) sm'P = - - '- 2- + - '- 2- + tp cotg tp (cotg cp 1- co tg CPm) 
sm cp) sm cp sm CPI sm epm 

(cotg tP = cotg cp + e 7p d cotg cp I d cp = cotg cp - e ~ (2)) 
sm cp 

This formuIa is related with the dual motion of a mobile Euclidean three~ 
dimensional spa ce Sm. containing a D-system l~. with respect to a fixed 
space Sf. The moving l~ is at each moment T at one of its lines "tangent" 
to a D-system m: in Sf (1~=~. l~l = ~d. The moving l~{ "envelopes" 
~. The momentanous axes of the dual motion generate a D~system f~ in 
Sf and a D~system m~ in Sm. The dual motion can be considered as a 
development of the D-system m~ along the D-system f~. f~(O) is the 
momentanou's axis at a moment under consideration (T = 0). ~ (0) is the 
line at which ] ~ and ~ are tangent. 71/2 + IJl is the dual angle between 
f~dO) and ~dO). 

tPl' CP. CPf . CPm are the dual angles between f~(O) and the momentanous 
axes of l~. ~. f~. m~. 

If we restriet the dual variabIe. time T. to moments T = T(u) 

= t(u) + e t(u) (d t(u) / d u ~ 0). th en u can be considered as an 

6) Compare: VAN HAASTEREN [8] p. 59 formula 66; DISTELLI [2] p. 305 form. 74. 
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ordinary time-variable with respect to which an ordinary motion is 
determined. The results we may get are then stated in terms of reguli. 

These results are also obtained in [2] [5] [8] . 
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