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municated by Prof. L. E. J. BROUWER.) 

(Communicated at the meeting of November 27. 1948.) 

§ 1. Intl'oduction. 

Denoting the homogeneous coordinates of a point X in (n -1)
dimensional projectivc space Gn by (Xl' X2' .... Xn) and the space
coordinates of a hyperplane U, by (ut'. U2' • ... Un') one can use the short 
notations 

(xy ... z). (u'v' ... w'). (u'x) 

for determinants whose columns are the coordinates of the points 
X. y . ... Z. resp. of the spaces U'. V ..... W' and the linear form 

UI'XI + u2'u2 + .. , Un'Xn. 

The first fundamental theorem of the theory of invariants asserts. that 
every rational projective invariant of a system of points and spaces can 
be expressed in polynomia of these symbols only. The theorem holds also 
iE the points and spaces are mere1y symbolical. i.e. stand Eor variables, 
which are transförmed cogredient or contragredient. 

Between these symbols some relations are evident: 

I. As the determinant 

al •.. an (au') 

bI ... bn (bu') d b (d ') = et. al 2'" U, 

dl'" dn (du') 

vanishes. we have 

(ab ... c) (du') == (db ... c) (au')-(da ... c) (bu') ... -+- (dab ... ) (cu'). 

This identity shows. that (n + 1) points in Gn are linearly dependent and 
furnishes the homogeneous coordinates of d. the fundamental simplex 
being a. b . ... c. 

11. (ab ... c) (u'v' ... w') == det. (au') (bv') ... (cw'). 

111. Denoting the point of intersection of (n -1) spaces u'. v' . ... w' 

by Xi = (u'v' ... w')ï we have 

(ab ... cx) == (ab ... c (u'v' ... w')) == det. (au') (bv') ... (cw'). 

The second fundamental theorem of the theory of invariants asserts, 
that every relation between invariants can be deduced with identities of 
this form only. In order to avoid con fusion: in G 2 the determinants are 
written (ab). the linearform ax and the identities are th en 

(ab)cx == (cb)ax- (ca)bx. 
(ab) (xy) == axby-aybx. 
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This symbolical method has some disadvantages which can c1early be 
shown comparing the following examples. 

1. The proof of DESARGUEs~theorem for n = 3, n = 4. 
n=3. 

Two triangles being a, b, e and a, p, y and denoting the opposite sides 
of a, a, ... with a', a', ... we have 

((a'a') (b'P') (e'y')) = (((be) (Pr)) ((ca) (ra)) ((ab) (aP))) = = ((be) (ca) (ra)) ((Pr) (ab) (aP)) - ((Pr) (ca) (ra)) ((be) (ab) (aP)) = = (abc) (aPr) [(era) (bPa) - (era) (bPa)] - (abc) (aPr) ((cr) bP) (aa)). 

This shows, th at if a, b, e and a, p, y are not collinear triples, th en the 
eollinearity of the points of intersection of eorresponding sides is equivalent 
to the eoneurrence of the lines joining eorresponding vertices. 

n= 4. 

IE the lines of intersection of eorresponding planes of two tetraedra 
a, b, e, d and a, P, 1', Ö are coplanar, the lines joining the eorresponding 
vertices are concurrent. We have 

(d c) a a) = ((a'b' c') (a' P' 1") (b' c' d') (P',,' ö')) _ = (a' b' c' d') [(b' P' 1" c)') (c' a' P' 1") - (e' p' 1" c)') (b' a' P' ,,')] = 
= (a' b' c' d') (a' p',,' ö') (b' P' c' ,,'). 

which proves the theorem. 
In these two deduetions we find the highest degree of symmetry and 

no further simplification seems possible or neeessary. 

2. We ask for the equation of a eonic through five given points 
a, b, e, d, e in G3 . The peneil of conics through a, b, e, d ean be written 

(abx)(cdx) + l(aex) (bdx) = 0 

To obtain a final result, l has to be calculated from 

(abe) (ede) + À (aee)( bde) = 0 

and so 

(ace) (bde) (abx) (edx) - (abe) (ede) (aex) (bdx) = 0 

is an equation for this conic. The lefthand side is, however, invariant under 
the interchange of a and d or band e. Therefore we obtain a large number 
of equivalent left~hand~sides by permutation of a, b, e, d, e, the equivalence 
of whieh ean be proved by the identities quoted above. We ean remark, 
that the left~hand~side of the equation is the determinant formed from the 
points of intersection of opposite si des of the hexagon ace b d x, as this 
determinant is 

( ( (ac) (bd)) (( ce) (dx)) (( eb) (xa))), 

so the equation above proves PASCAL's theorem. 
The equation of the conic is in each of the variables of the second 
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degree, just as it has to be, and the only complieation that remains is 
here the great number of equivalent formulae whieh may cause a diHiculty: 
to choose the right identities necessary to prove the equivalence (in a most 
direct way). 

3. We ask for the equation of a PASCAL-line of the conie a, b, c, d, e, f 
e.g. that joining the points of intersection of ac, bd and ce, dl. 

We have then 

(((ac)(bd)) ((ce) (df)) x)= 

(ace) (cdf) (bdx) + (dce) (bdf) (acx) = O. 

Here again we obtain several equivalent lefthand-sides of the first 
degree in a, f, b. e of the second degree in c, d. As the PASCAL-lines 
describe a pencil oflines if one of the points moves along the conie, the 
other five remaining fixed there are one c and one d "too much". Here 
the situation is more serious: by identieal transformations the degree of 
each of the variables cannot be changed. The only possibility to eliminate 
superfluous elements is to transform the equation so as to split oH bracket
factors containing all superfluous elements. But with .two elements c, d 
no not vanishing bracketfactor can be formed: it is impossible to eliminate 
the superfluous c, d in the above equation of the PASCAL-line by identieal 
transformations. 

In order to remove the dissymmetry we must have a method whieh splits 
up the ternary brackets into symbols containing at most two elements. 

In higher dimensional spaces the abundance of equivalent forms becomes 
overwhelming and dissymmetries occur very of ten. 

The splitting up of the n-air bracketfactors can be obtained from a 
normalcurve in Gn. Be the curve in parametrie representation 

P t = (AU') a~-I = O. 

then the bracketfactor 

(PI Pk . .. PI Pm) = (AB . .. CD) a7-1 bZ-I ... c1-1 d':,,-I. 

As this form vanishes for i = k, i = I, ... I = m we have 

(PiPk ... PtPm) == const. I. (ik) (il) ... (im) ... (lm) 

where 

1 = (AB ... CD) (ab) ... (cd) . 

is the invariant, whieh vanishes if the curve lies in a Gk, k <: n - 1. 
A normal curve defines a polarity (incident for n = even, non-incident 

for n = odd) and specifying the hyperplanes by the parameters of the 
points of intersection with the normalcurve and th~ points by the para
meters of the points of intersection of the normalcurve with the polar
hyperplanes we can develop a symbolical method in whieh all the advantages 
are preserved "but new possibilities created by the breaking up of the 
determinant factors. 
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§ 2. (AU')a~. 

If A . ... U' are ternary symbols. a. a .... binary. we have a parametrie 
representation of a con ie in 

P t = (AU') a~ = O. 

For a given t we have the equation of the point of the conie; a given line 
U' contains two points. which coincide if 

(AU') (BU') (ab)2 = O. 

the equation of the conic in linecoordinates. 
A cord of the conic. joining thl;! points i. k has the equation 

(ABX) a; b~ = (ABC) (ab) ai bk (ik) = O. 

Dividing by (ik) ~ 0 we find the equation of the tangent in the point t as 

(ABX) (ab) atbt = O. 

the lefthand-side of whieh we can replace by 

(A' X) a~. 

The equation of the conic in pointcoordinates is therefore 

(Q'X)2 == (A'X) (B'X) (af3)2 = O. 

The con ie degenerates if and only if three points are collinear i.e. if 

AI a: A 2 a~ A3 a~ 

are linearly dependent. This means that the corresponding binary quadratie 
forms represent three pairs of an involution. which gives 

I = (ABC) (ab) (bc) (ca) = O. 

Theorem: 

The complete system of (AU')a~. g>'!. tp~ • ... consists of 

J. (AU') a~. (A' X) a:. (A' X) (B' X) (af3V. (AU') BU') (ab)2 

and the comitants which are generated from the complete system of 

m:. CP'!. tp~ .... 

by replacement of m~ by (AU')a ~ or (A'X)a~ 

Proof: 

a) (ABC)... is reducible to I .... 
The form (ABC) (ab)2 .. , == O. 
The form (ABC) (ab)a xbyczct is apolar form of (ABC) (ab)axbyc; 
Changing A. B. C in B. C. A; C. A. B we have 

(ABC) (ab) ax by c; t (ABC) [(ab) ax by c; + (bc) bx cya; + (ca) Cx ay b;] = 
- t (ABC) (ab) (bc) (ca) . (zx) (yz). 

The form (ABC)axaybzbtcucl' ... is apolar form of (ABC)a;b~c~ = 
= tI. (ik) (kl) (li). 
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b) K == (ABX) (ab) (ac) bxcy(CU') ... is reducible to I .... 
We have. transforming the ternary symbols 

K == (CBX) (ab) (ac)bxcy(AU')-(CAX) (ab) (ac)bxcy(BU') + reducible 
forms. 

Interchanging A. C in the first and B. C in the second term we have 

K _ (ABX) (CU') [(cb) (ca) b" ay + (ac) (ab) Cy b,,] ... + I· (XU') .•. = (ABX)(CU')(ab)(bc)(ca)(xy)+1 . (XU') ..• = I· [(XU') ... +(XU') ... ]. 

The only possible irreducible comitants containing (ABX) .. , are there~ 
fore of the form (ABX) (ab)aybz ... == (A'X)ayaz ... in which y. z are not 
connected with a~ .... and (A'X) (B'X) (afJ) ... which is reducible to 
(A'X) (B'X) (afJ)2; for interchanging A and B we can always obtain the 
factor (ABX) (ab) .... q.e.d. 

According to these formulae we have: 

1. (A' B' U') (afJ) al. fJl. = 1/2 ((AB)B' U') (ab) [(afJ) bI. + (bfJ) al.] fJl. = = - ! I· (AU') a~. 

This identity shows. that the line~equation obtained from the point~ 
equation of a con ic is the same as the original equation. provided that the 
con ic is not degenerated. The importance of this identity lies in the fact 
that we can interchange point~ and line~equation by a simple change of 
A. A' and a. a. . 

2. The bracketfactor (PiPkPI) of three points on the conic is split up 
in a cycle 

< i k I) = (ik) (kl) (li). 

apart from a factor t I. 

3. The equation of the line joining two points. the poles of the cords 
PpPq and Pr Ps is 

(ABX) apaq br bs _ t (A' X) [(ql') apas + (ps) aqar] = = t (A' X) [(PI') aq as + (qs) apar] = O. 

4. The linearform of the cord P p P q and the point. being the po Ie 
of Pr Ps is 

(A'B)apaqbrbs == -F . [(ps) (ql') + (qs) (pl')]. 

This indentity shows. that if the cord P p P q contains the pole of P rPs. 
then the cross~ratio (pql's) = - 1. provided I -::;P O. 

5. (A'C) (B'X) (afJ)2cpCq == - {I(B'X)fJpfJq. 
which expresses the facto that the polar line of the pole of the cord P p P q 

is the cord itself. provided I -::;P O. and that the HESSIAN of the conic is 
apart from a constant 12. 

6. (A'B) (B'C) (afJ)2bpbqCrCs = const. 12 [(pl') (qs) + (ql') (ps)]. 
which indicates that the pole of the cord P p P q is conjugated to the pole 
of the cord Pr Ps wh en the cross ratio (pql's) = -1. provided I -::;P O. 



1275 

Denoting the cycle (ik) (kl) (lm) .. . (qi) by 

( iklm .. . q) 
we have 

(iklm ... q ) (ik)(kl)(lm) ... (qi) -(lkf ( im ... q)-(ilkm ... q) 

(ik I m ... q) ( klm . .. qi ) . 

From this follows, that a cycle with an even number of bracketfactors 
is reducible to a sum of products of squares of these factors , as is clear 
from the iteration of the first formula, combined w.ith cyclical permuta tion 
of the indices in the last cycle. 

For cycles with six~brackets we have a1so 

( iklmnp ) - ( iknplm ) ( inp ) ( klm) - (knp) (ilm) 

as follows writing out the cycles and transforming identically the first and 
fourth brackets . 

Because -of the ternary interpretation it is evident that: 

( inp ) ( klm ) - ( knp ) ( ilm ) + ( kip) ( nim ) - ( kin) (plm) - O. 

Sta n dar d e q u a t i 0 n·s a n d sta n dar d f 0 r m s 

The complete system of the form (AU') él ~ and a system of points with 
parameters i, k , ... contains the simultaneous invariant forms 

(A'X)aW k 

only. A s a standardequation of the pole of the cord FiFk we use 

I . k l = (A U') ai ak = 0 
1 S (i k) 

élnd we denote the equation of the cord itself by 

We th en have 

[ 'k] - (A' X) aia k _ O 1 - (ik) -. 

likl == -Ikil [ik]=-[ki]. 

The point of intersection of the cords [ik] = 0 and [lm] = 0 is then: 

Uml + Ikll =0 or lin + Ikml =0. 

Denoting the standardequation with 

P i k.1m == liml + Ikil 
we have: 

Pik,lm Pki , mi - - P ml, ki - P lm , ik 

(k I) (i m) Pik , Im _ (i I) (k m) Pik, mi. 

The linear form of the cord [ik] and the point {lm} is apart from a 

factor - i1: 
(i/) (km) + (im) (kl). 

82 
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§ 3. Three points on a conic. 

Be the three points PI. Pk. Pl. Squaring the identity 

(ki)al == (li)ak - (Ik)al 
we obtain at first 

(i k I) I i kl = - t ((I i)2 ai + (I k)2 a: - (i k)2 a~). 

}oining the point PI with the po Ie of the cord [kl] = 0 we have 

ti.kl = [ki] + [lil. 
From this is evident 

tl.kl + tk.1i + ti. ik = O. 
which shows that the three lines are concurrent, the theorem of BRIANCHON 
for the triangle. The equation of t'he BRIANCHoN~point 61kl is obtained 
intersecting 

[ki] + [lij = 0 and [Ik] + [ik] = 0 

which gives immediately 

(lk)2PI + (ik)2PI + (il)2Pk = O. 

In virtue of the relation quoted above we obtain permutating cyclically 
and dividing by < ikl > as a standardform of 61kl : 

61kl == {ik} + {kl} + {Ii}. 
According to the formula 6. we have immediately 

(D' 6 ikt} 2 == const. /2, 

which is independent of i. k. 1. 

§ 4. Four points on a conic. 

The evident relations for Plt.lm given above can be completed by 

Proof: 

(iklm) Pik,lm = - (klm) P i + (ilm) P k 
. (ikm) PI - (ikl) Pm . 

(iklm) Pik,lm = (iklm) liml + (iklm) IkIl = 
_ (I m) [ - (i k) (k I) ai am + (i k) (m i) ak al] = = - (k I m) a7 + (i I m) ai. 

omitting the ternary factor for sake of simplified notation. The second half 
of the theorem follows transforming the other factors . 

As an immediate consequence of the standardformula we have in 

Pik,lm -liml + I kil =0 Pil,km = liml + 11k I =0 
the equations of the diagonalpoints of the tetragon. It is evident from these, 
that the diagonalpoints are collinear and harmonical with the poles of the 
cords [im] = 0, [kl] = O. 

Moreover we have 

(D'P' )(D'P' )=(C'A)(D'B)( d)2[a lamblbm_akalbkbl]=0 Ik,lm rl,km - C (im)2 (kiF -' 

The diagonalpoints of the tetragon form a polar~triangle of (D' X) 2 = O. 


