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The last integral, however, is proportional to M, ,. Therefore, M, .0
is obtained from M, by successive differentiations with respect to R;.
The corresponding explicit equation is easily found to be

_ 2" I'(v+14) 2v+2 (___1_ i)v (MI,O)
M”“'°_r(§)(v+1)!(v+2)! ! R, 0R, R )"~ (26)

The same holds for general values of n and m, in that M, 4 u41 (»>0,

4 = 0) can be obtained from M, ; by means of successive differentiations
with respect to R; and Ry, viz.,

__ 227 Iv43) I'(p+d) R g2,
T A ) (e D42 (2 T
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It will now be evident that M, , is expressible in terms of elementary
functions and complete elliptic integrals of the first and second kinds to
modulus k [see eq. (4)] since M, M,,1, dK/dk, dE|dk, 0k/OR; and
0k/0R; are all expressible in that way.

There exist numerous other relations between the M-functions. For
instance,

M,

(27)

M1, pt1 = (r—1) (u—1) R+ R - §R

' 4(v+1)(»+2) (u+1) (2+2) OR, OR,
which is easy to derive from (27). We shall no longer deal with these
questions, however.

Finally, it may be noted that the results (15), (17), (19), (20), (23),
and (24) are not all new; some of these Bessel-function integrals have
been studied by VAN WIJNGAARDEN (ref. 6), while others are to be found
in WATSON’s book (ref. 7) for R; = R,.

TR M, ; (28)

4. Approximate expressions for the mutual inductance.

Woe shall now develop an approximate expression for M including terms
of the fourth order in the radii of the cross-sections. The term independent
of the radii a; and a; is M. The first-order correction includes terms
with a? and aZ; it is represented by

Mi,o(ai/R1\)? + Mo,1 (a;/R2)?,
while the next correction term is given by
M0 (a;/Ry)* + M1 (a1/R)? (a2/ R2)? + Mo,z (a2/ R)*.

Inserting the values of the coefficients as found in the preceding section,
we have 2)

M:4ﬂVRlR2{Fo+F|+F2!, . . . . . (29)

2) See preceding footnote.
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in which
Fo=(%_k>1<—,%E,. L 30
a?+- a? 1 1)(af a2 %kZE%
=% RrE K- E”(RFE E_E)—l—kz . B

’ R EY;' (32)

k
F2_768§A+B( R VR

4 4 2 52
A=L<i+i) (K_l—2k2E>+3a1az<3—2k2E_K>“ (33)

RiR;\R! R lI—k? RiIR; \ 1—K
_ 1 aj a§><1—%;k2 1—k2 4k )
B‘Z&R:(Ef“?i: e (s N
3afa§ k2 K 4_2k2E> ( )
4RRII—K\" 11—k )"

These expressions are simplified when the radii of the toroids are
chosen equal, R; = R, = R. They become very simple if in addition the
radii of the cross-sections are the same, a; = a, — a. In the latter case we
obtain, when D > 2a,

w—a-1) o fa i)+

B o(T—2k .
+7ﬁ( 2 B K)(R>+...].

where the modulus of the elliptic integrals now is given by
k={1+(D2R?}"".. . . . . . . . (36)

Finally, the approximate expression (29), which has been derived on
the assumption that D > a; + as, R; and R, arbitrary, remains valid if
D = 0 provided a; and a, are small enough and |R; — Ry |>a; + a,,
because the type of expansion (1) exists whenever the toroids do not
overlap and a;, a, are sufficiently small. To realize this, we observe that
the coefficients M, , might have been obtained by expanding Mg in a
Taylor series of four variables (the coordinates pertaining to the cross-
sections) and integrating over the cross-sections. The result then would
have been a double power series in a; and a, with coefficients determined
by partial derivatives of Mg, with respect to D, R, and Ry, and of non-
vanishing domain of convergence.

The same conclusion is reached by observing that our analysis might
also have been based on the left part of the identity

(35)

%Z:cos zt Ky (rt) dt = Zoe‘ lz1t [ (rf) dt,
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instead of on the right part, both integrals representing the function
(22 + r2) =", For example, the coefficient My, would become

87 RiR;[cos Dely (R Ky (Ref)dt,  (Ri <Ry
M, 0= -

87 R, R, fo cos Dt K, (R, ¢) I, (R, ¢) dt. (Ri >Ry
Similar expressions hold for M, n, which may be considered as analytic
continuations of (13) to D — 0. Whether we use the first representation
or the second, the final result is in any case that given by equations (29)
through (34).

In concluding the paper, we remark that in the case of coplanar toroids

(D = 0) expression (32) is simplified to

_ k[ 1 (& a‘%)( 2—K? ) 3aja} k2
Fz_ﬁ(ﬁ:@ <_f+k-§— 2K—1_sz “RER 1—k2E , (37)

in which now

_2YRR,
b= R, + R, (38)
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