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1. Introduction. 

1.1 Source particles and carrier particles. In a previous paper 1} (here 
refered to by 1) we have distinguished source particles (e.g. electrons) 
and carrier particles (e.g. photons). The carrier particles are emitted and 
absorbed by source particles and ,in this way they lead to a (e.g. electro~ 
magnetic) interaction between source partides. Because the carrier particles 
have a finite velocity th ere will be a time lag ,in this interaction. 

1.2 Dualistic and unitary theories. 1.21 Dualistic theory. In the usual 
dualistk theories the two kinds of particles are treated separately without 
conspicuous relations between the properties of carrier particles and those 
of source particles. 

1.22 Unitary theories. Unitary theodes intend to give a complete descrip
tion ~ntirely either in terms of Helds of carrier particles (f~theory) or in 
terms of source particles (p~theory). We shall only be concerned winh the 
latter type and further omit ,the prefix p. 

A unitary theory has to givethe complete equations of motion of the 
interacting source particles. Because of the time lag in the interaction the 
description wiH be extremely complicated if not impossihle. Not before 
the theory has been completely established in terms of sou ree particles. 
fictitious carrier particles whkh are created and annihilated may be 
formally introduced in order to simplify the description. 

1.23 Balance. 1.231 Dualistic versus unitary theory. The time lag in the 
interaction makes that in unitary theory the boundary conditions if they 
can be stated at all will be frightfully complicated. Further it makes that 
the energy~momentum which is lost by one source particlein a 9'iven region 
of time~space is gained by another souree particIe in a different region of 
time~space. In this way conservation of energy~momentum becomes rather 
intricare. The same holds for loss and gain of charge in case the carrier 
particles of the dualisme theory are supplied with some kind of charge. 

In the latter case the source particles (e.g. nucleons) emit and absorb 
in the .dualistic theory carrier particles (e.g. charged mesons ). which in 
their turn act as sou ree particles anel in this capacity emit and rabsorb still 
other kinds of carrier particles (e.g. photons): The latter lead to a (e.g. 
electromagnetic) interaction between all charged particles. Strictly a some~ 
what similar situation always exists in general relativity theory in which 
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all particles, '5ource particles ,as weIl as carrier partIicles, have gravitational 
interaction. In such cases one needs to be highly optimistic in oroer to 
have still expectations of a unïtary theory. 

Altogether if within (:ertain limits a umtary theory m'Ïght oe possible 
at all it would be extremely complicated and intractable. On the other 
hand the dualistic theory gives a straightforward and relatively simple 
description which is contlinuous in time~space wUh proper differential 
equations ofmotion, clear boundary conditions and differential conserva~ 
tion relations. It is not astonishing that it is always the dualistic ,theory 
whdch is used in practice. 

1.232 Unitary versus dualistic theory. In spite of the. pellhaps unsur~ 
mountable difficulties it m~ght still be worth whiIe to deal with some aspects 
of what might be a unitary theory if ultimately it were feasible. Even an 
imperfect unritary theorymight he able tothrow some l'ight on the 
possibility of 

U 2 another outlook on dualistic theory; 

Us further developments in unitary theory, which are untranslatable 
into dualistic theory 

(there is no U1 ; it can be seen in 1.3 why not). 

1.2321 Other outlook. As long as the unitary and dualiistic descriptions 
are supposed to give the same observable behaviour of source particles 
they can be translated into each other. Yet each of them may show 
aspects which are not as easily brought to light in the other description. 

In particular a unitary theory would completely derive all properties of 
carrier particles from the properties of interactling souree particles and/or 
the way in which the carrier partides are introduced. 

1.2322 Untranslatable developments. It is quite conceivabje that in a 
further development a unitary theory would be modified in a way, which 
could no longer he translated into a duamsflc description. In such a case 
the duaHstic theory could be maintained as an extremely useful approxima~ 
tion, but the unitary theory would hecome of fundamental importance. 

This possihility in particular refers to the divergence difficulties con~ 
nected with pair processes and self interaction. . 

1.3 Queries. Corresponding to U 2 and perhaps to U 3 there are the two 
remaining problems (Q3 sHghtly extended) of 1: 

Q2 how are the relations between the properties of carrier particles and 
those of source particles; can in particular the former he derived 
from the latter? 

Q3 how shall negative states and pair processes and self interaction he 
dealt with? 

In this paper we shall be concerned with Q2' Qs will only incidentally 
be touched in connection with the negative states of carrier particles. 
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1.4 Conditions. We mention same of the most striking conditions which 
a unitary theory would have to satisfy. 

1.41 Opaqueness condition. There ,is one condition which can directly 
beseen to be necessary in or,der that carrier partides can entirely be 
eliminated from dualistic theory. Every carrier partide which is absoroed 
by a source partide must have been emitted by another source partide 
andevery carrier partide which is emitted by a source partide must be 
absorbed by another source particle. Because identical particles are 
indiscernible, no carrier partides at all can be allowed to enter into or to 
escape from the physical universe, not even such ones whïch never have 
been emitted and never will be absorbed. If the universe is not opaque 
for carl1ier particles, a unitary theory if possible at all cannot be equivalent 
to the dualistic theory. 

1.42 Asymmetry. Processes of emission and absorption of carrier 
particles (radiation processes) are connected with a peculiar kind of 
asymmdry, which if suppressed at one pI ace peeps up at another pI ace. 
It 'appears in relation with retarded or advanced fields or in the properties 
of radiation damping. Emission of carrier part:ides occurs spontaneously 
or induced, absorption only induced. In unitary theory this asymmetry will 
have to appear in another form. If energy~momentum is transfered from 
one source partide in a certain region of time~space to another source 
partide in another region, the energy loss :has always to occur earlier in 
time than the energy gain. This asymmetry, which appears to be rather 
fundamental. is obviously not an asymmetry in time; loss and .gain (like 
emJssion and absorption) are interchanged under revers al of time. 

This asy:mmetry condition will be consideredin a later paper. That 
paper (here refered to by 3) will deal with some unitary aspects of what 
in ,dualistic theory are radiation processes. 

1.43 lnterference and diffraction. The periodic wave aspect of carrier 
partides (e.g. photons) is unrefutably established by interference and 
diHraction phenomena. In a unitary theory not only the carrier partides, 
but 'at the same time their periodic wave aspect will be lost. The periodicity 
conditions, which are responsible for the observable interference and dif~ 
fradion effects, have then to be derived from the properties of the inter~ 
acting carrier partides. Also this point wiU be considered in 3. 

1.44 Vacuum effects. In dualistic theory there are effects of vacuum 
polarization by virtual creation and annihilation of the same pairs of ,source 
partides and of vacuum fluctuations of the carrier field by virtual emission 
and absorption of carrier particles by the same source partide (self inter~ 
action ) ,w:hich in spite of maHgnant divergences are of fundamental im~ 
portance 2). It ;is not only a task of Q3 to ask for such a modification of the 
,theory which removes all divergences, but also to take care that the relevant 
effects are not removed at the same time. 

1.5 Unification and quantization. One could try two different ways from 
dualistic dassical theory to unitary quantum theory. The oneis via unitary 
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classkal theory, the other via dualistic quantum theory. We shall rove 
about a little 'along the latter way. 

151 Dualistic quantum theory. Those principles of dualistic quantum 
theory which we shall need for this excursion will be reviewed in 2. 

1.52 Unitary classical theory. Though we shall not ,directly be concerned 
with unification of classical theory, it will be profitable to keep in mind the 
problems and achievements in this process. The problems 'are narrowly 
related to those of the unification of quantum theory. To some extent they 
have been solved for electromagnetic interaction between electric charges. 

As to the da,ssical analogue of Q2 the equations of motion have already 
been given by TETRODE S) and FOKKER 4) . A thourough physical interpre~ 
tation and .cliscussion has been given by WHEELER and FEYNMAN 5). 

As to the classical analogue of Qs there is a recent attack by FEYNMAN 6). 
Also other suggestions could be thought of 7). 

1.6 Simplifications and limitations. As our derivations will appear a bit 
complicated it will be advizable to om'it all those complications which are 
not strictly essential for understanding ,the fundamental problem. Therefore 
we shall in the nrst place restrict the source particles to electrons and the 
carrier partioles to photons. So we shall only consider electromagnetic 
interaction between electrons. The generalization to meson interaction 
between nucleons gives no fundamental new diHiculties as long as nothing 
(like disintegration) happens to them but emission and absorption by 
nucleons. 

Further we shall have to resort to very simple models and even then our 
considerations will remain rather poor. In spite of aH this it is hoped that 
they can throw a bit of light on Q2' 

2. Dualistic theory. 

In 1 the interaction between particles of different kinds has hardly been 
mentioned. In the dualistic part of the present paper the interaction 
between source particles (electrons) and carrier particles (photons) is of 
primary importance. 

2.1 Photons. Before dealing with th is interaction, we first recolled some 
results of 1 for the case of photons (spin = I, m = 0). 

2.11 Notation. For photons we shall now write thetime~space vectors, 
which occur as arguments in the wave functions, as (cs, yl, y2, yS) = 
= (yO, yl, y2, yS) (_gOO = gl1 = g22 = gS3 = 1). The wave operators 
replace some of these sets by other sets, which we now write as 

-+ -+ 
(ct, x 1 ,x2,xS ) = (xO,x1,x2,xS ). Thus for photons the (x,t) and (y.s) 

-+ -+ 
of 1 are now written as (y, s) and (x, t) respectively. The reason for th is 
interchange will become clear later on in 2.2122, when the interaction 
with electrons is introduced. 

2.12 Equations of motion. The equations of motion for free photons are 

-+ -+-+ 
L IYk,Skl (y,S"Y2S2'.' .1"""0· ·· 4'=0 (k= 1. 2, ... ) •. (1) 



137 

where 

-+ (IiC)2 a a Lly.sl= i ayrxayrx' (2) 

In the absence of electrons the wave functions cp are subjected to the 
supplementary conditions 

a -+ -+ 
~ (ylSl.y2 S2 •••• 1 "'Ok'" cp = 0 
vYk 

(k= 1.2 •... ). · (3) 

If the conditions (3) are satisfied together with their first order time 
derivatives at a given set of initial times. (1) makes that they are satisfied 
at all times. 

2.l3 Reference functions. A complete system of orthonormal solutions of 
the 1 ~particle equation 

-+ -+ 
L ly.sl{yslrxcp=O. · (4) 

not subjected to supplementary conditions. is given by 

(5) 

-+ 
with 4 4~vedors rxb I ;±r) (r = 1. 2. 3. 4) for which 

-+ -+ 
(;±rlb! rxbl;±s)=drs• 

-+ -+ · (6) 
I rxb I ; ±r) (; ±r I b t = d~ + 2; rxj ~. 
r 

where ja is 'an arbitrarily chosen normalized time~like vector (ja ja = 
= - 1 ). which we take ,in positive time direction. 

2.l4 Positive and negative states. 2.141 Density states. The indefinite 

density operator is (~/s - ~ aas )ga,'J. The positive and negative density 

states are distinguished by the eigenvalues + 1 and - 1 of the operator "I. 
which is the product of the operator for which the exponentials (5) are 
eigenfunctions with eigenvalues -+- 1 and the operator (ga,'J + 2 ja j,'J). 

2.142 Energy states. The energy operator is (~ :s - ~ : s ) /2. The 

positive and negative energy states are distinguished by the +and - sign 
in (5). 

2.l43 Charge conjugated states. The "charge" conjugated state of 

-+ -+ -+ -+ -+ -+ 
(ys I rxcp I E±r) is (ys I rxcp I E±r) = (ya I rxcp [-E±r). 

2.15 Creation and annihilation operators. The creation and annihilation 
operators a and at are defined by 
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-. -. -. -. -. -. -. 
(, ±r I a! I ys I (YI SI' ••• YnSn I'"'" ''"n lP = ni f (dYn) (~:l:r I CP~ I YnSn) . ± (~~ + 2jf1 j,") 

-. -. -. -. 
1 ys I a'" I ~ :l:r) (YI SI .... Yn-I Sn-I I'"" ··'"n-I lP 

-. -. -. -. 
= niSn (YnSn I'" cp I ~:l:r) (YI SI .... Yn_ISn_IIIX, ... lXn-1 lP 

if aeting to the right and by the HERMITIAN adjoint relation (7 t ) -iE aeting 
to the left. 

2.151 Wave operators. For photons we shall use dynamical wave 
operators ('representation S2)' In the distinction made in 1 between DIRAC's 

1942 theory (D-modîfication) aOod the eUl'rent hole theories (H-revision). 
there remained an ambiguity just in the ,photon case (cf. 1 4.3224) . In that 
case we had to do with positive and neHative energy functions and with 
positive and negative vectors. Each of them ean be treated either by 
D'-modification or by H-revision. That gives (writing small types for the 
vector treatment) the 4 combinations Dd. Dh. Hd and Hh. We shall eon
si der them all. 

The dynamical wave operators are defined by 

-. -. -. -. -. 
+ ~ ~ f (d~) (xtlYtp I hr) !yso 1,3a I-~'fr) ft:l:~' 

r ± 

-. -. -. -. -. -. -. 
! ys 1f1 tp~t I xt) = ~ ~ f (d~) ! YSo 1f1 a I ~ ±r) (~:l:r I tpt I xt) ll~ 

r ± 

The l's and p's are for the 4 combinations given by 

I Dd 

l:l:~ ~IX y 

IX 0 I-t:l:y 

tlX 0 ft:l:y 

Dh 

,,~+ j"'jy 

=Fj"'jy 

Hd Hh 

1 ±1 ~IX 
2 y 

1±1 ~IX + .or:. -2- y } Jy 

1 =F 1 ("IX + 2.or: ') 1 =F 1 "IX + .or: • 2 y '.)Jy 2 y }); 

1±1 ~IX 
2 y 

(8) 

(9) 

if aeting to the right. If they act to the left land lt have to be interehanged 
in (9) and also ft and ftt . 
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2.152 Field operators. From the mutually HERMITIAN adjoint wave 
operators pand pt we form for later use the self~adjoint field operators 
4}c and 4}s 

4}c(;t) = (211)1 f7c (I;so [~p~t [;t) + (;t [cxp~ [;so 1), ! 
-... -... -... -... -... . . (10) 

4}s (xt) = (2n)t f7c (I YSo [~p~t I xt) - (xt[cx p~ [ YSo I )/i. 
The numerical constant has been inserted for later purpose of normalization. 

Though it ,is quitea relief that the cumbersome notation for the wave 
operators has to be abandoned, the role of the omitted variables and dashes 
should continually be kept in mind. We shall fudher write the argument 

-... 
(xt) in general as (x). 

2.16 D~functions. The asymmetrical and symmetrical invariant D~func~ 
tions are (beause of m = 0 degenerated into) 

Da (x) = - ;c <5 (x'" xcx) = - ;c (<5 (x-ct) - ~ (x+ ct) )/2x, ! 
1 1 1 (1 1) . (11) 

Ds(x) = nhc x"'xrx. = nhc x-ct - x+ct /2x. 

We shall also need their linear combinations 

D±(x) = Ds(x) ± Da(x).. • . . . . . (12) 

2.17 Commutation relations. We check that for each kind of wave 
operator.s we do obtain the required commutation relations 

[(;t[rx.p;~[;sol,l;so[Pp~t[;'t')]- ! 
-... -... -... -... -... 

= I I(l±cxy llcx'y'-,u±rx.y ,ulcx'y,) f (d~) (xt[Ycp [~±r) (~±r[cpty' [x't') 
r ± 

= grx.rx.' Da (x-x'). 

(I 3) 

The commutators which givezero have not been written down. 
The field operators satisfy the commutation relations 

[4}crx.(x) , 4}crx.' (x,')]_- = [4}srx.(x) , f/Jscx' (x')]- = 2n (f7C)2grx.rx.' 2Da (x-x'), ~ 
(14) 

[4}ccx(x),4}scx'(x)] =0. 

2.18 Empty~empty part. 2.181 Empty states. With a view to unification 
we shall be particularly interested in states in which no photons are present 

-... 
(empty states). The wave function of such a state contains no sets (yso). 
If it contains no variables of particles of another kind, it is a constant. The 
empty state projection operator E hasthe eigenvalue 1 in the empty 
states, 0 in all other states. As the empty~empty part of an operator 

-... -... 
Q I YI SlO' Y2 s20, ... 1 we define the operator 

-... -... 
E Q IYI SlO' Y2 S 20'· ··1 E.. . . . . . . (I 5) 
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It is that part of Q, which gives an empty state function if it operates upon 
an empty state function and zero otherwise. 

2.182 Order in time. Suppose we have a product of creation andannihil~ 
-.. 

ation operators, each containing a set (xt). We shall call the product weIl 
ordered in positivejnegative time dil'ection if ,the values of the successive t's 
do not increasejdecrease if one goe,s from on factor to its nei'ghbour in the 
d\rection to wh'ich the product operates. 

2.183 A product of exponentials. We shalliater need the empty-empty 
part of a product of exponentials in the Jield operators of the form 

(16) 

in which the n factors are weIl or,dered in positive time direction. Because 
according to (14) the factors commute in world points with a space-like 
connection, the product (16) ,is independent of the choice of the time axis. 
Therefore ,we can order (16) with respect to the direction of the time-like 
vector ja used in (6), even if the time axis has a different direction. 

The product (16) can be expanded into a power series in the tP's. 

Each tP isaccording to (10) a linear combination of a creation and an 
-.. 

annihilation operator. Each creation operaJtor adds a set (yso). each anni-
hilation operator takes away such a set. IE no sets are left to be taken 
away (empty states) the annihilation operator yields zero. Only those 
terms of (16) can contribute to the empty-empty part, which are a product 
of a number of creation operators andan equal number of annihilation 
operators and in which no factor is preceded by more annihilation than 
creation operators. Each of these products begins with a creation operator, 
which is supposed to act on an empty state function and ends wHh an 
annihilation operator, which than produces an empty state function again. 
The creation and annihilation operators of such a product can be dovetailed 
together with the help of (8) and (7), observing that the product is weU 
ordered in the time direction of ja. The empty-empty part of (16) is finaIly 
obtained by summing all these terms. lt 'is most easily seen by means of 
complete induction tha,t the result is 

(17) 

The cross factors (k #- 1) are counted twice, the "sel!' , factors (k = 1) 
once. Whether tPc or tPs is used in (16), the function W"'" (x, x') is 
determined by 

h
i 

W",,,,, (x.x') =..E..E ).±",y )."±""y' f(i$) (;±rl <ptr" I x") (x"'1 r'''<p i1±r) 
C r ± 
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2 and 3 dashes stand for 0 and 1 dash or crosswise in that way for which 
with respect to ,the time direction of ja x" is later than x"'. We regard to 
this order in time we write 

(](x)= -I!«x: I: {~(x«) ={(x« + f (hx l3 + Ihx,9I)), 
}«x 

. (19) 

so that for even and odd functions f (x) 

{:Ven (x) = teven (x), {~d (x) = (] (x) (odd (x) . (20) 
Then (18) reads 

h
i 

W««, (x,x')=I 2'( l±«y lt«,y' + fll'«Y fli«",) (grY' + 2jY r) D~(x-x'). (21) 
c r ± 

The i combinations Dd, Dh, Hd and Hh give different results 

hic ~««,(x,x') 

Dd g««' D~(x-x') 

Dh (g««, + 2j«j«') D~ (x-x') 

Hd g««' D~(x-x') 

Hh (g««, + j«j«, )D~(x-x') + j«j«, D~-(x-x'). 

• (22) 

The evaluation of the numerical coefficients in the expansion of (17) into 
a power series in the W's is a matter of combinatorics. The corresponding 
coefficients in thedovetailed expansion of (16) are only partially aresult 
of combinatorks, for the rest they are produced at the dovetails by the 
square roots which occur in (7). At this point the EINSTEIN-BoSE stàtistics 
of the photons play a decisive part. 

The functions D; (x) and D~ (x) are not only relativistic inva'riant but 
even independent of ja, because D.(x) is even and Da(x), which is odd, 
vanishes outside the light cone. 

2.2 Electrons and photons. Now turning to the electronsand their inter
action with photons we first consider a single electron. 

2.21 1 electron. 2.211 Notation. For electrons we shall write the time
spa<:e vectors which occur as arguments in the wave functions as 
(ct, xl, x 2, x 3) = (xO, Xl, x 2, x 3). In this paper we shaU not use creation 
and annihilation operators of electrons so that we need no other sets 
than (x). Further we wr,ite the spin.matrices (l,al, a 2, a 3 ) = (aD, al, a 2, a 3 ). 

(a« transforms as a i-vector density, ~a« as a i-vector). 
2.212 Equations of motion. 2.2121 No photons, We put the electron with 

charge e and mass m in a given i-potential field (A'O, Al, A2, A3). This 
field only serves to determine the unperturbed state of the electron and 
will not be quantized. The unperturbed equation of motion is 

(23) 
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with 

KO Ix! = aa. (~C à~ + eAa.(x)) + ~mc2 .. (24) 

The density operator is 1, the inner product of 1jJt I x) and (x I vi is 

-+ f (dx) 1jJt I x) (x 11jJ'. (25) 

The wave function at a time t is determined by ,the wave function at 
a time t' according to the integral equation 

(x 1'1'° = f (dx') N (x; x') (x' I '1'0, • (26) 

where the nucleus N (x; x') satisfies the differential equation 

KO I x! N (x; x') = 0 • (27) 

with the initial condition 
-+ -+ 

N (X;X'h=f' = t5(x-x'). • (28) 

IE (x l1jJo I ft) is a complete orthonormal system of solutions of (23), 
N (x; x') is given by 

N (x; x') = I(x 1'1' I ft) (ft I 1jJt I x'). (29) 
iJ-

2.2122 With photon interaction. In a photon field the equation of 
motion is 

(KO Ix! + KI (x) (x; iJIO" .. 1 'I' = 0 

with the interaction operator 

KI (x) = aa. e «Pa. (x) . . 

· (30) 

(31) 

The wave functions are taken up to ,date in the electron coordinates (x), 
-+ 

which stand for (xt). and at thebeginning in the photon coordinates (YkO), 
-+ 

which stand for (Yk SkO)' (k = I, ...... ). Speaking about the wave function 
at a certain time will therdore always refer to electron time. T:he 4-'Poten~ 
tial operator «Pa. may be either «Pca. or «Psa. of (10), the remaining one is 
redundant 8) and further on denoted by «P rda.. «Pa. in the equation of motion 
describes creation and annihilation of photons. It is formed from the wave 
operators of free photons. That means that apart from creation and anni~ 
hilation the photons behave dynamically just as in the absence of charges. 

In order ,to determine the wave function at a time t from the wave 
function at a time t' we shall prefer to use a not full-grown calculus intro~ 
duced by FEYNMAN 9) without taking over his interpretation. This calculus 
which is mathe:ffi'atically in a rather undeveloped state provides a very apt 
tooI for handlin'g with thegeneral formula,tion of our present problems. 

We divide the time ointerval t' tinto a large number p of infinitesimal 
intervals t' til, til t'", ... t(p) t(P+1) with t(P+1) = t. Our exrpressions are 

J 
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hoped to be valid in the limit p ~ 00, max I t(k+1) - t(k) I ~ O. Then we 
write 

(x: YIO' •• ·IV' = lim m~1 (I (d.;(m+ll) N (xlm+ll: xl
ml

)) l. 
• (32) 

!.!. ~ (x(m+ll "_x(ml ")""" (x(m'l) 
flc m=1 ( '. I ex. YIQ •••• V'. 

X (m')a lies in the interval x(m)a x(m+1)a. In order to get later on an easier 
notation we have symbolicaIly written a sum in the exponent rather than 
writing the exponential under the product sign. That makes that whereas 
otherwise the product of exponentials had to be weIl ordered in time, this 
order has now'to he observed in the sum of exponents. This comment has 
to be weIl observed for all following exponential operators, which without 
it would have to be understood in a different way. Also the N's have to be 
weIl ordered in time. They commute with the exponentials. 

I,t is easily se en that (32) satisfies the equation (30) and the initial 
condition (x IV' = (x' IV' for t = t'. This remains true if everywhere in 
(32) (x(m+1)a - x(m)a) is replaced by a"c (t(m+1) - t(m»), provided the 
ordered N's are properly sandwiched between the ordered exponentials 
with w:hich they no longer commute. 

It would of course also be possible to treat the interaction with the 
field Aa in the same way 'a.s that with the field lP". DoÏ'ng so one could 
write 

!.!. ( (m+I),,_ (m)")A ( (m'» 
N(Xlm+I):xlm») = N0 (x'm+l): xlm»)eflc x x "x • • (33) 

where N0 refers to free electrons. Dealing with N0 becomes urgent if one 
is interested in ,the self interaction of the electron. That belongs to Q3' 

2.22 Many electrons. 2.221 Description. In describing a system of many 
electrons we shall use many."times theory 10) 11). 

We do not consider creation and annihilation of electrons, their number n 
is taken fixecl. We shall not use electron creation and annihilation opera
tors. Further in order toavoid unessential complications we shall not be 
concern'ed with electron exchange effects. Therefore we treat the electrons 
as if they ,were discernible and only account for the FERMI-DIRAC statistics 
by PAUU'S exclusion principle. 

2.222 Equations of motion. 2.2221 No photons. T,he unperturbed field Ak 
wiIl be taken different for different electrons. The unperturbed equations 
of motion 

(k = 1, ... n) . (34) 

are independent of each other. There is no interaction between the elec
trons. The wave function at a set of times (tv ... tn) is determined by the 
wave function at a set of times (t; .... t~) according to 

-+ -+ 
(XI, ... Xn IljIO = 1 ... 1 (dx;) ... (dx~) NI (XI: xi) ... N n (xn: x~) (xi ,."X~ I '1'0. (35) 
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The nuclei Nk and NI for different electrons (k =j:-l) commute with each 
other. 

2.2222 With photon interaction. In a photon field the equations of 
motion are 

(k = 1. ... n), (36) 

whereK1 (x) ds givenby (31). The commutation relations (14) make that 
the n equations (36) are only compatible if all world points Xk and XI (k.l = 
= 1. ... n; k =j:- I) lie outside each others light cone 12). i.e. if cl tk - ti 1 < 

-+ -+ < 1 Xk - XI I. The wave function at a set of times (tl • ... tn) is determinecl 
by the wave function at a set of ,times (t~, ... t~) according to 

Por each k (k = 1. ... n) the product of the N,t's and the (symbolical) sum 
of exponents each have to he weIl ordered in all electron times. Everywhere 
in (37) (.ximk+l)"'-X<kmkla) can again be replaced by ak c(é-tk+I)-ftk»), 
provided :the ordered N's 'are properly sarrdwiched between the ordered 
exponen tials. 

(37) can be maintained for electron world points which lie inside each 
others light cone. 

2.23 Supplementary conditions. The wave functions are still subjected 
tosupplementary conditions. They will be dealt with in 4.l2. 

(To be continued.) 


