Mathematics. — Approximate division of an angle into equal parts. By
J. G. vaN DER CorpUT and H. Mooij.

(Communicated at the meeting of March 26, 1949.)

The editors 1) of Mathematica A published an approximate construction
of the trisection, due to M. MARTENS, a former head-master. Although
this construction is very accurate for acute angles (with an error smaller
than 21’ 24”), it is surpassed in this respect by the very simple construction
given by S. C. VAN VEEN 2), of which the error for acute angles is less
than 2’ 36”.

These articles led H. MooIj to deal in his thesis 3) with the problem of
dividing a given angle approximately into a number of equal parts and
even of the approximate construction of r a, where a is a given angle and r
denotes a number between zero and one, which can be constructed with a
pair of compasses and a ruler.

MoolJ's construction is based on the following theorem.

First theorem.

Describe a circle, the centre of which coincides with the vertex O of the

given angle A O B = 2a < 180°.
Suppose that the circle intersects the legs of the angle at A and B.
Let C be the middle of the segment A B. Produce AB to D in such a

way, that

2
CD:’z3AC

—3¢2
A C as radius, which inter-

Describe a circle with D as centre and

sects the smaller arc AB at E. Then £ C O E is approximately equal to
r a and the difference is smaller than

4r(1—r%) (tgya+ Lsina—4a).
Thus the trisection (r — 1) gives the following construction, which is
identical to VAN VEEN's.
Describe a circle with the unit as radius, the centre O of which is the
vertex of the given angle A OB — 2qa < 180°. Assume that the circle
intersects the legs of the given angle 2¢ at A and B. Let C be the middle

of A B. Produce A B to D such that
cp=Iac.

1) Trisectie, Mathematica A 6 (1937—38), p. 1—4.

2) S. C. VAN VEEN, Benaderde trisectie, Mathematica A 7 (1938—39), p. 229—237.

3) H. Mooy, Over de didactieck van de meetkunde benevens benaderingsconstructies
ter verdeling van een hoek in gelijke delen, Thesis Amsterdam 1948.



318

Describe a circle with D as centre and A B as radius, which intersects
the smaller arc A B at E. Then £ C O E is approximately equal to } o and
the difference is smaller than

tt(tgta+isina—fa)
In this article the proof of the results found by Mooij will again be
given. Further we shall give a second approximate construction of ra,

which is a little more complicated, but gives a more accurate approximation.
The new construction is based on the following theorem.

Second theorem.

Describe a circle with the unit as radius, the centre O of which coincides
with the vertex of the given angle A OB = 2q < 180°.

Assume the circle intersects the legs of the given angle at A and B;
let C be the middle of A B. Produce A B to D such that

CD— (3+ r)ACH ——~——(1—r)(9—r) AC3. . . (1)

240
Describe a circle with D as centre and the radius

3 2
E(l—r)AC-}- 240
If this circle intersects the smaller are A B of circle O at E, then

~Z COE is approximately equal to ra and the difference is smaller than

4r(tg$a+ tsina-+ ¢ sin’®a—g asin?a—3 a).
As for the trisection (r — ) we get the following approximate con-
struction.
Describe a circle with the unit as radius, the centre O of which is the
vertex of the given angle O A B = 2q < 180°.

Assume that the circle intersects the legs of the given angle 2a at A and
B and that C is the centre of A B. Produce A B to D, such that

CD=}AC+# AC"

(1—)(9—) AC?. . . . . (2)

Describe a circle with D as centre and with

2ACH# AC?
as radius. This circle intersects the smaller arc AB at E. Than ZCOE

is approximately equal to! o and the difference is smaller than
$4(tg3a+ fsina+ % sinda— & asin?a—4$ o).
This construction becomes somewhat simpler, if the factor (9—z2) in the
second term of (1) en (2) is replaced by 9.
If r = §, we get

CD=}JAC+{HAC . . . . . . .0
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and the radius of the circle with D as centre becomes

2ACHHAC. . . . .. @

This approximation is extraordinarily accurate. In order to have a
survey of the accuracy of the approximation of the trisection, we give the
following tables, referring to the three constructions I, II and III; here I
denotes VAN VEEN's construction (which also occurs in Moolj's thesis);
II is the construction according to the formulae (1) en (2) and finally III
is the simpler construction in which the formulae (3) and (4) are applied.

Difference from 1/3 a.

2a I II Il

180° 1° 35" 17”7 | 1° 4 95" | 1° 3 71"
120° 11" 19" 4 21,2" 4 16,9"
90° 2’ 38" 37,3" 357"
60° 18" 2,29” 2,25"

For the proof of the above assertions we need the following lemma

Lemma.

Assume the real numbers A, B, C and D satisfy the inequalities
A+ B?=C?* A?+4+B*>D?;, C#D
and the real number ¢ satisfies
Asint+ Bcost=D.
Then the equation
~ Asinx4+Bcosx=C . . . . . . . (5

has at least one real solution x for which the inequality

2|C—D|
VA2+Bz_C2+ VA2+Bz_D2
holds and for which x—t has the same sign as

C—D
Acost—Bsint’

|x—t| <

Moreover
Acost—Bsint=+ JA*+ B2—D?#0.
For the proof we substitute x — ¢ 4+ u in (5) and we introduce z determined
by
tgru=z (—e<<u<m).
Equation (5) becomes

Asin (t + u) + B cos (t +u) = C,
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whence
1—22 . 2z ] — 22 2z _
A (msxnt+ mcost) + B (1—?—7°°St_ msmt)—c.
consequently
22(Asint+ Bcost+ C)—2z(A cos t—B sin )—(Asint+ Bcost—C)= 0,
hence
(D+C)z22+2(Bsint—Acost)z+ C—D=0. . . (6)
The discriminant of this quadratic equation is
A =(Bsint— A cos )>—(C?2—D?
-and therefore
A=A?+B*—(C?*=0.
The roots of (6) are
__Acost—Bsint+ JA?+ B2—C?
_ A+ B*—-D*— A*—B?+4(C?
T (C+D)(Acost—BsintF JA24+B*—C?)’
The sign of +-YA%2+B2—C? can be taken equal to that of A cos ¢t —B sin t
and then the sign of tg 4 u is the same as that of
C—D
A cost—Bsint’

According to our convention u lies between —a and 7, so that }u has
the same sign as tg 4 u, thus

|C—D|

1 tq 1 TE——

|'§u|<| gful -VA2+BZ_C2+]Ac°st-—BSint|
|IC—D|

:}/Zz_*_Bz__Cz + VA2+Bz_D2

where u = x—t, This establishes the proof.
For the proof of the first theorem we put

AO=1; L/ COE=x; CD=psina; DE—=gqsina and / BDE—=y.
By projecting O ED on OC and on A D, we get the relations
cos x—q sinasiny—cosa
and
sin x + g sinacosy =psin a.
By eliminating y we obtain

psinasin x4+ cosacosx =1+ } (p2—q*— 1) sin?q,
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thus
Asinx+ Bcosx=C,
where
A —=psina; B=cosa and C=1+$(p*—q?—1)sin?a. . (7)

We have to determine A and C in such a way, that x is approximately
equal to ra; therefore we put

Asinra+Bcosra=D. . . . . . . . (8
Then, according to the above lemma,
2|C—D|
VAZ++ B2 —C? + VA2+Bz_D2’
Expanding cos r a and sin r a in powers of sin a, we get

2 2(92__p2 2(92__;2)(42—p2
cosra:l—r—sinza—r( r—)sin“a—r( )( r)

2! 4/ 6!/

2__,2 2_ .2\ (32__,2
Sint‘a:rsina-f-Msirpa_f_r(l rs)[(3 ")

3!
From the relations (7) and (10) it follows that (8) becomes

r(12—r?)

3!/

lra—x| < (9)

sinfa—

(10)

——T N\ S -

sin‘a 4 ...

D:psinagrsina—}— sinfa+...0 + cosacosra.

Differentiation of (10) gives

2__ 2 2.2\ (22__2
12!r sin2a+(1 r‘)i(,3 r2)

sin‘a—i—...g.

rcosra:rcosa%l—i—

By substituting this result in the above value of D, we get
r(12—r?) r(12—r?) (32—r?)

37 sin®a + — 7 sinsa—{—...g +

22 2.2\ (32__p2
12,1' sinza—l-(-l———t;‘)i#—Lsin*a—l—... ;

D:psinagrsina—{—
(11)

+ (1—sin%a) g 1+
Putting
ap={(2h—1)>—¢} an_1; ap=1; y(h)=—(2h—1 + o) + 2prh

and replacing sin a by s and r2 by g, we find

g " an-2|(2h—3F—o)
D == s°7 ap-2

né; (2h)!
In order to get a good approximation of r a, we choose p and q in such a
way, that the expansion of C—D begins with sin6 . This gives

} (P*—q*—1)=pr—1 + § (1—r?) and
pr (12—z?)
3!

w(h) . . . . . (12

(17— () 12— _
+ 41 77 =0
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hence

43 d _3-—-3;
P="%4, ¥ 4=74;

(13)

In what follows an upperbound is given for the error, provided that r
lies between 0 and 1. Substituting in (12) the value of p given by (13),
we get

p()=—2h+1—0+ 2 he =} (h—2) (c-1)
hence
_ 2 hanat@h—3F—) B
b=2 2.2h)] (h—2) (e—1).

In C—D the terms with s0; s2 and s¢ disappear, hence

) h —3)2_
c-D=—2, e ’.((22’;1)13) 2 (h—2) (1)

=(1—0)? (3*—0) U s,
where

1 2(5%—g)5?
U=3—1+t 23]

By virtue of 0 < ¢ <1 the inequality U < U, is evident, consequently
C—D=5°(1—)*(3>—0) U,
where U, denotes the value of U at the point ¢ = 0. Hence
C—D=(1—0)*(1—39(C—D)y, . . . . . (19

where (C—D), denotes the value which C—D takes for ¢ = 0.
The denominator of the right hand side of (9) contains the terms

VA2 + B2—C? and }J A2 + B2—Dz2. Here
A? 4 B*—C?=p?s? 4 cos?a— {1 + } (p>—q’>—1) s2}2
=q’s’—} (p*—q’—1)*s*.
Substitution of the values of p and q, found in (13), gives

3. (5—0) (7>—p) 5*
2.10/

+ S HILE,

9(1—g)? (1—o)?
2 2 (2 — 2 1
A4 B—C2= 160 s TR

VA’+B’—C2:3—(;-:—§)sI/1—-"9’—s2. C e, (15)

By putting ¢t = r a in the last formula of our lemma and substituting (7),
we obtain

hence

+ JA? 4 B2—D?=psinacosra—cosasinra . . . (16)
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2
With the aid of the series (10), by substituting p = r—4r_3 , and. putting

co = 1 and cr'= (4h2—p) cr_y (h = 1), we get

3 2 2_ 2 .
+ VATT B—D = (49)355—;—[ P A g

_r(l—-g) i (Zh 5)‘:’1—2 s2h-1,
=74 2 (@n-))l

The right hand side is = 0, consequently

E o=, (1L a)

and a fortiori

VA’+B’—D2>3({17—;9)3V1—-%—.;2 )
The relations (9), (14), (15) en (17) give
2(1—9)’(1—%9) (C=D),
3(1 }/1 2_*_3(1 g)s JT=To3

From Cy =1+ %52 and Do — $asin a + cos « it follows that

lra—x| <

(C—D)y=1+ }sin2a—$asina—cosa

=sina (tgg isina—3 a)
2 4 4 .

Hence
zu—m%r—%ms09§+%ma—%a)
|ra—x| < .
2.3 (I—Q) S }/1—15
4r —350S
Consequently

|ra—x|<4$r(l—o)(tgya+ Lsina—3a).

This establishes the proof of the first theorem. For the proof of the second
theorem we put

=242,

(18)

Then
C=1+4+1(p*—q*—1)s?=1+4+Ks*+Ls*, , . . (19
where P, Q, K and L are properly chosen functions of r. Formula (8) gives

D=(?—l—%sz)ssinm-{—cosacosra,
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hence

an s?

(2h+1)1+(1

=(Ps*+ Qs Z‘

==&} 2 (2h)l s

where
an = (12—p) (3*—9). . . (2h—1)*—p) and a, = 1, so ap = {(2h—1)*—0} an-1.

consequently

B an ap_1 Pay_, Q ap->
D—§S”'§ @RI~ @h—2)] T 2h=1)] T 2h—3)]

= (2h—1)"—p _ @h—3—

=35 an-2 ) —mpr— (@h—3V - =5 +

(2h—3)>—0 Q
+ =1 Pt @iy
This gives -
_ © 32h an—2
D=3 "anr

where

¢ (h)=—{(2h—1) + ¢ } {(2h—3)>—¢} + 2h}(2h—3)>—0}{ P +
+ 2h (2h—1) (2h—2) Q.

The functions P, Q, K and L are chosen such that the expansion of C—D
begins with s8. By virtue of

2 . 4
D=1+ 5;(—1—¢+2P)+ 5 {—(3+e)(1—0)+ 4(1—¢) P+4.3.2.Q} +

+ 2070 | (54 0)0—0)+6(9—0) P+6.5.4Q) +..

we get in connection with (19)

2K=—1—po+4+2P; . . . . . . . (20
24L=—(34+0(1—0)+4(1—)P+4.3.2.Q; . . (21)
—(54+0)9—0)+6(9—0)P+6.5.4.Q=0. . . (22)

Substitution in (19) of the values of p and 2 K, found respectively in (18)
and (20) furnishes

q*e=(P—eP+2s*(PQ—Lo)+s'Q% . . . . (23)
To s1mphfy we put the right hand side of this equation equal to a perfect
square, by choosing
PQ—Lo—=(P—9) Q, hence L=Q.
~ From (21) follows

4(1—o) P=(@3+0)(1—¢), hence P= 3—:};9 .

(24)
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Formula (22) gives

120Q=(5+¢) (9—e)—6(9—c). 22,

hence

(1—e) (9—0)
Qe=k= 240

By (20) and (24) we obtain

_1l—e
K=-—72.

Now (23) becomes
0q¢*=(P—o+ Qs?)? and rq= =% (P—po + Qs?).

The left hand side of the last relation and also both P—p and Q s2 are
positive, so that the plus sign holds good. This gives

rg = 240{180+(9 0) s?}
and by (18)
1—
rp= 3+9—|—( g)‘iO Q)sz. . e . . . (25

In order to obtain an upper bound of the error, we deduce from our
lemma that this error is

lra—x| < 2|C—D|
JAT ¥ B—Ci+ VAT Bi—
here
C—D=— % a1,
h=s (2h)
and

@(h)=—{2h—1 4o} {(2h—3)*—o} +
+ 2h}{(2h—3)*—p} P + 2h (2h—1) (2h—2) Q.

Consequently
@ (h)=— {(2h—1) + o} {(2h—3)*—0} +
42k {(2h—3)—g }3+9+2h(2h 1) (2h—2) 19 O—0)

240

which gives after reduction
o ()= ") (" 3 {_102h? + 267 h—180—0 (2 1% + 3h—20)},

hence

C—D= 2 (h— 3)2 ® Z)"['z {102 h?2—267 h+ 180 + ¢ (2 h? 4+ 3h—20)} .
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In this relation we have for h =4

an-2= (1—¢) (1 — § 0) ba-2 (o),
where bn_, (0) is a polynomial in g, which has in the interval 0 < o <1 its
maximum value at the point ¢ = 0, therefore

0=an-=(1—0¢) (1 —%e) br—2(0) = (1—¢) (1 — 4 o) an—(0).
Further
102 h2—267 h 4 180+ 0 (2h? + 3h—20) = (1 + 41 0) (102 h2—267 h + 180);
for this relation is equivalent to the inequality
62 h? + 93 h—620 = 102 h?— 267 h + 180,
which is evident in virtue of h2—9 h + 20 = 0. Hence

C—D=
=00 yo) 5 -3 (Zh)  an—2(0) (1 + ¢r o) (10242—267  + 180)

- This furnishes
C—D=(1—0o(1—%o(1++(C—D). . . . (26)

From (7), (8) and (25) we deduce
p=3te. .. (1—0) (9—0)

sinasinra + sin? a sin ra + cos a cos ra,

4r 240r
hence
Dy =2 asina+ % asin®a + cos a.
Further
Co=1+4{s2+ 5%
hence

(C—D)y=141s>+ & s*—fas—ggras’*—cosa,
consequently
(C—D),=sina(tg+a+ }sina+ ¢ sin®a—gasin?a—3$a). (27)
Further
A? 4+ B?—C?=p?sin2a + cos?a— (1 4+ K sin? a 4 L sin* a)?
2\2
- (? + QTS) 21— 52— (14K2st L2584 2K s+ 2L s* + 2KL 9),
where Q = L, hence
p?
A4+ B —C2= ) +2PQ 4-l-Q 6+
+1—5s2—1—K?2st*—Q2s!—2Ks2—2Qst—2K Qs

—s %%’_1—2K+sz (Z?;Q_KZ—zQ) st (%Z—ZQK) —szsg.
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Substitution of the values of P, Q and K gives

<37 B~ 1—o0 9  9—1llg
2 2__ (2 — 2
YAZ+B C=—"sy _9+ 10 +
|(9—9)(9—1219) B )
36000 s 3600

In order to deduce from this relation the inequality

JATF B —C ‘:Tﬁs(l s +4r0) . . . (28)
e

we remark that this inequality is equivalent to

9l , O—0(O—1210) , (o)
10¢ 36000 3600

9 2 1
=2 (1—to+4re) (1 et ane)

+

and therefore equivalent to

81 1, (44 11 , 1098 , 81
(3600 +1o ) Jr(31 10° 7 3600° ~ 3600 °
121 74

+ (36005 +36005 +9961>

To prove this inequality it is sufficient to consider the most unfavourable
case, viz. s — 1; in this case the inequality becomes

369 1 101 L lesi79 18561 , 1 ,_.
200 ¢ 12400 " 961.3600° 961.3600° ~ 9.961¢ —

1

1 61—~ 2__ 3=
(3600s +9.961> 50619 ="

which is true for every value of g between 0 and 1.
By substituting in (16) the value of p found in (25) we get

yarp—pi=20"0, O-lldl=d, rl—a;

4r 240r 4.4/
n Z“; r(22—p)...((2n—6)*—p)(1—0) (2n—7) { 102n*—369n+ 339 +(n—3)(2n+7) o} s?"!
n=4 120 2n—1)! )
This gives

}/mzii(l—e)s_l_@-—ﬂ@)(l—e) 5
4r 240r 29)

(1—0) s—1—e3s 1
—a v=7 Uit

In fact this relation becomes after reduction

s+ e — s es’ + gz @ —+5es' =0,
22
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that is
Fo 2+ ol — o s —7ss!) + 550’ =0

and this inequality holds because for 0 < s <1 the factor of g is at least
equal to

s — o — 77 > 0.
Now by virtue of (26), (27), (28) and (29) the relation (9) becomes
lra—x| <
< 2(1—o)(1—30)(1 + L o)sina(tgda+ {sina+ P sin*a—g asin?a—4$ a)
1—o 3s "
277@“""")“ ++ro)

which gives after reduction
|ra—x|<4r(tg}a+ Lsina+ % sin®a—¢ asin?a—3 a).
This becomes in the special case r = §
|ra—x| < 4 (tg ¥ a + L sin a + ¢ sin® a— % asin? a—'4 a).

This establishes the proof of the second theorem.



