Mathematics. - Approximate division of an angle into equal parts. By J. G. van der Corput and H. Mooij.
(Communicated at the meeting of March 26, 1949.)
The editors ${ }^{1}$) of Mathematica A published an approximate construction of the trisection, due to M. Martens, a former head-master. Although this construction is very accurate for acute angles (with an error smaller than $21^{\prime} 24^{\prime \prime}$), it is surpassed in this respect by the very simple construction given by S. C. van Veen ${ }^{2}$), of which the error for acute angles is less than $2^{\prime} 36^{\prime \prime}$.

These articles led H. MooIj to deal in his thesis ${ }^{3}$) with the problem of dividing a given angle approximately into a number of equal parts and even of the approximate construction of $r \alpha$, where α is a given angle and r denotes a number between zero and one, which can be constructed with a pair of compasses and a ruler.

Mooj's construction is based on the following theorem.

First theorem.

Describe a circle, the centre of which coincides with the vertex O of the given angle $A O B=2 \alpha \leqq 180^{\circ}$.

Suppose that the circle intersects the legs of the angle at A and B.
Let C be the middle of the segment $A B$. Produce $A B$ to D in such a way, that

$$
C D=\frac{r^{2}+3}{4 r} A C
$$

Describe a circle with D as centre and $\frac{3-3 r^{2}}{4 r} A C$ as radius, which intersects the smaller arc $A B$ at E. Then $\angle C O E$ is approximately equal to $r \alpha$ and the difference is smaller than

$$
\frac{4}{3} r\left(1-r^{2}\right)\left(\operatorname{tg} \frac{1}{2} \alpha+\frac{1}{4} \sin \alpha-\frac{3}{4} \alpha\right) .
$$

Thus the trisection ($r=\frac{1}{3}$) gives the following construction, which is identical to van Veen's.

Describe a circle with the unit as radius, the centre O of which is the vertex of the given angle $A O B=2 \alpha \leqq 180^{\circ}$. Assume that the circle intersects the legs of the given angle 2α at A and B. Let C be the middle of $A B$. Produce $A B$ to D such that

$$
C D=\frac{7}{3} A C .
$$

[^0]Describe a circle with D as centre and $A B$ as radius, which intersects the smaller arc $A B$ at E. Then $\angle C O E$ is approximately equal to $\frac{1}{3} \alpha$ and the difference is smaller than

$$
\frac{3}{8} 1_{1}^{2}\left(\operatorname{tg} \frac{1}{2} a+\frac{1}{4} \sin \alpha-\frac{3}{4} \alpha\right) .
$$

In this article the proof of the results found by Moolj will again be given. Further we shall give a second approximate construction of $r \alpha$, which is a little more complicated, but gives a more accurate approximation.

The new construction is based on the following theorem.

Second theorem.

Describe a circle with the unit as radius, the centre O of which coincides with the vertex of the given angle $A O B=2 \alpha \leqq 180^{\circ}$.

Assume the circle intersects the legs of the given angle at A and B; let C be the middle of $A B$. Produce $A B$ to D such that

$$
\begin{equation*}
C D=\frac{1}{4 r}\left(3+r^{2}\right) A C+\frac{1}{240 r}\left(1-r^{2}\right)\left(9-r^{2}\right) A C^{3} \tag{1}
\end{equation*}
$$

Describe a circle with D as centre and the radius

$$
\begin{equation*}
\frac{3}{4 t}\left(1-r^{2}\right) A C+\frac{1}{240 t}\left(1-r^{2}\right)\left(9-r^{2}\right) A C^{3} \tag{2}
\end{equation*}
$$

If this circle intersects the smaller are $A B$ of circle O at E, then $\angle C O E$ is approximately equal to $r \alpha$ and the difference is smaller than

$$
\frac{4}{3} r\left(\operatorname{tg} \frac{1}{2} \alpha+\frac{1}{4} \sin \alpha+\frac{3}{80} \sin ^{3} \alpha-\frac{3}{80} \alpha \sin ^{2} \alpha-\frac{3}{4} \alpha\right) .
$$

As for the trisection ($r=\frac{1}{3}$) we get the following approximate construction.

Describe a circle with the unit as radius, the centre O of which is the vertex of the given angle $O A B=2 \alpha \leqq 180^{\circ}$.

Assume that the circle intersects the legs of the given angle 2α at A and B and that C is the centre of $A B$. Produce $A B$ to D, such that

$$
C D=\frac{7}{3} A C+\frac{8}{8 r} A C^{3} .
$$

Describe a circle with D as centre and with

$$
2 A C+\frac{8}{81} A C^{3}
$$

as radius. This circle intersects the smaller arc $A B$ at E. Than $\angle C O E$ is approximately equal to ${ }^{1} \alpha$ and the difference is smaller than

$$
\frac{4}{9}\left(\operatorname{tg} \frac{1}{2} \alpha+\frac{1}{4} \sin a+\frac{3}{80} \sin ^{3} \alpha-\frac{8}{80} \alpha \sin ^{2} \alpha-\frac{3}{4} \alpha\right) .
$$

This construction becomes somewhat simpler, if the factor (9-r r^{2}) in the second term of (1) en (2) is replaced by 9.

If $r=\frac{1}{3}$, we get

$$
\begin{equation*}
C D=\frac{7}{3} A C+\frac{1}{10} A C^{3} \tag{3}
\end{equation*}
$$

and the radius of the circle with D as centre becomes

$$
\begin{equation*}
2 A C+\frac{1}{10} A C^{3} . \tag{4}
\end{equation*}
$$

This approximation is extraordinarily accurate. In order to have a survey of the accuracy of the approximation of the trisection, we give the following tables, referring to the three constructions I, II and III; here I denotes van Veen's construction (which also occurs in Mooij's thesis); II is the construction according to the formulae (1) en (2) and finally III is the simpler construction in which the formulae (3) and (4) are applied.

Difference from $1 / 3 \alpha$.

2α	I	II	III
180°	$1^{\circ} 35^{\prime} 17^{\prime \prime}$	$1^{\circ} 4^{\prime} 9.5{ }^{\prime \prime}$	$1^{\circ} 3^{\prime} 771^{\prime \prime}$
120°	$11^{\prime} 19^{\prime \prime}$	$4^{\prime} 21,2^{\prime \prime}$	$4^{\prime} 16,9^{\prime \prime}$
90°	$2^{\prime} 38^{\prime \prime}$	37,3'	35,7'
60°	18"	2,29 ${ }^{\prime \prime}$	2,25"

For the proof of the above assertions we need the following lemma

Lemma.

Assume the real numbers A, B, C and D satisfy the inequalities

$$
A^{2}+B^{2} \geqq C^{2} ; \quad A^{2}+B^{2}>D^{2} ; \quad C \neq D
$$

and the real number t satisfies

$$
A \sin t+B \cos t=D
$$

Then the equation

$$
\begin{equation*}
A \sin x+B \cos x=C \tag{5}
\end{equation*}
$$

has at least one real solution x for which the inequality

$$
|x-t|<\frac{2|C-D|}{\sqrt{A^{2}+B^{2}-C^{2}}+\sqrt{A^{2}+B^{2}-D^{2}}}
$$

holds and for which $x-t$ has the same sign as

$$
\frac{C-D}{A \cos t-B \sin t}
$$

Moreover

$$
A \cos t-B \sin t= \pm \sqrt{A^{2}+B^{2}-D^{2}} \neq 0
$$

For the proof we substitute $x=t+u$ in (5) and we introduce z determined by

$$
\operatorname{tg} \frac{1}{2} u=z \quad(-\pi<u<\pi)
$$

Equation (5) becomes

$$
A \sin (t+u)+B \cos (t+u)=C
$$

whence

$$
A\left(\frac{1-z^{2}}{1+z^{2}} \sin t+\frac{2 z}{1+z^{2}} \cos t\right)+B\left(\frac{1-z^{2}}{1+z^{2}} \cos t-\frac{2 z}{1+z^{2}} \sin t\right)=C
$$

consequently
$z^{2}(A \sin t+B \cos t+C)-2 z(A \cos t-B \sin t)-(A \sin t+B \cos t-C)=0$, hence

$$
\begin{equation*}
(D+C) z^{2}+2(B \sin t-A \cos t) z+C-D=0 \tag{6}
\end{equation*}
$$

The discriminant of this quadratic equation is

$$
\Delta=(B \sin t-A \cos t)^{2}-\left(C^{2}-D^{2}\right)
$$

and therefore

$$
\Delta=A^{2}+B^{2}-C^{2} \geqq 0
$$

The roots of (6) are

$$
\begin{aligned}
\operatorname{tg} \frac{1}{2} u & =\frac{A \cos t-B \sin t \pm \sqrt{A^{2}+B^{2}-C^{2}}}{C+D} \\
& =\frac{A^{2}+B^{2}-D^{2}-A^{2}-B^{2}+C^{2}}{(C+D)\left(A \cos t-B \sin t \mp \sqrt{A^{2}+B^{2}-C^{2}}\right.}
\end{aligned}
$$

The sign of $\pm \sqrt{A^{2}+B^{2}-C^{2}}$ can be taken equal to that of $A \cos t-B \sin t$ and then the sign of $\operatorname{tg} \frac{1}{2} u$ is the same as that of

$$
\frac{C-D}{A \cos t-B \sin t}
$$

According to our convention u lies between $-\pi$ and π, so that $\frac{1}{2} u$ has the same sign as $\operatorname{tg} \frac{1}{2} u$, thus

$$
\begin{aligned}
\left|\frac{1}{2} u\right|<\left|\operatorname{tg} \frac{1}{2} u\right| & =\frac{|C-D|}{\sqrt{A^{2}+B^{2}-\overline{C^{2}}+|A \cos t-B \sin t|}} \\
& =\frac{|C-D|}{\sqrt{A^{2}+B^{2}-C^{2}}+\sqrt{A^{2}+B^{2}-D^{2}}}
\end{aligned}
$$

where $u=x-t$. This establishes the proof.
For the proof of the first theorem we put
$A O=1 ; \angle C O E=x ; C D=p \sin \alpha ; D E=q \sin \alpha$ and $\angle B D E=y$.
By projecting $O E D$ on $O C$ and on $A D$, we get the relations

$$
\cos x-q \sin \alpha \sin y=\cos a
$$

and

$$
\sin x+q \sin \alpha \cos y=p \sin \alpha
$$

By eliminating y we obtain

$$
p \sin a \sin x+\cos a \cos x=1+\frac{1}{2}\left(p^{2}-q^{2}-1\right) \sin ^{2} a
$$

thus

$$
A \sin x+B \cos x=C
$$

where

$$
\begin{equation*}
A=p \sin \alpha ; \quad B=\cos \alpha \text { and } C=1+\frac{1}{2}\left(p^{2}-q^{2}-1\right) \sin ^{2} \alpha . \tag{7}
\end{equation*}
$$

We have to determine A and C in such a way, that x is approximately equal to $r a$; therefore we put

$$
\begin{equation*}
A \sin r \alpha+B \cos r \alpha=D \tag{8}
\end{equation*}
$$

Then, according to the above lemma,

$$
\begin{equation*}
|r \alpha-x|<\frac{2|C-D|}{\sqrt{A^{2}+B^{2}-C^{2}}+\sqrt{A^{2}+B^{2}-D^{2}}} . \tag{9}
\end{equation*}
$$

Expanding $\cos r \alpha$ and $\sin r \alpha$ in powers of $\sin \alpha$, we get

$$
\left.\begin{array}{r}
\cos r \alpha=1-\frac{r^{2}}{2!} \sin ^{2} \alpha-\frac{r^{2}\left(2^{2}-r^{2}\right)}{4!} \sin ^{4} \alpha-\frac{r^{2}\left(2^{2}-r^{2}\right)\left(4^{2}-r^{2}\right)}{6!} \sin ^{6} \alpha-\ldots \\
\sin r \alpha=r \sin \alpha+\frac{r\left(1^{2}-r^{2}\right)}{3!} \sin ^{3} \alpha+\frac{r\left(1^{2}-r^{2}\right)\left(3^{2}-r^{2}\right)}{5!} \sin ^{5} \alpha+\ldots \tag{10}
\end{array}\right\}
$$

From the relations (7) and (10) it follows that (8) becomes

$$
D=p \sin \alpha\left\{r \sin \alpha+\frac{r\left(1^{2}-r^{2}\right)}{3!} \sin ^{3} \alpha+\ldots\right\}+\cos \alpha \cos \tau \alpha .
$$

Differentiation of (10) gives

$$
r \cos r \alpha=r \cos \alpha\left\{1+\frac{1^{2}-r^{2}}{2!} \sin ^{2} \alpha+\frac{\left(1^{2}-r^{2}\right)\left(3^{2}-r^{2}\right)}{4!} \sin ^{4} \alpha+\ldots\right\}
$$

By substituting this result in the above value of D, we get

$$
\left.\begin{array}{rl}
D= & \left.p \sin \alpha\left\{r \sin \alpha+\frac{r\left(1^{2}-r^{2}\right)}{3!} \sin ^{3} \alpha+\frac{r\left(1^{2}-r^{2}\right)\left(3^{2}-r^{2}\right)}{5!} \sin ^{5} a+\ldots\right\}+\right\} \\
& +\left(1-\sin ^{2} \alpha\right)\left\{1+\frac{1^{2}-r^{2}}{2!} \sin ^{2} \alpha+\frac{\left(1^{2}-r^{2}\right)\left(3^{2}-r^{2}\right)}{4!} \sin ^{4} \alpha+\ldots\right\} \tag{11}
\end{array}\right\}
$$

Putting

$$
a_{h}=\left\{(2 h-1)^{2}-\varrho\right\} a_{h-1} ; a_{0}=1 ; \psi(h)=-(2 h-1+\varrho)+2 p r h
$$

and replacing $\sin \alpha$ by s and r^{2} by ϱ, we find

$$
\begin{equation*}
D=\sum_{h=0}^{\infty} \frac{s^{2 h} a_{h-2}\left\{(2 h-3)^{2}-\varrho\right\}}{(2 h)!} \psi(h) . \tag{12}
\end{equation*}
$$

In order to get a good approximation of $r \alpha$, we choose p and q in such a way, that the expansion of $C-D$ begins with $\sin ^{6} \alpha$. This gives $\frac{1}{2}\left(p^{2}-q^{2}-1\right)=p r-1+\frac{1}{2}\left(1-r^{2}\right)$ and

$$
\frac{p r\left(1^{2}-r^{2}\right)}{3!}+\frac{\left(1^{2}-r^{2}\right)\left(3^{2}-r^{2}\right)}{4!}-\frac{1^{2}-r^{2}}{2!}=0
$$

hence

$$
\begin{equation*}
p=\frac{r^{2}+3}{4 r} \text { and } q=\frac{3-3 r^{2}}{4 r} \tag{13}
\end{equation*}
$$

In what follows an upperbound is given for the error, provided that t lies between 0 and 1 . Substituting in (12) the value of p given by (13), we get

$$
\psi(h)=-2 h+1-\varrho+\frac{r^{2}+3}{2 r} h r=\frac{1}{2}(h-2)(\varrho-1)
$$

hence

$$
D=\sum_{h=0}^{\infty} \frac{s^{2 h} a_{h-2}\left\{(2 h-3)^{2}-\varrho\right\}}{2 \cdot(2 h)!}(h-2)(\varrho-1) .
$$

In $C-D$ the terms with $s^{0} ; s^{2}$ and s^{4} disappear, hence

$$
\begin{aligned}
C-D & =-\sum_{h=3}^{\infty} \frac{s^{2 h} a_{h-2}\left\{(2 h-3)^{2}-\varrho\right\}}{2 \cdot(2 h)!}(h-2)(\varrho-1) \\
& =(1-\varrho)^{2}\left(3^{2}-\varrho\right) U s^{6},
\end{aligned}
$$

where

$$
U=\frac{1}{2.6!}+\frac{2\left(5^{2}-\varrho\right) 5^{2}}{2.8!}+\frac{3 .\left(5^{2}-\varrho\right)\left(7^{2}-\varrho\right) 5^{4}}{2.10!}+\ldots
$$

By virtue of $0 \leqq \varrho \leqq 1$ the inequality $U \leqq U_{0}$ is evident, consequently

$$
C-D \leqq s^{6}(1-\varrho)^{2}\left(3^{2}-\varrho\right) U_{0}
$$

where U_{0} denotes the value of U at the point $\varrho=0$. Hence

$$
\begin{equation*}
C-D \leqq(1-\varrho)^{2}\left(1-\frac{1}{9} \varrho\right)(C-D)_{0}, \tag{14}
\end{equation*}
$$

where $(C-D)_{0}$ denotes the value which $C-D$ takes for $\varrho=0$.
The denominator of the right hand side of (9) contains the terms $\sqrt{A^{2}+B^{2}-C^{2}}$ and $\sqrt{A^{2}+B^{2}-D^{2}}$. Here

$$
\begin{aligned}
A^{2}+B^{2}-C^{2} & =p^{2} s^{2}+\cos ^{2} \alpha-\left\{1+\frac{1}{2}\left(p^{2}-q^{2}-1\right) s^{2}\right\}^{2} \\
& =q^{2} s^{2}-\frac{1}{4}\left(p^{2}-q^{2}-1\right)^{2} s^{4} .
\end{aligned}
$$

Substitution of the values of p and q, found in (13), gives

$$
A^{2}+B^{2}-C^{2}=\frac{9(1-\varrho)^{2}}{16 \varrho} s^{2}-\frac{(1-\varrho)^{2}}{16} s^{4},
$$

hence

$$
\begin{equation*}
\sqrt{A^{2}+B^{2}-C^{2}}=\frac{3(1-\varrho)}{4 r} s \sqrt{1-\frac{\varrho}{9} s^{2} .} . . . \tag{15}
\end{equation*}
$$

By putting $t=r \alpha$ in the last formula of our lemma and substituting (7), we obtain

$$
\begin{equation*}
\pm \sqrt{A^{2}+B^{2}-D^{2}}=p \sin \alpha \cos r \alpha-\cos \alpha \sin r \alpha . \tag{16}
\end{equation*}
$$

With the aid of the series (10), by substituting $p=\frac{r^{2}+3}{4 \tau}$, and. putting $c_{0}=1$ and $c_{h}=\left(4 h^{2}-\varrho\right) c_{h-1}(h \geqq 1)$, we get

$$
\begin{aligned}
\pm \sqrt{A^{2}+B^{2}-D^{2}} & =\frac{r(1-\varrho)}{4}\left\{\frac{3}{\varrho} s-\frac{s^{3}}{3!}+\frac{2^{2}-\varrho}{5!} s^{5}+\frac{3\left(4^{2}-\varrho\right)\left(2^{2}-\varrho\right)}{7!} s^{7}+\ldots\right\} \\
& =\frac{r(1-\varrho)}{4} \sum_{h=1}^{\infty} \frac{(2 h-5) c_{h-2}}{(2 h-1)!} s^{2 h-1}
\end{aligned}
$$

The right hand side is $\geqq 0$, consequently

$$
\sqrt{A^{2}+B^{2}-D^{2}} \geqq \frac{3(1-\varrho)}{4 t} s\left(1-\frac{\varrho}{18} s^{2}\right)
$$

and a fortiori

$$
\begin{equation*}
\sqrt{A^{2}+B^{2}-D^{2}}>\frac{3(1-\varrho)}{4 r} s \sqrt{1-\frac{\varrho}{9} s^{2}} \tag{17}
\end{equation*}
$$

The relations (9), (14), (15) en (17) give

$$
|r \alpha-x|<\frac{2(1-\varrho)^{2}\left(1-\frac{1}{9} \varrho\right)(C-D)_{0}}{\frac{3(1-\varrho) s}{4 t} \sqrt{1-\frac{1}{9} \varrho s^{2}}+\frac{3(1-\varrho) s}{4 \tau} \sqrt{1-\frac{1}{9} \varrho s^{2}}} .
$$

From $C_{0}=1+\frac{1}{4} s^{2}$ and $D_{0}=\frac{3}{4} \alpha \sin \alpha+\cos \alpha$ it follows that

$$
\begin{aligned}
(C-D)_{0} & =1+\frac{1}{4} \sin ^{2} \alpha-\frac{3}{4} \alpha \sin \alpha-\cos \alpha \\
& =\sin \alpha\left(\operatorname{tg} \frac{\alpha}{2}+\frac{1}{4} \sin \alpha-\frac{3}{4} \alpha\right)
\end{aligned}
$$

Hence

$$
|r \alpha-x|<\frac{2(1-\varrho)^{2}\left(1-\frac{1}{9} \varrho\right) s\left(\operatorname{tg} \frac{\alpha}{2}+\frac{1}{4} \operatorname{tg} \alpha-\frac{3}{4} \alpha\right)}{\frac{2 \cdot 3(1-\varrho) s}{4 r} \sqrt{1-\frac{1}{9} \varrho s^{2}}}
$$

Consequently

$$
|r a-x|<\frac{4}{3} r(1-\varrho)\left(\operatorname{tg} \frac{1}{2} a+\frac{1}{4} \sin \alpha-\frac{3}{4} \alpha\right) .
$$

This establishes the proof of the first theorem. For the proof of the second theorem we put

$$
\begin{equation*}
p=\frac{P}{r}+\frac{Q}{r} s^{2} \tag{18}
\end{equation*}
$$

Then

$$
\begin{equation*}
C=1+\frac{1}{2}\left(p^{2}-q^{2}-1\right) s^{2}=1+K s^{2}+L s^{4}, \tag{19}
\end{equation*}
$$

where P, Q, K and L are properly chosen functions of t. Formula (8) gives

$$
D=\left(\frac{P}{r}+\frac{Q}{r} s^{2}\right) s \sin r a+\cos a \cos r \alpha
$$

hence

$$
D=\left(P s^{2}+Q s^{4}\right) \sum_{h=0}^{\infty} \frac{a_{h} s^{2 h}}{(2 h+1)!}+\left(1-s^{2}\right) \sum_{h=0}^{\infty} \frac{a_{h}}{(2 h)!} s^{2 h}
$$

where
$a_{h}=\left(1^{2}-\varrho\right)\left(3^{2}-\varrho\right) \ldots\left((2 h-1)^{2}-\varrho\right)$ and $a_{0}=1$, so $a_{h}=\left\{(2 h-1)^{2}-\varrho\right\} a_{h-1}$, consequently

$$
\begin{aligned}
& D= \sum_{0}^{\infty} s^{2 h}\left\{\frac{a_{h}}{(2 h)!}-\frac{a_{h-1}}{(2 h-2)!}+\frac{P_{a_{h-1}}}{(2 h-1)!}\right. \\
&\left.=\frac{Q a_{h-2}}{(2 h-3)!}\right\} \\
&=\sum_{0}^{\infty} s^{2 h} a_{h-2}\left\{\frac{(2 h-1)^{2}-\varrho}{(2 h)!}\left((2 h-3)^{2}-\varrho\right)-\frac{(2 h-3)^{2}-\varrho}{(2 h-2)!}+\right. \\
&\left.+\frac{(2 h-3)^{2}-\varrho}{(2 h-1)!} P+\frac{Q}{(2 h-3)!}\right\}
\end{aligned}
$$

This gives

$$
D=\sum_{0}^{\infty} \frac{s^{2 h} a_{h-2}}{(2 h)!} \varphi(h)
$$

where

$$
\begin{aligned}
\varphi(h)=-\{(2 h-1)+\varrho\}\left\{(2 h-3)^{2}-\varrho\right\} & +2 h\left\{(2 h-3)^{2}-\varrho\right\} P+ \\
& +2 h(2 h-1)(2 h-2) Q .
\end{aligned}
$$

The functions P, Q, K and L are chosen such that the expansion of $C-D$ begins with s^{8}. By virtue of

$$
\begin{aligned}
& D=1+\frac{s^{2}}{2 l}(-1-\varrho+2 P)+\frac{s^{4}}{4!}\{-(3+\varrho)(1-\varrho)+4(1-\varrho) P+4.3 .2 . Q\}+ \\
&+\frac{s^{6}(1-\varrho)}{6!}\{-(5+\varrho)(9-\varrho)+6(9-\varrho) P+6.5 .4 Q\}+\ldots
\end{aligned}
$$

we get in connection with (19)

$$
\begin{gather*}
2 K=-1-\varrho+2 P: . \tag{20}\\
24 L=-(3+\varrho)(1-\varrho)+4(1-\varrho) P+4.3 \cdot 2 \cdot Q \tag{21}\\
-(5+\varrho)(9-\varrho)+6(9-\varrho) P+6.5 .4 . Q=0 \tag{22}
\end{gather*}
$$

Substitution in (19) of the values of p and $2 K$, found respectively in (18) and (20) furnishes

$$
\begin{equation*}
q^{2} \varrho=(P-\varrho)^{2}+2 s^{2}(P Q-L \varrho)+s^{4} Q^{2} \tag{23}
\end{equation*}
$$

To simplify we put the right hand side of this equation equal to a perfect square, by choosing

$$
P Q-L \varrho=(P-\varrho) Q, \text { hence } L=Q
$$

From (21) follows

$$
\begin{equation*}
4(1-\varrho) P=(3+\varrho)(1-\varrho), \text { hence } P=\frac{3+\varrho}{4} \ldots . \tag{24}
\end{equation*}
$$

Formula (22) gives

$$
120 Q=(5+\varrho)(9-\varrho)-6(9-\varrho) \cdot \frac{3+\varrho}{4}
$$

hence

$$
Q=L=\frac{(1-\varrho)(9-\varrho)}{240}
$$

By (20) and (24) we obtain

$$
K=\frac{1-\varrho}{4}
$$

Now (23) becomes

$$
\varrho q^{2}=\left(P-\varrho+Q s^{2}\right)^{2} \text { and } r q= \pm\left(P-\varrho+Q s^{2}\right)
$$

The left hand side of the last relation and also both $P-\varrho$ and $Q s^{2}$ are positive, so that the plus sign holds good. This gives

$$
r q=\frac{1-\varrho}{240}\left\{180+(9-\varrho) s^{2}\right\}
$$

and by (18)

$$
\begin{equation*}
r p=\frac{3+\varrho}{4}+\frac{(1-\varrho)(9-\varrho)}{240} s^{2} \tag{25}
\end{equation*}
$$

In order to obtain an upper bound of the error, we deduce from our lemma that this error is

$$
|r \alpha-x|<\frac{2|C-D|}{\sqrt{A^{2}+B^{2}-C^{2}}+\sqrt{A^{2}+B^{2}-D^{2}}}
$$

here

$$
C-D=-\sum_{h=4}^{\infty} \frac{s^{2 h} a_{h-2}}{(2 h)!} \varphi(h)
$$

and

$$
\begin{aligned}
\varphi(h)=-\{2 h-1+\varrho\}\left\{(2 h-3)^{2}-\varrho\right\} & + \\
& +2 h\left\{(2 h-3)^{2}-\varrho\right\} P+2 h(2 h-1)(2 h-2) Q .
\end{aligned}
$$

Consequently

$$
\begin{aligned}
\varphi(h)=-\{ & (2 h-1)+\varrho\}\left\{(2 h-3)^{2}-\varrho\right\}+ \\
& +2 h\left\{(2 h-3)^{2}-\varrho\right\} \frac{3+\varrho}{4}+2 h(2 h-1)(2 h-2) \frac{(1-\varrho)(9-\varrho)}{240}
\end{aligned}
$$

which gives after reduction

$$
\varphi(h)=\frac{(1-\varrho)(h-3)}{60}\left\{-102 h^{2}+267 h-180-\varrho\left(2 h^{2}+3 h-20\right)\right\},
$$

hence
$C-D=\frac{1-\varrho}{60} \sum_{h=4}^{\infty}(h-3) \frac{s^{2 h} a_{h-2}}{(2 h)!}\left\{102 h^{2}-267 h+180+\varrho\left(2 h^{2}+3 h-20\right)\right\}$.

In this relation we have for $h \geqq 4$

$$
a_{h-2}=(1-\varrho)\left(1-\frac{1}{9} \varrho\right) b_{h-2}(\varrho),
$$

where $b_{h_{-2}}(\varrho)$ is a polynomial in ϱ, which has in the interval $0 \leqq \varrho \leqq 1$ its maximum value at the point $\varrho=0$, therefore

$$
0 \leqq a_{h-2} \leqq(1-\varrho)\left(1-\frac{1}{9} \varrho\right) b_{h-2}(0)=(1-\varrho)\left(1-\frac{1}{9} \varrho\right) a_{h-2}(0)
$$

Further
$102 h^{2}-267 h+180+\varrho\left(2 h^{2}+3 h-20\right) \leqq\left(1+\frac{1}{3} \varsigma\right)\left(102 h^{2}-267 h+180\right) ;$ for this relation is equivalent to the inequality

$$
62 h^{2}+93 h-620 \leqq 102 h^{2}-267 h+180
$$

which is evident in virtue of $h^{2}-9 h+20 \geqq 0$. Hence
$C-D \leqq$
$\leqq \frac{(1-\varrho)^{2}}{60}\left(1-\frac{1}{9} \varrho\right) \sum_{h=4}^{\infty}(h-3) \frac{s^{2 h}}{(2 h)!} a_{h-2}(0)\left(1+\frac{1}{3 T} \varrho\right)\left(102 h^{2}-267 h+180\right)$.
This furnishes

$$
\begin{equation*}
C-D \leqq(1-\varrho)\left(1-\frac{1}{9} \varrho\right)\left(1+\frac{1}{3} \varrho \varrho\right)(C-D)_{0} . \tag{26}
\end{equation*}
$$

From (7), (8) and (25) we deduce

$$
D=\frac{3+\varrho}{4 r} \sin \alpha \sin r \alpha+\frac{(1-\varrho)(9-\varrho)}{240 r} \sin ^{3} \alpha \sin r \alpha+\cos \alpha \cos r \alpha
$$

hence

$$
D_{0}=\frac{3}{4} \alpha \sin \alpha+\frac{3}{8^{5}} \alpha \sin ^{3} \alpha+\cos \alpha
$$

Further

$$
C_{0}=1+\frac{1}{4} s^{2}+\frac{3}{80} s^{4},
$$

hence

$$
(C-D)_{0}=1+\frac{1}{4} s^{2}+\frac{3}{80} s^{4}-\frac{3}{4} \alpha s-\frac{3}{80} \alpha s^{3}-\cos \alpha,
$$

consequently

$$
\begin{equation*}
(C-D)_{0}=\sin \alpha\left(\operatorname{tg} \frac{1}{2} \alpha+\frac{1}{4} \sin \alpha+\frac{3}{80} \sin ^{3} \alpha-\frac{3}{80} \alpha \sin ^{2} \alpha-\frac{8}{4} \alpha\right) . \tag{27}
\end{equation*}
$$

Further

$$
\begin{aligned}
& A^{2}+B^{2}-C^{2}=p^{2} \sin ^{2} a+\cos ^{2} a-\left(1+K \sin ^{2} a+L \sin ^{4} a\right)^{2} \\
& \quad=\left(\frac{P}{r}+\frac{Q s^{2}}{r}\right)^{2} s^{2}+1-s^{2}-\left(1+K^{2} s^{4}+L^{2} s^{8}+2 K s^{2}+2 L s^{4}+2 K L s^{6}\right)
\end{aligned}
$$

where $Q=L$, hence

$$
\begin{aligned}
& A^{2}+B^{2}-C^{2}=\frac{p^{2}}{\varrho} s^{2}+\frac{2 P Q}{\varrho} s^{4}+\frac{Q^{2}}{\varrho} s^{6}+ \\
& \quad+1-s^{2}-1-K^{2} s^{4}-Q^{2} s^{8}-2 K s^{2}-2 Q s^{4}-2 K Q s^{6} \\
& \quad=s^{2}\left\{\frac{P^{2}}{\varrho}-1-2 K+s^{2}\left(\frac{2 P Q}{\varrho}-K^{2}-2 Q\right)+s^{4}\left(\frac{Q^{2}}{\varrho}-2 Q K\right)-Q^{2} s^{6}\right\}
\end{aligned}
$$

Substitution of the values of P, Q and K gives

$$
\begin{aligned}
\sqrt{A^{2}+B^{2}-C^{2}}=\frac{1-\varrho}{4} s \vee\left\{\frac{9}{\varrho}+\right. & \frac{9-11 \varrho}{10 \varrho} s^{2}+ \\
& \left.+\frac{(9-\varrho)(9-121 \varrho)}{3600 \varrho} s^{4}-\frac{(9-\varrho)^{2}}{3600} s^{6}\right\}
\end{aligned}
$$

In order to deduce from this relation the inequality

$$
\begin{equation*}
\sqrt{A^{2}+B^{2}-C^{2}} \geqq \frac{1-\varrho}{4} \frac{3 s}{\sqrt{\varrho}}\left(1-\frac{1}{9} \varrho\right)\left(1+\frac{1}{3^{1}} \varrho\right), \ldots . \tag{28}
\end{equation*}
$$

we remark that this inequality is equivalent to

$$
\begin{aligned}
& \frac{9}{\varrho}+\frac{9-11 \varrho}{10 \varrho} \cdot s^{2}+\frac{(9-\varrho)(9-121 \varrho)}{3600 \varrho} s^{4}-\frac{(9-\varrho)^{2}}{3600} s^{6} \\
& \\
& \quad \geqq \frac{9}{\varrho}\left(1-\frac{2}{9} \varrho+\frac{1}{8} 1 \varrho^{2}\right)\left(1+\frac{2}{31} \varrho+\frac{1}{31^{2}} \varrho^{2}\right)
\end{aligned}
$$

and therefore equivalent to

$$
\begin{aligned}
& \left(\frac{81}{3600} s^{4}+\frac{9}{10} s^{2}\right) \frac{1}{\varrho}+\left(\frac{44}{31}-\frac{11}{10} s^{2}-\frac{1098}{3600} s^{4}-\frac{81}{3600} s^{6}\right) \\
& +\left(\frac{121}{3600} s^{4}+\frac{18}{3600} s^{6}+\frac{74}{9.961}\right) \varrho-\left(\frac{1}{3600} s^{6}+\frac{44}{9.961}\right) \varrho^{2}-\frac{1}{9.961} \varrho^{3} \geqq 0 .
\end{aligned}
$$

To prove this inequality it is sufficient to consider the most unfavourable case, viz. $s=1$; in this case the inequality becomes

$$
\frac{369}{400} \frac{1}{\varrho}-\frac{101}{12400}+\frac{163179}{961.3600} \varrho-\frac{18561}{961.3600} \varrho^{2}-\frac{1}{9.961} \varrho^{3} \geqq 0 .
$$

which is true for every value of ϱ between 0 and 1 .
By substituting in (16) the value of p found in (25) we get

$$
\begin{aligned}
& \sqrt{A^{2}+B^{2}-D^{2}}=\frac{3(1-\varrho)}{4 r} s+\frac{(9-11 \varrho)(1-\varrho)}{240 r} s^{3}-\frac{r(1-\varrho)}{4.4!} s^{5} \ldots \\
& +\sum_{n=4}^{\infty} \frac{r\left(2^{2}-\varrho\right) \ldots\left((2 n-6)^{2}-\varrho\right)(1-\varrho)(2 n-7)\left\{102 n^{2}-369 n+339+(n-3)(2 n+7) \varrho\right\} s^{2 n-1}}{120(2 n-1)!}
\end{aligned}
$$

This gives

$$
\left.\begin{array}{rl}
\sqrt{A^{2}+B^{2}-D^{2}} & \frac{3(1-\varrho)}{4 r} s+\frac{(9-11 \varrho)(1-\varrho)}{240 r} s^{3}- \\
& -\frac{r(1-\varrho)}{4.4!} s^{5} \geqq \frac{1-\varrho}{4} \frac{3 s}{\sqrt{\varrho}}\left(1-\frac{1}{9} \varrho\right)\left(1+\frac{1}{3} \Gamma \varrho\right) . \tag{29}
\end{array}\right\} .
$$

In fact this relation becomes after reduction

$$
\frac{1}{20} s^{2}+\frac{2}{2} 7^{2} 9 \varrho-\frac{11}{180} \varrho s^{2}+\frac{1}{279} \varrho^{2}-\frac{1}{72} \varrho s^{4} \geqq 0,
$$

that is

$$
\frac{1}{20} s^{2}+\varrho\left(\frac{2}{2} \frac{2}{2} 9-\frac{1}{1} \frac{1}{80} s^{2}-\frac{1}{72} s^{4}\right)+\frac{1}{2} \frac{1}{9} \varrho^{2} \geqq 0
$$

and this inequality holds because for $0 \leqq s \leqq 1$ the factor of ϱ is at least equal to

$$
\frac{2^{2} 2}{279}-\frac{11}{180}-\frac{1}{72}>0 .
$$

Now by virtue of (26), (27), (28) and (29) the relation (9) becomes

$$
\begin{aligned}
& |r a-x|< \\
& <\frac{2(1-\varrho)\left(1-\frac{1}{9} \varrho\right)\left(1+{ }_{3}{ }^{\frac{1}{1}} \varrho\right) \sin \alpha\left(\operatorname{tg} \frac{1}{2} \alpha+\frac{1}{4} \sin \alpha+\frac{3}{80} \sin ^{3} \alpha-\frac{3}{80} \alpha \sin ^{2} \alpha-\frac{3}{4} \alpha\right)}{2 \frac{1-\varrho}{4} \frac{3 s}{\sqrt{~} \varrho}\left(1-\frac{1}{9} \varrho\right)\left(1+\frac{1}{3} \Gamma \varrho\right)}
\end{aligned}
$$

which gives after reduction

$$
|r \alpha-x|<\frac{4}{3} r\left(\operatorname{tg} \frac{1}{2} \alpha+\frac{1}{4} \sin \alpha+\frac{3}{80} \sin ^{3} \alpha-\frac{3}{80} \alpha \sin ^{2} \alpha-\frac{3}{4} \alpha\right) .
$$

This becomes in the special case $r=\frac{1}{3}$

$$
|r \alpha-x|<\frac{1}{9}\left(\operatorname{tg} \frac{1}{2} \alpha+\frac{1}{4} \sin \alpha+\frac{3}{80} \sin ^{3} \alpha-\frac{3}{80} \alpha \sin ^{2} \alpha-\frac{3}{4} \alpha\right) .
$$

This establishes the proof of the second theorem.

[^0]: 1) Trisectie, Mathematica A 6 (1937-38), p. 1-4.
 $\left.{ }^{2}\right)$ S. C. VAN VEEN, Benaderde trisectie, Mathematica A 7 (1938-39), p. 229-237.
 ${ }^{3}$) H. MOOY, Over de didactiek van de meetkunde benevens benaderingsconstructies ter verdeling van een hoek in gelijke delen, Thesis Amsterdam 1948.
