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§ 1. Scope of the paper. A. SOMMERFELD 1) has devised a method 
which enables us to treat many of the most simple but also most important 
eigenvalue problems in a very easy manner. His polynomial method starts 
with a splitting of the eigenfunction f of the originally given differential 
equation into two factors E and P 

(=EP. (1) 

The factor E takes care of the convergence of the normalization integral 
and of the fulfilment of the boundary conditions. The factor P however 
is assumed to be a polynomial. so that it does not disturb these properties 
of E. We suppose moreover that P is a solution of a differential equation 
of the second order with a recurrence formula containing only two terms. 
that is one of the form 

AI and Bi 2) are constants and h is a positive integer. 
In the present paper we will indicate the eigenvalue problems which 

can be treated by SOMMERFELDs polynomial method. In § 2 we suppose 
that the polynomial P in (1) is a solution of (2). Then a relation con~ 
necting the coefficients of the differential equation (2) and the original 
one determines the general form of the potential V which appears in the 
original differential equation. But the function V obtained in such a 
way contains the eigenvalue parameter;' and the coefficients Ai and Bi 
which depend generally on ;.. If V has a real physical meaning it can 
however _ not dep end on ;., That means that there are some relations 
between ;. and the coefficients Ai and Bi. Further relations follow if we 
require that E guarantees the fulfilment of boundary conditions. All these 
equations determine not only uniquely the potential function V but settie 
also the eigenvalues. 

From this point of view we treat in the following sections some special 
problems completely. In § 3 we deal with the radial functions of the 
spherical symmetric case. In § 4 we discuss the differential equation of 
associated Legendre functions. In § 5 we start from the same differential 
equation as in § 4. but apply the polynomial method af ter a linear trans~ 
formation of the independent variabie. In this way we obtain the differential 
equation of }ACOBI polynomials. 
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§ 2. The connection between the original and the polynomial differ~ 
ential equations. Going over from the "original" differential equation 

f" + 2 af' + bf=O. . . . . . . . (1) 

with the aid of (1. 1) 3) to the differential equation of the polynomials 

pil + 2 aP' + {JP = 0 • • . . • • • • (2) 

we get between the coefficients of both the differential equations the 
relations 

E' 
a = E + a, • . • •. (3a) 

Eli E' 
{J = E + 2 a E + b. • • • • (3b) 

Eliminating E we obtain arelation between the coefficients of both the 
differential equations (1) and (2) 

a 2 + a' - b = a2 + a' - {J. • • • • • • • (4) 

We denote this expression in the following considerations by S. 
We assume that the coefficients of (1) are real numbers and that (1) 

is the differential equation of aneigenvalue problem. (1) is th en selfadjoint 
and has the form 

d ( df) _ dx p dx - q f + le f - o. . . . . . . (5) 

,l denotes the eigenvalue parameter and e(x) the density function. It appears 
in the integral 

. • • (6) 

which decides in case of discrete eigenvalues about normalization and ortho~ 
gonality of eigenfunctions. Xl and X2 are the boundaries of the fundamental 
interval. 

Comparing (1) and (5) we obtain 

1 p' 
a=2p' 

b=- q-1e. 
p 

According to (4) and (7) we can represent S in the form 

(7a) 

(7b) 

s=~ (-21 pll_~p'2 +q-1e) . ..... (8) 
p "'I P 

so th at q becomes 
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The form of the expression S which appears in (9) is known because we 
suppose that the differential equation for P is given by (1. 2) and therefore 

_ 1 AI +Bt Xh f3- 1 Aa+Bo xh . (10) 
a - X A 2 + B 2 xh - X2 A 2 + B 2 xh 

so th at according to (4) 

s- 2+ '-f3- (At +Bt xh) [AI-A2+(Bt-(h+l)B2.Xhl_l 
- a . a - X2 (A2 + B 2 xh)2 

(11) 
Aa + (Bo-h BI) Xh 

- X2 (A 2 + B2 Xh) . 

Our fin al result is: If the differential equation (5) with given pand q 
is solvabIe by f= EP. P being a solution of (1. 2). q must be of the 
form (9) where S has the form (11). 

We apply this proposition in cases where we can split the SCHROEDINGER 

equation 

!::::. 'IjJ + x{8- V) 'IjJ=O. 
2m 

X=fi2' . (12) 

into a number of differential equations of the form (5). Both pand e are 
then compietely determined by the coordinates used for the separation of 
the variables and q contains generally an expression given by the potential 
function V. By (9) and (11) are settled the forms of the q's of all these 
differential equations therefore also the form of the potential function V. 

A more exact determination of V we obtain by the demand that the 
coefficients of V can not depend on the eigenvalue parameter }" if V has 
a real physical meaning. This takes place if the expressions (9) for q do 
not depend on 2 4 ). But this can be fulfiled only if the coefficients BI which 
appear in S are functions of 2. To find out this dependence we can expand 
the expres sion 

. (13) 

contained in (9) in a power series in powers of X-Xo (xo arbitrary) 
eventually after multiplication with a function of x. On this occasion we 
also find, that only for distinct values of h the expression (13) can be 
made independent of 2. 

Further concIusions as to the Ai and Bi and so as to the potential V 
we can draw from the boundary conditions for the eigenfunctions. As a 
rule the fundamental interval in the quantum theory in bounded by two 
singular points of the equation (5). In such points the solution has a 
tendency towards becoming infinite. From the mathematical point of view 
it is the task of the boundary conditions to suppress th is tendency. 

If we confine ourselves to the discrete eigenvalue spectrum we must 
claim that the integral (6) is convergent for any two· eigenfunctions [1 
and [2' since otherwise we can not speak of their normalization or 
orthogonality', 
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Also in case of singular boundary points xl and X2 we prove the ortho": 
gonality of two eigenfunctions fl and [2 with the eigenvalues Al and A2 
by the aid of the well known relation 

x. 
(A2- AI) J b· f,. e dx= tim (jJ (x)- tim fJj (x) (14) 

x, x-+ x. x-+ x, 

where 

fJj (x) = P (x) [H (x) dtl (x) - ti (x) db· (x)]. 
dx . dx • (15) 

To apply (14) in this case in. the usual manner we have to claim not only 
the convergence of the integral ( 6) appearing in (14) but also the 
existence and equatity of both the limits 

lim fJj (x) = lim (jJ (x). · (16) 

Physical arguments can stipulate to claim more, e.g. that (16) is zero or 
the eigenfunctions are periodic. But also mathematical motives can do it if 
e.g. the eigenfunctions have to form a complete set of orthogonal functions. 

Bath factors E and P which form [ can facilitate or make more difficult 
the fulfilment of the boundary conditions. P is a product of Jé1 with a 
.. genuine" polynomiaI. beg inning with a constant and consisting of integer 
powers of Xh. The exponent a is given here by the determining fundamental 
equation 

a (a-I)A2 + 2aAI + Ao =0. 

But also the form of E is determined. According to (3a) we get 

From (7a) we Eind 

E = exp (J (a -a) dx). 

const 
exp- Jadx= -'i-

p' 

· (17) 

wh ere as exp J a dx may be evaluated by the use of (10) . Carrying out 
th is calculation we have to distinguish three cases, according to the dis­
appereance or non-disappereance of the constants A 2 and 8 2 , We get 
without an insignificant constant 

(11) in case of A 2 = 0, 8 2 =j:- 0 

I A, I 

E = p-I/. XB,IB. e -hB.xh, 

(III) in case of A 2 =j:- 0, 8 2 = 0 

• (18a) 

(18b) 

• (lBc) 
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The role played by the singular and zero points of e, p, Pand E in the 
fulfilment of the boundary conditions we shall discuss when considering 
the different special cases. 

To these relations we have to add SOMMERFELDs condition of breaking 
oH the power series 

• (19) 

whieh makes of P a polynomial and determines the eigenvalues of À in 
their dependence of an integer n, divisible by h. 

Finally we indieate a very useful property of the polynomial equation 
(2). It does not change its form, if we multiply the polynomial P with a 
given power of x. Putting E = x Y we get from (3) 

v 
a=a--, 

x 
b = {J - 2a ~ + v (v -J; !.2. 

x x 

We obtain therefore for [ = x Y P the diHerential equation (1), in which 
the coefficients a, b are of the form (10) of the coefficients a, (J. 

In both the cases (I) and (lIl) in w hieh A 2 #- 0 we shall use the 
abbreviations 

§ 3. Spheric symmetrie field of force. Splitting oH from a Schrödinger 
eigenfunction a spherical harmonie we obtain for the radial function R(x) 
the differential equation 

• (1) 

i.e. the differential equation (2.5) with 

p=e=x2
, À=>eG, q=>eVx2 +1(l+1) (2) 

V is here the potential function and I the azimuthal quantum number. 
From (2) and (2.11) we obtain V in the form 

V = ~ _I (l +21) + G. . (3) 
>e >ex 

We assume that the fundamental interval is given by 0 < x < + co and 
use for our considerations the factor E first. 

To make the -normalizing integral (cp. (2.6)) 

j Xl R* R dx (4) 
o 

convergent at its upper limit we have to assume case 111 i.e. 

Az =f 0, B 2 = o. 
According to (2. lBc) and (2) E becomes 

~-1 ~~xh 
E=XA. eh A. 

• (5) 

• (6) 
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and the convergence for x ~ + DJ requires Bd A 2 < O. Finally we assume 

AI =A2 • ••••••••• (7) 

to unite the x~power from E with the polynomial P. 
For further considerations we use V. According to (2.11). (5) and (7) 

the expres sion S is given here by 

S = -\. [- ao + ((h + 1) bI - ba) Xh + b~ X2h]. 
X . 

To free V. Eq. (3). from 8 we have here only both the possibilities 
h = 1 or = 2. For h = 1 the potential becomes 

V - C-2 +~+ 
- 2 Co. 

X X 
. • . • • (8) 

where the constants 

1 
C-2= - -(ao + 1(1 + 1)). 

" 
(9a) 

1 
C-I = - (2 bI - ba) . . (9b). 

" 
b~ co=8+-
" 

(9c) 

are independent of 8. Therefore we obtain for V a Coulomb potential 
superposed by a potential inversely proportional to the square of the 
distance. The coefficients Cl in (8) are arbitrary because their dependence 
on AI. BI does not imply any connection between them. 

To the potential (8) belongs the RYDBERG formula. From (2.19) and 
(5) follows 

bo = - 2 bI (n + a). . . • . . • . (l0) 

and hence. in accordance with (9b). Cl = ~I (n + a + 1) so that we 

obtain from (9c) in fact the RYDBERG formula 

" (c-I)2 8=-i(n+a+1)2+Co, ...... (11) 

Supposing fUJ,'ther. that the Coulomb potential has the right constant 
Cl = - e2 Z we obtain in (11) the RYDBERG constant. Eq. (9a) not yet 
used determines a and hence the RYDBERG correction. From (2.17). (7) 
and (9a) we obtain 

a (a + 1) = - a. = 1 (I + 1) + "C-2. • • • (12) 

In a pure Coulomb field. there is c-2 = 0 and' therefore a = I (for 
a = -1- 1 the normalizing integral ('4) is not convergent) so that we 
obtain the BALMER formula. 

In' case h = 2 we have 

V C-2 + 2 + =-2 C2 X Co 
X 
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wh ere 

1 
C-2 = - - (ao + I (l + 1) ) . 

" 
(13a) 

(13b) , 
1 

Co = G + - (3b l - bol • 
" 

(13c) 

The potential V is consequently given by a superposition of an elastie 
potential and of a potential inversely proportional to the square of the 
distance. 

The dependence of G upon the quantum numbers we obtain from (10), 

( 13b) and (13c) 

G = - 2 ~ (n + 0' + -i) + Co = 2 1 /~ (n + 0' + -i) + Co. (14) 
" V " 

The positive sign of the square root is determined by (6). 
If to the pure elastie field of force corresponds a frequency w (in 

2:n sec), we have to put C2 =; w 2 • Like in case h = 1 the constant a is 

given by (12). 
In case of a pure elastic potential there is C-2 = 0 and therefore a = Z. 

For the eigenvalues of the spatial harmonie oscillator we obtain then 

G = (n + I + f) h w + Co • (IS) 

The general case (14) we can conceive now as (15) with a RVDBERG 

correction a. The constant Co is in all the formulae of Legendre functions 
arbitrary and we can put Co = 0, if V is normalized as usua!. 

§ 4. The differentiaZ equation for associated Legendr.e [unctions. To 
have an example of an eigenvalue problem in a fini te fundamental interval 
we generalize the equation for associated Legendre functions 

d: ((1- x
2

) ~~) + ( À - 1 m~ ) K = 0 

putting V(x) for m2/(1-x 2 ) 

d ( dK) dx (l-x 2 )dx +(l-V(x»K=O. 

We obtain hence the differential equation (2. 5) with 

p= I-x 2
, (1= L q= V. 

From (2.9) and (2) we get therefore 

V = 1 1 x 2 + S ( 1 - x 2
) + À • 

. . (1) 

. (2) 

(3) 

For the fundamental interval we choose -1 < x < + 1 and use first 
for o~r considerations the factor E, given by one of the Eqs. (2. 18). 
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The zero points of p. which according to (2) are situated in x = -+- 1. 
endanger the convergence of the normalizing integral given according to 
(2.6) and (2) by 

. • . (4) 

because p-i appears in the factors E in all the cases (2.18). This danger 
can be eli mina ted only in case I. Eq. ( 2. 18a). w here 

A 2 =f O. B2 =f. 0 
and where according to (2. 18a) and (2) 

I (BI AI) 
~ (A 2 + B 2 xh)h B;-tt; 

E - x A• -'--=------:--=----7.-;-;---
- (I -x2)'/. 

• (5) 

To avoid Edisturbing the convergence of the normalization integral (4) in 
the endpoints x = -+- 1 of the fundamental' interval and to secure the 
finiteness of the expressions (2. 15) the binomial A 2 + B2 Xh must be 
divisible by 1-x2 • Hence follows that 

A 2 =-B2 (6) 
and 

h = even integer. (7) 
Both our demands restrict also the variability of the exponent of 
A 2 + B2 Xh; the demand that the expressions (2.15) are finite goes further 
and claims in accordance with (6) that 

AI1 BI + 1 -== O. . • • • • • . • (8) 

To transpose x A,1A• from E to P we must put 

AI=O .. . . . . . '. (9) 
Now let us use V. In accordance with (5). (6) and (9) we obtain from 

(2. 11) 

s- h-2b -l+(b l +b+l)xh _Bo+(bo-hbl)Xh 
- x I (l-xh)2 r (I-xh) • (10) 

Developing S in a power series we get from the expression Sp appearing 
in Eq. (3) 

Sp = S (1-x2) = _ ao +ao-M(xh-2_Xh)-(M+N)(rh-2-rh)+ ! r (11) 
+ (M + 2N) (x-'h-2_x-'h) + ... 

where M = ao + bo-(h-l)bv N = -bdb1 + h). 
If V is independent of À. the coefficients of a development of V in a 

power series can also not dep end on À.. Hence in accordance with (3) the 
coefficients of a power series development of 

S(1-x2 )+1 ........ (12) 
must be independent of À. 
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First we assume that h ~ 2. i.e. according to (7): h = 4. 6. 8 •.... In 
accordance with( 11) and (12) then the values of ao. a{) + À.. M. N must be 
constant. But from the simultaneous constancy of ao and ao '+ À. it follows 
that also the eigenvalue parameter À. is invariable. In such a case however 
our problem is not an eigenvalue problem. 

For h = 2 we have to demand. that only the three quantities ao. 
ao-M + À. and N are constant. From this and the Eqs. (2.17) and (2.19) 
we could determine the dependence of the eigenvalues À. upon the quantum 
numbers. But we may come to this conclusion in an easier way. 

For h = 2 we obtain from (3) and (10) for V the expression 

A B 
V=-I--2 +-2 +c -x :Je 

where the constants are given by 

• (13) 

A=(bl +I)2 (14a). B=-ao (14b). C=À.-(b~+bl+bo). (14c) 

IE we put b1 + 1 = -m and remark that from (2.18) it follows 
bo = (0 + n) (0+ n-l) -2b1(0 + n) we finally obtain Erom (He) 

l=(o+m+n) (a+m+n+l) + C. • (15) 

In accordance with (8) and (9). m is here a positive constant. 
From (2. 17) and (9) we ob ta in . for 0 the relation 

a (a - 1) = - ao = B. (16) 

By SOMMERFELD's polynomial method we can thereEore solve a slightly 
more general differential equation than the one Eor the associated Legendre 
functions. This last differential equation we obtain by putting B = o. 
In this case is 0 = 0 or = 1. Remembering that n is an even integer 
(h = 2/) and hence n + 0 an arbitrary positive integer we see that (15) 
represents the weIl known eigenvalues of the differential equation for the 
associated Legendre Eunctions. 

To demonstrate by an example the simpliEications caused by the trans~ 
position of the x~power from E to P. we indicate the results arrived at 
without the supposition (8). Instead of (11) we obtain an expres sion in 
which is substituted 

ao- al (al-I) for ao . M-al (2al +2bl +h-l) for M, 

N-al (al +2bl +h) for N. 

But this does not alter the conclusion that h = 2. 
We obtain V in the same way from (13) but have to substitute 

A'=(al+bl+1)2, B'=B+adal-l), C'=C 

for A. B. C. 
Putting al + bl + 1 = - m 50 that we have again A = m2 we obtain 

for the eigenvalues the expression 

1 = (o+al +m +n) (o+al +m+n + 1) + c' (15') 
24 
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where .o + al is given by the equation 

(o+ad (o+aJ-l)=B. . . (16') 

The equations (15') and (16') we obtain from (15) and (16) if we write 
o + al instead of o. But this changes only the notation. 

§ 5. The differential equation of JACOBI polynomials. IE SOMMER~ 
FELD's polynomial method is not applicable to a certain differential equation. 
we can try to give the latter a new form by a transformation of the in~ 
dependent variabIe and th en to apply this method. We expect to succeed in 
this way from the fact, that in SOMMERFELD' s polynomial equation (1. 2) 
the zero point plays a distinguished role which is af ter a transformatiön 
taken over by another point of the fundamental interval. That means: If 
we replace in a "given" differential equation the independent variabIe by a 
new one and regard such an obtained equation as the "original" differential 
equation (2.1) or (2.5) we can generally solve the "given" differential 
equation by the polynomial method for other potentials V. as by direct 
application of this method to the "given" differential equation. 

To verify this statement we use the differential equation of the associated 
Legendre functions (4. 1) i.e. 

d:' ((l-x'2) ;~) + p.- V(x')) K=O . • (1) 

where we have denoted the independent variabIe by x'. Substituting here 
by 

x'=x-l. · (2) 

the new independent variabIe X, we obtain the differential equation 

which we will consider as the "original" equation of SOMMERFELD'S poly~ 
nomial method. It has the form (2,5) with 

p = x (2 - x). e = 1. q=V . • (3) 

so that according to (2. 9) and (3) the potential V has the form 

1 
V= x(2-x) + Sx(2-x) + 2 .• · (4} 

In the variabIe x' the fundamental interval is bounded by + 1. in X it is 
therefore given by 0 < X < 2. 

For further conclusions we use first the factor E. We have to choose it 
in the form (2. 18a) to guarantee finiteness of the normalizing integral 

2 

jK*Kdx. · (5} 
o 
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Otherwise p = x(2-x) endangers the convergence of (5) at its upper 
limit. Therefore we have to put A 2 '=I= O. B2 =1= 0 and obtain 

I (BI AI) 
~ -1 (A2 + B2 ,xh)h B; - Aa 

E = x
A

• (2 _ x)l/. 

To guarantee the convergence of (5) for x = 2 we must suppose that 
the expres sion A 2 + B2x h is divisible by 2-x. i.e. that 

1 
B 2=- 2h A 2 •• •••••••• (6) 

Further we have to assume according to the higher demands of (2.15) that 

2[~ (~:-~:)-~J+l= ~ (~:-~:»~ ... (7) 

Finally the removal of the x-power from E to P gives 

• • • • . (8) 

To use V for further considerations we remark that according to (6) 
and (8) the expression S is given by 

S = _ (1 + m yh)(1 + n yh) _ Bo 1 + P yh 
16 y2 (l_yh)2 4 y2 (l-yh) 

where y = x/2 and 

Developing S in a power series in y we obtain for the expression 
Sx(2-x) appearing in Eq. (4) for V 

Sx(2-x) =4 Sy (l-y) = - (80+t) (~-1) + M(yh-I_yh) + 

+ (M+N) (y2h-l--:-y2h) + (M+2N) (y3h-l_ y3h) + ... 
where 

M= ~ - 80 - 2h (bo-hb l ). N=t [2h-l +2h+1 bI (2h+1 bI +2h+2)]. 

To fix the value of h we can now use the demand. that the coefficients 
of Sx (2-x) + À (cp. (2. 13) and (4) are independent of À. For 
h = 2.3.4 ... we have to claim th at ao + 1/4. ao + 1/4 + J.. M. Nare 
constant. so that J. would be constant. 

For h = 1 the expressions 

ao+t. ao+i+M+J.. N 

only have to be constant. But this means that 

ao = const. bI = const (9a). J. = -M + const = 2bo + const (9b) 
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).can now depend on quantum numbers because bo is not constant now. 
To consider thecase h = 1 in detail we remark that according to (2. 11), 

(-4). (6) and (8) the potentié!-l V has the form 

V=~+~+C 
x-2 x 

where 

A=-8b. (b.+1)-2 (lOa), B=-2ao (lOb). C=).-2(bo+b.+2b~). (lOc) 

The relations (9a) follow also from (lOa) and (lOb) and the relation 
(9b) follows from (1 Oe) . 

Reintroducing by (2) again the variabIe x, we obtain V in the form 

V=~+~+C=x'(A+B)+A-B +C 
x' -1 x' + 1 X'2 - 1 . 

But (1) represents with this V the differential equation of JACOBI poly­
nomials. It is therefore situated at the limit of the applicability of SOMMER­
FELD's polynomial method. 

In the quantum theory of a spinning symmetrical top we have to do with 
this equation with 

A=-l (t-t')2, 
wh ere tand -,;' are positive or negative integers. 

Using that we have according to (2. 19) and (6) 

(a+ n) (a + n-l) - -4(a+ n)b l -2bo = 0, 

we obtain from (10) the eigenvalues 

). = (a + n-2bd (a + n-2b1-l) + C. 

According to (2. 17), (8) and (10) we have to calcul~te a from 

02=-ao=- tB. • (12) 

Supposing especially the case {11) we get from (10) according to (7): 

It-t'l b l . _ . -! + 2 and from (12) in accordance with the fact that a > 0 

(otherwise we would obtain for x = - 1 an inadmissible singularity): 

It-T'I 0= 2 . Hence we get the well known result 

).= (n + 1'*) (n + 1'* + 1) + C 

I t+t' I lor-T'I 
where 1'* = 2 2 is the larger of both the integers 1-,; I 

and Ir I. 
REFERENCES. 

1. A comprehensive treatment wal> given by A. SOMMERFELD in Atombau und. Spektral­
linien, Vol. 11, Braunschweig 1939. cp. p. 716. 

-2. SOMMERFELD denotes our coefficients 2Al aod 2Bl by Al and BI. 
3. (a, b) means equation b of section a. 
4. Compare however (3. 1) where q depends on I. 


