Now it is easy to prove the assertion of our theorem. Let h be an arbitrary integer $\geq 4^r$, hence $h^{\frac{1}{r}} \geq 4$; put $P = [h^{\frac{1}{r}}] - 1$, then

$$P > h^{\frac{1}{r}} - 2 \ge \frac{1}{2} h^{\frac{1}{r}}$$
 and $P + 1 \le h^{\frac{1}{r}}$,

hence $P^r + 1 \leq h$. It follows, that every sequence 1, 2, ..., h contains at least one number k, such that $c_2 \lambda_k^2 \geq P > \frac{1}{2}h^{\frac{1}{r}}$. For sufficiently large hclearly $\lambda_k^2 > \lambda_1^2$, hence λ_k is positive and it follows $\lambda_k > c_3 h^{\frac{1}{2r}}$, where $c_3 = \frac{1}{\sqrt{2c_2}}$. Now $h \geq k$, hence $\lambda_h \geq \lambda_k > c_3 h^{\frac{1}{2r}}$. If we take for c a positive number $< \frac{1}{2r}$, then

 $\lambda_h > h^c$

for all but a finite number of values of h.

Mathematics. — Remark on my paper "On LAMBERT's proof for the irrationality of π ". By J. POPKEN.

In these Proceedings ¹) I have given an elementary proof for the irrationality of π . However Dr M. VAN VLAARDINGEN kindly informed me, that the method I used nearly is the same as that applied by HERMITE in the fourth edition of "Cours de la faculté des Sciences" (1891), p. 74–75²).

¹) Vol. XLIII (1940) p. 712-714.

²) See also: A. PRINGSHEIM, Vorlesungen über Zahlen- und Functionenlehre II, 1, p. 471-474; p. 613.