Now it is easy to prove the assertion of our theorem. Let h be an arbitrary integer $\geqq 4^{r}$, hence $h^{\frac{1}{r}} \geqq 4$; put $P=\left[h^{\frac{1}{r}}\right]-1$, then

$$
P>h^{\frac{1}{r}}-2 \geqq \frac{1}{2} h^{\frac{1}{r}} \text { and } P+1 \leqq h^{\frac{1}{r}}
$$

hence $\operatorname{Pr}+1 \leqq h$. It follows, that every sequence $1,2, \ldots, h$ contains at least one number k, such that $c_{2} \lambda_{k}^{2} \geqq P>\frac{1}{2} h^{\frac{1}{r}}$. For sufficiently large h clearly $\lambda_{k}^{2}>\lambda_{1}^{2}$, hence λ_{k} is positive and it follows $\lambda_{k}>\mathrm{c}_{3} h^{\frac{1}{2 r}}$, where $c_{3}=\frac{1}{\sqrt{2 c_{2}}}$. Now $h \geqq k$, hence $\lambda_{h} \geqq \lambda_{k}>c_{3} h^{\frac{1}{2 r}}$. If we take for c a positive number $<\frac{1}{2 r}$, then

$$
\lambda_{h}>h^{c}
$$

for all but a finite number of values of h.

Mathematics. - Remark on my papet ,On Lambert's proof for the irrationality of $\pi^{\prime \prime}$. By J. Popken.

In these Proceedings ${ }^{1}$) I have given an elementary proof for the irrationality of π. However Dr M. van Vlaardingen kindly informed me, that the method I used nearly is the same as that applied by Hermite in the fourth edition of "Cours de la faculté des Sciences" (1891), p. $74-75^{2}$).

[^0]
[^0]: 1) Vol. XLIII (1940) p. 712-714.
 ${ }^{2}$) See also: A. Pringsheim, Vorlesungen über Zahlen- und Functionenlehre II, 1, p. 471-474; p. 613.
