Astronomy. - Magnitude effects in G-type stars. By P. J. Gathier. (Communicated by Prof. M. G. J. Minnaert.)
(Communicated at the meeting of March 26, 1949.)

Summary.

Equivalent widths have been measured for CaI $\lambda 4227$ and Sr II $\lambda 4077$ in the spectra of 14 stars - supergiants, giants, dwarfs - with all about the same spectral type as the sun. The observed values are satisfactorily explained by the theory of stellar atmospheres. The damping constant is found to be five to ten times larger for dwarfs than for giants and supergiants.

Introduction.

The material consists of 14 stellar spectra, taken by Professor Minnaert at the McDonald Observatory with the Cassegrain spectrograph, equipped with two quartz prisms. The focal length of the camera was 50 cm , the dispersion was $40 \mathrm{~A} / \mathrm{mm}$ near H_{γ}; the plates cover the region $2 \lambda 3500$ 4700. The stars investigated are dwarfs, giants and supergiants of the spectral types F5-G5. Nine of the plates carried a calibration, obtained with a tube photometer. Since the exposure times did not differ by more than a factor two and since all plates were developed in the same way, it was possible to construct one mean density curve for the whole material. The spectra have been recorded by means of the Utrecht microphotometer on a 60 -fold scale.

We proposed to study for these stars the relation between the observable quantities: the absolute magnitude M and the spectral type, and the theoretical parameters: temperature and effective gravitational acceleration. Just because the atmosphere of the sun has been studied so well, these stars of a similar type are well fitted for a comparative theoretical investigation.

A search for luminosity characteristics.

The stars which have been selected are but little different in spectral type; since their absolute magnitudes vary over a considerable range, vid. lic. from $M=+6$ to $M=-6$, it seemed interesting to look in the first place for spectral lines which are very sensitive to variations of the absolute magnitude. With the purpose to find such characteristic lines, the galvanometer deflections on the registrograms were compared for giants and for dwarfs, without converting them into intensities. In figure 1 these values are compared for the dwarf star ζ Her GO IV and for the supergiant β Aqu GO I^{b}. A hundred points were obtained, scattered about
a main line; this is not a straight line under an angle of 45°, because the plates have not the same density. Some points are lying well away from

it: these represent lines which are much stronger or much weaker in giants than in dwarfs. Strikingly stronger in giants are for example Sr II $\lambda 4077$ and Ti II $\lambda 4025$, while the CN-bands and Ca I $\lambda 4227$ are conspiciously weaker. These are just the lines, generally used as criteria of the luminosity for G-type stars. For some of these lines the variations of the galvanometer deflection with the spectral type have been determined and the ratio between the deflections for two spectral lines has been investigated as a function of the absolute magnitude (figure 2). Here for the determination of the spectral type, Morgan's classification ${ }^{1}$) has been

[^0]used (table I). Two interesting lines, namely CaI $\lambda 4227$ and Sr II $\lambda 4077$ have been studied into more details, with the purpose to connect the theory of the stellar atmospheres with the observations.

Fig. 2. The ratio of the galvanometer deflections:

1) for $\mathrm{CaI} \lambda 4227$ and H_{γ};
2) for Ti II $\lambda 4025$ and $\mathrm{Fe} \mathrm{I} \lambda 4132$.

Variation of these ratio's in stars of different absolute magnitudes and effective temperatures.

Ca I 24227.
The equivalent width W_{λ} was measured on the available 14 stellar spectra.

TABLE I. Stars observed for spectral line intensities.

Star	Spectrum	M	W_{4077}	W_{4227}	$T_{\text {eff }}{ }^{\circ}$ K
β Aqu	G0 Ib	-3	2.0	1.4	4950
ζ Her	G0 IV	+3.2	1.0	1.4	5800
α Per	F5 Ib	-3	1.55	0.95	5800
x Cet	G2 V	+5.0	0.77	1.5	5900
δ C Ma	F8 Ia	-6	2.3	1.5	5000
9 Peg	G2 Ib	-2.3	1.65	2.0	4700
x Cet	G2 V	+5.0	0.8	1.5	5900
β Lep	G2 II	-2.0	1.0	1.4	5000
η Cas A	G0 V	+4.9	0.6	0.9	6050
v Peg	F8 III	+0.7	0.9	0.9	5700
ϱ Pup	F6 II	-0.3	1.3	1.1	5800
γ Cyg	F8 Ib	-4.3	1.8	1.1	5300
α Sag	G1 II	-1.9	1.35	1.35	5100
η Peg	G2 II-III	-1.0	1.25	1.5	5100
9 Peg	G! Ib	-2.3	1.7	1.9	4700
v And	F8 IV	+4.9	0.75	1.2	6000

Because $\lambda 4227$ is a resonance line and all Ca -atoms are in the fundamental level, the number of absorbing atoms is determined by the ionisation temperature $T_{\text {ion }}$. According to investigations on spectra taken with a considerable dispersion $T_{\text {ion }}$ will be very much the same as the effective temperature $T_{\text {eff }}$.

With the help of the data of BECKER ${ }^{2}$) and KuIPER ${ }^{3}$) the relation between the effective temperature and the spectral type has been determined for each of Morgan's luminosity classes (table I).

In figure 3 the measured W_{λ}-values are plotted as a function of $T_{\text {eff }}$, values of W_{λ} determined by other writers being also included. Two different sequences are clearly shown, one for the dwarfs and another one for the giants and supergiants.

The following simple theory was used for the calculation of the equivalent widths of Ca I $\lambda 4227$ in stellar atmospheres, characterized by different values of T and the effective gravitational acceleration g. The total number of calcium-atoms in a stellar atmosphere is determined by:

1. The total number of all atoms or ions in that part of the atmosphere which can be considered to be transparent;
2. the Ca-abundance, A_{Ca}, defined as the fraction of the atoms or ions in the atmosphere which are either Ca I or $\mathrm{Ca} \mathrm{II;}$
3. the equilibrium between the number of Ca -atoms and Ca -ions, as given by Saha's law for every value of T and p_{e}, the electron pressure.

For the calculation in these three steps, the numerical values of the different quantities will be chosen as well as possible in accordance with

[^1]

Fig. 3. Equivalent widths of CaI 14227.
Fulldrawn lines: theoretical equivalent widths for $\gamma=\gamma_{r}$ and for $\gamma=10 \gamma_{r}$.
Dotted lines: observed values of W_{4297} as a function of temperature, for giantssupergiants (left line) and for dwarfs (right line).
The dispersions used are (near H_{γ}):
Williams ${ }^{4}$) $17 \mathrm{~A} / \mathrm{mm}$; GREENSTEIN ${ }^{5}$) $3 \mathrm{~A} / \mathrm{mm}$; Hiltner-Williams ${ }^{6}$) $3 \mathrm{~A} / \mathrm{mm}$; Gathier $40 \mathrm{~A} / \mathrm{mm}$.
earlier results of other authors. If N is the average number of atoms or ions per cm^{3} and H is the effective height of the atmosphere, we have:

$$
N H=\frac{\tau_{0}}{\mu m_{H} \chi}
$$

where τ_{0} is the effective optical depth, μ the mean atomic weight, m_{H} the mass of the H-atom and x the continuous absorption coefficient ${ }^{7}$).

We assume ${ }^{8}$) $\mu=1.5$ and provisionally $\tau_{0}=0.7$, which is a convenient value for the sun ${ }^{9}$).
$\left.{ }^{4}\right)$ Williams, P. A. S. P. 48, 113 (1936).
5) Greenstein, Ap. J. 107, 151 (1948).
${ }^{6}$) Hiltner-Whlliams, A Photometric Atlas of Stellar spectra.
${ }^{7}$) Unsöld, Physik der Sternatmosphären 1938, Chapter XII.
$\left.{ }^{8}\right)$ Miss Rosa, Zs. f. Ap. 25, 9 (1948).
$\left.{ }^{9}\right)$ Ten Bruggencate, Veröff. Univ. Sternw. Göttingen 76 (1947).

At present it seems well established that the continuous absorption for stars of the spectral type investigated is due to the $\mathrm{H}^{- \text {-ions; }}$ the absorption coefficient x is known from theory ${ }^{10}$).

For A_{Ca} a value 1.45×10^{-6} has been taken. The electron pressure p_{e} can be expressed as a function of T and the gas pressure p. With the aid of the relation $p=\frac{\tau}{x} g$ we introduce g as parameter instead of $p_{e}{ }^{11}$). So, if N_{a} is the number of active Ca-atoms, it is possible to calculate $N_{a} H$ for every value of T and g (fig. 4). From this figure one can see that in
$\log \left(\mathrm{NaH}_{\mathrm{Ca}}\right.$
Fig. 4. The theoretical number of active Ca-atoms, for different temperatures and effective gravitational accelerations.
the temperature range here investigated, since $\log g$ is always <5, the values of $N_{a} H$ cannot be expected to be different for dwarfs and for giants.

The Ca-line at $\lambda 4227$ is a strong line and so its equivalent width can be calculated by the relation:

$$
W_{\lambda}=\frac{\lambda^{2}}{c} \sqrt{\frac{\mathbf{e}^{2}}{m c} N_{a} H \gamma f}
$$

$\left.{ }^{10}\right)$ Chandrasekhar and Münch, Ap. J. 104, 446 (1946).
$\left.{ }^{11}\right)$ Compare also Miss Rosa, Zs. f. Ap. 25, 4 (1948).

The best value for f is 1.2. About the damping there is always the uncertainty how much of it is due to the radiation and how much to collisional damping. Therefore W_{λ} has been calculated for two different cases:

1. for pure radiation damping, $\gamma=\gamma_{r}=1.6 \times 10^{8}$; and
2. for the damping as derived from the solar spectrum, which is ten times the damping caused by radiation. In figure 3 both theoretical cases have been considered.

In comparing the theoretical curves with the observations, it is found that the E.W., measured on small dispersion plates, are in general too great; Greenstein, woiking with the Coudé-spectrograph, finds lower values which are much closer to the theoretical ones. This effect has been found many times before; it may be due to blends, which are not well discerned if the dispersion is small; or perhaps to photographic effects. We conclude that probably some correction of the order of -0,4 A will have to be applied to our measurements, but that the main differences between the luminosity classes will subsist and that the values of the damping constants will not materially be altered.

The giants and supergiants are pretty well in agreement with the theoretical curve for $\gamma=\gamma_{r}$. Evidently γ is greater for dwarfs, because the pressures in their atmospheres and the collisional damping are much higher than in giants or even supergiants. To the change from giants to supergiants corresponds no further decrease of γ; this seems to show that we have already reached a minimum value for γ in the giants, which must evidently be γ_{r}. Thus for stars with $M<3$ or $\log g<2$, we have $\gamma=\gamma_{r}$, while for larger values of M the damping increases rapidly. For the sun ($M=5, \log g=4.4$) usually $\gamma=10 \gamma_{r}$ is adopted; WRight supposes that this applies to all dwarfs ${ }^{12}$).

From figure 3 a somewhat smaller value for γ is deduced but this may be due to our assumption, that the effective optical depth is the same in dwarfs and in giants. Moreover, the material is still too small to derive more definitive values.

Sr II $\lambda 4077$.
Also for this spectral line the equivalent widths have been measured on the available plates (figure 5). The theoretical values of $\lambda 4077$ have been calculated in the same way as for $\lambda .4227$. For the Sr -abundance we assumed $2.35 \times 10^{-9} 13$), while for all other quantities the same numerical values as for $\lambda 4227$ have been used. In figure 5 on the left side the theoretical values of W_{λ} have been plotted for $\gamma=\gamma_{r}$, and at the right for $\gamma=10 \gamma_{r}$. The assertion that $\gamma=\gamma_{r}$ for giants and supergiants and $\gamma=10 \gamma_{r}$ for dwarfs seems well-confirmed; the g-values from figure 5

[^2]agree in a satisfactory way with those, mentioned in the literature for supergiants, giants and dwars ${ }^{14}$), ${ }^{15}$), ${ }^{16}$).

Fig. 5. Equivalent widths of $S_{r} I I \lambda 4077$.
Fulldrawn lines: the theoretical values of W_{4077} for different values of $\log g$, computed for $\gamma=\gamma_{r}$.
Dotted lines: the same for $\gamma=10 \gamma_{r}$. The points represent the measured W_{4077}.
I am much indebted to Professor M. Minnaert, who suggested this investigation and gave me his continuous help.
${ }^{14}$) Greenstein, Ap. J. 107, 151 (1948).
15) Wright, Dom. Ap. Obs. 8, 1 (1948).
$\left.{ }^{16}\right)$ Pannekoek and van Albada, Publ. Astr. Inst. Univ. Amsterdam, 6 (1946).

[^0]: 1) Morgan, Keenan, Edith Kellman, An atlas of stellar spectra.
[^1]: $\left.{ }^{2}\right)$ Becker, Zs. f. Ap. 25, 145 (1948).
 $\left.{ }^{3}\right)$ Kulper, Ap. J. 88, 429 (1938).

[^2]: $\left.{ }^{12}\right)$ Wright, Dom. Ap. Obs. 8, 1 (1948).
 ${ }^{13}$) UNsöld, Zs. f. Ap. 24, 306 (1948).

