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§ 2. Generalisations of the A + B~theorem. 
In theorem 4. treated in the first communication. we have introduced 

an abstract addition. If we take there for the abstract sum of two numbers 
the ordinary product of these two numbers. theorem 4 furnishes the AB~ 
theorem; in fact this is obvious if both A and B contain 1. and otherwise 
we may repeat here the argument hy which we have shown in § 1. 
immediately af ter the fcrmulation of theorem 4. th at the A + B~theorem 
is a special case of theorem 4. 

We find another application of theorem 4. if we put the abstract sum of 
two numbers a and b equal to a + b + Àa b. where À is a given positive 
number. In this manner we ohtain: 

If y and ó denote given numbers 2: O. and g and À given positive numbers. 
and if the finite sets A and B formed br; numbers 2: 0 satisfy the inequalities 

A(h) + B(h) 2: 1 +}' log(Àh + 1) + <5 

for h = g and for eaeh positive number h < g belonging to A or B. then 

(A + B + ÀAB)(h) 2:)' log ph + 1) + ó 

for each positive number h -< g. 
This theorem is an application of th eo rem 4 except in the case where 

the number 0 does not belong to both sets A and B; in the latter case the 
given inequality. applied with h equal to the smallest positive number which 
either is equal to g or belongs to A or B. givE:s Y = <5 = O. since for that 
value of h we have A(h) + B(h) :s; 1. 

We give another application of theorem 4 in which we consider sets 
formed by complex numbers and where S[h] denotes the number of 
elements of S with rea I part < h. 

Let g be a given positive number and let q; (h) be for h > 0 a slowly 
inereasing and monotonie non~deereasing function. 

If the finite sets A and B formed by complex numbers with real part 
2: 0 eontain both at least one purely imaginary element and satisfy the 
inequalities 

A[h] + B[h] 2: 1 + q;(h) 

for each positive number h :s; g, then we have for these h 

(A + B) [hl 2: q;(h). 

We may suppose in the proof that both A and B contain the number 0 
and that neither A nor B contains an element - i p. wh ere p> 0; in fact 
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if not. it is sufficient to submit A and B to a suitable translation parallel 
to the imaginary axis. Let us introduce the set G of the complex numbers 
either with positive real part. either of the form i p. where p ~ O. This set 
is ordered by the convention Xl + i Yl < X2 + i Y2 first if xl < X2 and 
secondly if Xl = X2. Yl < Y2' We define tp(X + i y) on G by the con~ 
vention 

tp(x+iy) =tp(x) for x> O. 
= 0 for x= O. 

Since the elements of A and B with real part ~ g do not occur in our pro~ 
position. it is not necessary to consider thcm. so that we may apply theorem 
4. wh ere H denotes the set of elements ;;;;; g of G. This establishes the 
prool. 

Theorem 4 is a generalization of the A + B~theorem whieh is valid for 
abstract sets G on whieh a commutative and associative addition has been 
defined. We have chosen the formulation above of theorem 4. because this 
generalization of the A + B~theorem has the same proof as the A + B~ 
theorem itself. Nevertheless we were conscious of the fact that the 
assumptions of theorem 4 may be replaced by much weaker conditions. 
We will do this in th is communication with the disadvantage that the 
argument given in the first communication must be replaced by a much 
more subtle mode of proof. In order to avoid unnecessary complications 
we restriet us in what follows to the case where tp (h) is monotonie non~ 
decreasing on the ordered set G. on which it has been defined. 

First we state that it is not necessary to define the sum a + b for each 
pair of elements a and b belonging to G. It is sufficient to suppose first 
that. if a is an arbitrary element of A and b an arbitrary element of B. 
then G contains an uniquely defined element a + b. These elements form 
a subset A + Bof G. Moreover we suppose that the sum g + b has been 
defined uniquely for each element g of A + Band for each element b of B. 

The double condition that the addition is commutative and associative 
may be replaced by the simp Ie condition 

(a + b) + bi = (a + bi) + b 

valid for each element a of A and each pair of elements band bi of B. 
In view of these facts we say that we have defined on a set G a partial 

addition with respect to the non~empty subsets A and B of G. if for every 
element b of B the sum g + b denotes an uniquely defined element of G. 
first for each element g of A and secondly for each element g of A + B. 
such that the following four addition properties are valid: 

1. IE a is an element of A and band bi are elements of B. then 

(a + b) + bi = (a + bi) + b. 

2. IE b is an element of B. and g and g' belong either both to A or both 
to A + B. then 

g + b = 9' + b implies g = g'. 
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3. IE a is an element of A. and band b' are elements of B. then 

a + b = a + b' implies b = b'. 

4. B contains an element bo su eh that it is impossible to find in B an 
element b -=j:. bo and in A + B a finite number of elements 

go. gl" ..• gm-I. gm = go (where m ==- 1) 

with the properties 

(,u = O. 1. ...• m - 1 J. 

Using this convention we may generalise theorem 4. apart from the 
monotony of cp (h). in the following manner : 

Theorem S. Condition 1. Let be defined on an ordered set G a partial 
addition with respect to two given finite non-empty subsets A and Bof G. 
We denote the smallest element of A and B respectively by lao and bo, 
where bo is the particular element of B mentioned in the fourth addition 
property. 

Let be given on G a real monotonie non-decreasing function cp (g) with 

cp(g) = cp(g + bo); cp(b) :;;; cp(g + b); cp (b) = cp(ao + b). 

where g is an arbitrary element of A or A + Band where b is an arbitrary 
element -=j:. bo of B. 

Further we assume cp(ao) ~ 0 if A + B' contains the element ao + bo 
and also if A + B' contIains at least one element < ao: here B' is the set 
formed by the elements -=j:. bo of B. 

Condition 2. Finally we assume 

cp(g + b) :;;; cp(g) + cp(b). 

where g is an arbitrary element of A or A + Band where b is an arbitrary 
element -=j:. bo of B. 

Assertion. lf the inequalities 

A(h) + B'(h) ~ cp(h) 

are valid for each element h belonging to a given subset H of G, which 
con ta ins every element > ao of A and every element> bo of B. then we 
have for each element h > ao + bo of H 

(A + B) (h) ~ cp(h) . 

Remark. The inequality to be proved is obvious for the elements h :;:;; ao 
of H. since they satisfy cp(h) :;;; O. as we will show now. 

IE B' is empty. and also if h :;;; b'. where b' denotes the smallest element 
of B'. we have B' (h) = O. and moreover A (h) = 0 by h :;:;; ao. hence 

0= A(h) + B'(h) ~ cp(h) 

Let us now consider the elements h of H with b' < h :;:;; ao. In virtue of the 
monotony it is sufficient to prove cp (ao) :;:;; O. This inequality follows from 
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condition 1 of theorem 5, if A + B' contains an element < ao, so that we 
may suppose ao + b' ~ all, and in that case we obtain 

lP(ao) :$1P(ao + b') = lP(b') :$ A(b') + B'(b') = O. 

IE ao is an element of H, the inequality of theorem 5 to be proved is valid 
for each element h of H, since in that case we just have found lP(ao) :$ 0 
and therefore lP (ao + bo)= lP (ao) ~ 0, hence lP (h) :;;; 0 for each element 
h ~ ao + bo of H. 

Theorem 4 with the supplementary condition that lP(g) is monotonie non~ 
decreasing is a particular case of the proposition 5, since in that case the 
conditions of the latter theorem are satisfied. In fact, it is obvious that the 
properties I, 2 and 3 mentioned in the definition of the partial addition 
are valid, and from the fact that b> 0 implies 9 + b> g, it follows that 
also property 4 is valid. 

Till now we have restrieted us to theorems without weights, but we 
may give to each element 9 of G a weight f(g) ~ O. In that case S(h) 
does not denote the number of elements s < h of S, but the sum of the 
weights f(s) of these elements s; in formula 

S(h) = I f(s). • . . . . • . • (14) 
s<h 

By putting f (g) = 1 the following theorem transforms into theorem 5. 

Theorem 6. Condition 1. Let us suppose that condition 1 of theorem 
5 is fulfilled. 

Condition 2. We git'e to each element 9 of G a weight f(g) ;;;: 0, such 
that 

f(g) = f(g + bo); f(b):;;; [(g + b). 

where b is an arbitrary element =j:. bo of Band where 9 is an arbitrary 
element of A or A + B. 

Condition 3. Further we assume 

lP(g + b) :;;; lP(g) + lP(b); [(g + b) ;;;: f(g) 

where b is an arbitrary element =j:. bo of Band where 9 is an arbitrary 
element of A or A + B. 

The assertion is the same as in theorem 5, apart from the fact, th at 
A(h). B'(h) and (A + B) (h) are defined by (14). 

In order to generalise this result it is recommendable to introduce not 
only one pair of functions lP(g). [(g), but a finite or infinite number of 
such pairs. In th is manner we obtain the following theorem, whieh we 
consider as the principal proposition of these communieations, the proof of 
whieh will be given in § 3. 

Theorem 7. Suppose that on a given ordered set G with two given 
non~empty finite subsets A and B a finite or infinite number of pairs of 
functions lP(g) end [(g) have been defined, such that the conditions 1 
and 2 of the.orem 6 are satisfied for each of these considered pairs. 
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If cp (g), ((g) is an arbitrary considercd pair of functions and if b denotes 
an arbitrary element ;j:. bo of B, then we suppose moreover that it is 
possible to find among the considered pairs of functions at least one pair, 
tP(g). F(g) (depending on b end on the choice of the pair cp(g). ((g)) 
such that 

cp(g + b) ~ tP(g) + cp(b); {(g + b) :2: F(g) 

for each element 9 of A or A + B. 
If under these conditions each pair of functions q;(g), f(g) satisfies the 

inequality 
A(h) + B(h) ;;; cp(h) 

for each element h of a given subset H of G which contains all elements 
> ao of A and all elements > bo of B, then we have for each considered 
pair of functions cp (g), {(g) and for each element h > ao + bo of H 

(A + B) (h) ;;; cp(h). 

Of course A (h) etc. is defined by (I 4). The rem ark following immedi~ 
ately af ter theorem 5 is here also true. 

As an application we give: 

Theorem 8. Let G be an ordered set containing a smallest element 
denoted by 0, on which a commutatiue and associative addition has been 
defined, with 9 + 0 = 9 and 9 + g* > 9 for g* > 0, su eh that 

9 + 9' = 9 + 9" implies 9' = g". 

Let cp* (g) and f* (g) ~ 0 be monotonie non~decreasing functions on G and 
let H be a subset of G. 

If the finite subsets A end B of H, containing both the element 0, satisfy 
for each element 9 of G and each positive element h of H the inequality 

I t(a+g)+ I t(b+g):;:'-cp*(h+g)-cp*(g), •. (15) 
a<h O<b<h 

then we have for these element hand 9 also 

I t(a+b+g)=-cp*(h+g)-cp*(g). 
a+b<h 

Pro of. For each pair of elements 9 and g* of G we put 

cp(g) = cp*(g + g*) -cp*(g*) and ((g) = f*(g + g*), 

so that cp(g) and f(g) depend not only on g, but also on g*. In order to 
prove that the conditions of theorem 7 are satisfied for these pairs cp(g), 
((g), it is sufficient to observe that the pair formed by the functions 

tP(g) =cp*(g+ (g*+b))-cp*(g*+b) and F(g) =f*(g+ (g*+b)) 

possess the required propertjes 

cp(g + b) ~ tP(g) + cp(b) and f(g + b) ~ F(g); 

these relations are valid even with the sign of equality. Now the assertion 
of theorem 7 furnishes theorem 8. 
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Let us show th at theorem '4 with the supplementary condition that cp (U) 
is a monotonie non-decreasing function is a partieular case of theorem 8. 
We remark that if the conditions of theorem '4 with the monotonie non
decreasing function cp (U) are satisfied, they remain valid if cp (U) is replaced 
by 

cp*(U) = max. (0, cp(U)). 

In fact it is sufficient to prove that the monotonie function cp* (U) is slowly 
increasing on the set of positive elements of G, that is 

CP*(U1 + U2) ~ cp*(ud + CP*(U2) 

for U1 > 0 and U2 > 0, and this inequality is obvious as we have either 

CP*(U1 + 92) = 0 ~ cp* (ud + CP*(U2) 

or 

CP*(U1 + U2) = CP(Ul + U2) ~ cp(ud + CP(U2) ~ CP*(Ul) + CP*(U2)' 

From this result it follows, that the conditions of theorem 8 are satisfied 
with (*(U) = I, and with cp*(O) = 0; further 

A(h) + B'(h) ~ cp*(h) ~ cp*(h + U) -cp*(U) 

for every positive element h of Hand for every element 9 of G . Therefore 
(15) is satisfied, so that the assertion of theorem 8, applied with U = 0, 
gives 

(A + B) (h) ~ cp. (h) ~ cp (h) 

for every positive element h of H . 
In theorem 8 we assume that the inequality (15) is valid for each element 

U of G and each positive element h of H. That in some cases it is not 
necessary to assume all these inequalities, appears from the following 
example. The special case, where r (h) is constant and where H is the set 
of non-negative integers below a given bound, has been proved by J. G. 
VAN DER CORPUT 8) • 

Let G he a set of numbers ;:::: 0, such that on G the addition is always 
possible, and let [(U) be a positive monotonie non-deereasinu function on 
G. Let y(h) be a monotonie non-inereasing function ~ 0 defined on a uiven 
finite subset H of G. 

Further we suppose 

{(h + U) {(h') ==- {(h' + g) ((h) • (16) 

8) On sets of integers, Proc. Kon. Ned. Akad. v. Wetenseh., Amsterdam, 50. 345 
(1947) . Also: Indagationes Mathematica 9, 203 (1947) . VAN DER CORPUT assumes 
P(h + 1) ~ f(h) l(h + 2) (h = 1. 2 • ... ) in stead oE (16). It is clear that his assumption 

implies (16) Eor 9 = I, 2, . .. ; in fact {(h + 1) and therefore also 
{(hl 

{(h+g) {(h+g) {(h+ I) 
{(hl = {(h+g-I) .. . {(hl (g = 1. 2, ... ) 

are monotonie non-increasing functionl of h. 
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for every element g of G and every pair of elements hand h' of H, sI/eh 
that h < h'. 

lf bath subsets A tand B of H eontain the number 0 and satisfy the 
inequality 

I {(a) + I {(b):;- I y(h') {(h') . . . . (17) 
a<h O<b<h h'<h 

for eaeh positive element h of H, then we have for these h 

I {(a+b):;- I y(h'){(h' ); ..... (18) 
a+b<h h'<h 

the sum ~ is extended over all elements h' < h of H. 
h'<h 

Pro of. It is sufficient to prove that the inequality (17), valid for each 
positive element h of H, implies 

I {(a+g) + ~ {(b+g):;- ~ y(h'+g){(h'+g) .. (19) 
a<h, O<b<h, h'<h, 

for each positive element ht of Hand each element g of G. In fact the 
right hand side of (19) is equal to ({!*(h 1 + g) - ({!* (g), where ((!*(g) 
denotes the function I y(h') [(h'), which is monotonie non-decreasing 

h'<g 

on G; the conditions of theorem 8 are therefore fulfilled, sa that the 
assertion of that theorem, applied with g = 0, furnishes the inequality (18) 
for every positive element h of H. 

We put for each positive element h ~ h t of H 

_ {(h*+g) {(h+g) 
eh - {(hO) - {(h) for h < hl 

_ {(h*+g) 
{(hO) for h = hl' 

where h* denotes the greatest element < h of the finite set H (such an 
element exists, since h is greater than the element 0 of H). As the positive 
function [( h) satisfies the inequality (16), we have eh ;;;: O. 

Pram 

~ eh = {(a+g) 
a<h;2h, {(a) 

valid for each element a ;;;: 0 and < hl of A, we deduce 

~ eh ~ {(a) = I {(a) I eh = I {(a+g), 
h ;2 h, a<h a<h, a<h;2h, a<h, 

and similarly 

I eh I {(b) = I {(b+g). 
h;2h, O<b<h O<b<h, 

Moreover 

I eh I r (h') {(h') = ~ r (h') {(h') ~ eh = 
h;2h, h'<h h'<h, h'<h;2h, 

= ~ r (h') {(h' + g):;- I r (h' + g) {(h' + g). 
h'<h, h'<h, 



808 

Multiplying both members of (17) with (}h ~ 0 and adding the thus 
found inequalities, we obtain the inequality (19). which was to he proved. 

Although the set G occurring in theorem 6 is supposed to be ordered, 
it is nevertheless possible to apply that proposition on sets for which no 
order has been defined, for instanee: 

Theorem 9. Consider a commutative additive semigroup @ without 
any finite non-trivial sub-semigroup. Define f(g) ~ 0 and cp(g) on @ with 
cp(O) = 0 and 

cp(g) :;;; cp(g + g'):;;; rp(g) + cp(g'); f(g):;;; f(g + g'), 

where g and g' denote arbitrary elements of @. 

Let a be positive. If the finite subsets A and B of @ contain both the 
element 0 and satisfy the inequalities 

I f(a) + I f(b) ==- (} 
T(a)<~ I'(b)<~ 

. (20) 

b=fO 

for each number (} :;;; a, then we have for these numbers (} 

I f(a + b) ==- (}. 
T(a+b)<~ 

Rem ark. We call a set ~, on which an associative addition has been 
defined, a semigroup, if it contains an element 0 with h + 0 = 0 + h = h, 
valid foreach element h of ~, and if further both h + h' = h + h" and 
h' + h = h" + h imply h' = h". The trivial sub-semigroup is formed by 
the element O. 

Pro of. Without loss of generality we may suppose that cp (g) is 
everywhere ~ 0 and :;;; a, for otherwise we introduce cp* (g) with 

cp*(g) =0 

cp*(g) = cp(g) 

cp*(g)=a 

if cp(g) :;;; 0 

if O:;;;cp(g)~a 

if cp(g) ~ a, 

in stead of cp (g), just as we have done in the proof that theorem -4 is a 
consequence of theorem 8. 

We apply theorem 6. If @ con ta ins at least one element g* with cp(g*) = a, 
then we choose in th is theorem G = @. Otherwise we denote by G the set, 
formed by the elements of the given semigroup @ and further a new element 
g*; in this case we put rp(g*) = a and we choose f(g*) arbitrarily ~ O. 

On G we define a transitive order, such that 0 is the smallest element 
of G and that cp(g) is monotonie non-decreasing on G. 

First we show that we have on G a partial addition with respect to the 
given subsets A and B. For that purpose it is sufficient to examine the 
fourth addition property. Suppose therefore that the relations (m ~ 1) 

(,u = 0.1. ... , m-l) 
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with go = gm are valid. where b =1= 0 and go • . . . gm denote elements of 
the commutative semigroup @. Then we have m b = O. and th is is im~ 

possible. since @ does not possess a finite non-trivial sub-semigroup. 
The conditions of theorem 6 élre satisfied with H = G . In order to apply 

the assertion of that theorem , we must deduce the inequality 

I f(a) + I f(b) ==- cp (h) . 
a<h O<b<h 

. . . (21) 

for each element h of G . élnd th is is obvious as cp (a) < cp (h) implies a < h 
and (21) follows from (20). applied with (] = cp (h) :;; a. 

The assertion of theorem 6 gives 

I f(a + b) ==- cp (h) 
a+b < h 

for each element h of G . To show that this result implies the inequality 
which is to be proved. we introduce the smallest element h* with cp (h* ) ;;;: (]. 
which is equal to g* or belongs to A + B ; such an element exists by 
cp (g*) = a ;;;: (]. From this definition of h* it follows that each element 
a + b < h* of A + B satisfies the inequality cp (a + b) < (J . hence 

I f(a + b) ==- X f(a + b) ==- cp (h*) ==- (]. 
I' (a+b) <e a+b < h* 


