Mathematics. - On the small vibrations of non-holonomic systems. By O. Bottema. (Communicated by Prof. W. van der Woude.)
(Communicated at the meeting of September 24, 1949.)
The small vibratory motions of a conservative non-holonomic system about a position of equilibrium have been considered by WHITTAKER in his Analytical Dynamics ${ }^{1}$). His conclusions are that here "the difference between holonomic and non-holonomic systems is unimportant" and that the vibratory motion of a given non-holonomic system with n independant coordinates and m non-integrable kinematical relations is the same as that of a certain holonomic system with $n-m$ degrees of freedom.

These conclusions appear to be incorrect.
For the sake of simplicity we first consider a system with three coordinates x_{1}, x_{2}, x_{3}, kinetic energy

$$
\begin{equation*}
T=\frac{1}{2}\left(\dot{x}_{1}^{2}+\dot{x}_{2}^{2}+\dot{x}_{3}^{2}\right) . \tag{1}
\end{equation*}
$$

and potential energy $V\left(x_{1}, x_{2}, x_{3}\right)$. Suppose that there is one kinematical relation, integrable or non-integrable:

$$
\begin{equation*}
A_{1} \dot{x}_{1}+A_{2} \dot{x}_{2}+A_{3} \dot{x}_{3}=0 \tag{2}
\end{equation*}
$$

where $A_{i}(i=1,2,3)$ are functions of x_{1}, x_{2} and x_{3}.
Suppose further that $x_{1}=x_{2}=x_{3}=0$ is a position of equilibrium.
This means: if for $t=0$ we have $x_{1}=x_{2}=x_{3}=\dot{x}_{1}=\dot{x}_{2}=\dot{x}_{3}=0$ then the system is permanently at rest. What can be said then about $V\left(x_{1} x_{2} x_{3}\right)$? We write down the Lagrangian equations

$$
\frac{d}{d t} \frac{\partial T}{\partial \dot{x}_{i}}-\frac{\partial T}{\partial x_{i}}=-\frac{\partial V}{\partial x_{i}}+\lambda A_{i}
$$

or

$$
\begin{equation*}
\ddot{x}_{i}=-\frac{\partial V}{\partial x_{i}}+\lambda A_{i} \tag{3}
\end{equation*}
$$

where λ is a function of t only. Substitution of $x_{i}=0$ gives

$$
\begin{equation*}
\frac{\partial V(0,0,0)}{\partial x_{i}}=\lambda_{0} A_{i}(0,0,0) \tag{4}
\end{equation*}
$$

Hence for $x_{1}=x_{2}=x_{3}=0$ the $\partial V / \partial x_{i}$ are proportional to the coefficients A_{i} (which is of course obvious in view of the dynamical meaning of

[^0]$\partial V / \partial x_{i}$ and the geometrical meaning of (2)). So for $x_{i}=0$ it is not necessary that $\partial V / \partial x_{i}=0$, as Whittaker supposes.

We may take $\lambda_{0}=1$ without loss of generality in view of the fact that the left member of the kinematical relation (2) can be multiplied with the constant factor λ_{0}.

Now we consider the motion of the system in the neighbourhood of $x_{i}=0$, so that the x_{i} are small.

We have then, in view of (4):

$$
\begin{equation*}
V=a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\frac{1}{2} \sum b_{i j} x_{i} x_{j} \quad\left(b_{i j}=b_{j i}\right) . \tag{5}
\end{equation*}
$$

and the kinematical relation (2) is

$$
\left.\begin{array}{r}
\left(a_{1}+c_{11} x_{1}+c_{12} x_{2}+c_{13} x_{3}\right) \dot{x}_{1}+ \\
+\left(a_{2}+c_{21} x_{1}+c_{22} x_{2}+c_{23} x_{3}\right) \dot{x}_{2}+\left(a_{3}+c_{31} x_{1}+c_{32} x_{2}+c_{33} x_{3}\right) \dot{x}_{3}=0 \tag{6}
\end{array}\right\}
$$

so that the equations of motion are as follows
$\left.\ddot{x}_{1}+a_{1}+b_{11} x_{1}+b_{12} x_{2}+b_{13} x_{3}-\lambda\left(a_{1}+c_{11} x_{1}+c_{12} x_{2}+c_{13} x_{3}\right)=0\right)$
$\left.\begin{array}{l}\ddot{x}_{2}+a_{2}+b_{21} x_{1}+b_{22} x_{2}+b_{23} x_{3}-\lambda\left(a_{2}+c_{21} x_{1}+c_{22} x_{2}+c_{23} x_{3}\right)=0 \\ \ddot{x}_{3}+a_{3}+b_{31} x_{1}+b_{32} x_{2}+b_{33} x_{3}-\lambda\left(a_{3}+c_{31} x_{1}+c_{32} x_{2}+c_{33} x_{3}\right)=0\end{array}\right\}$.
$\left.\ddot{x}_{3}+a_{3}+b_{31} x_{1}+b_{32} x_{2}+b_{33} x_{3}-\lambda\left(a_{3}+c_{31} x_{1}+c_{32} x_{2}+c_{33} x_{3}\right)=0\right)$
ing
If we put $\lambda=1-\varepsilon$, then ε is small and of the same ord
into account in (6) and (7) linear terms only, we have

$$
\begin{equation*}
a_{1} \dot{x}_{1}+a_{2} \dot{x}_{2}+a_{3} \dot{x}_{3}=0 \tag{6a}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{x}_{1}+b_{11} x_{1}+b_{12} x_{2}+b_{13} x_{3}+\varepsilon a_{1}-\left(c_{11} x_{1}+c_{12} x_{2}+c_{13} x_{3}\right)=0 \tag{7a}
\end{equation*}
$$

(6a) and (7a) form a system of four lineair homogeneous differential equations for the four unknown functions $x_{1}, x_{2}, x_{3}, \varepsilon$. Substituting $x_{i}=C_{i} \mathrm{e}^{p t}, \varepsilon=C_{0} e^{p t}$ and eliminating the constants C we find an equation for p. One of the roots is $p=0$ and the others are the roots of

$$
D \equiv\left|\begin{array}{cccc}
b_{11}-c_{11}+p^{2} & b_{12}-c_{12} & b_{13}-c_{13} & a_{1} \tag{8}\\
b_{21}-c_{21} & b_{22}-c_{22}+p^{2} & b_{23}-c_{23} & a_{2} \\
b_{31}-c_{31} & b_{32}-c_{32} & b_{33}-c_{33}+p^{2} & a_{3} \\
a_{1} & a_{2} & a_{3} & 0
\end{array}\right|=0,
$$

which is of the second degree in p^{2}, so that we have in all five roots p. The root $p=0$ is of course an unpleasant one and asks for a further investigation of the system if one inquires about the stability of equilibrium.

As for the other roots, the determinant (8) is in general not symmetrical because $c_{i j}$ is not necessarily equal to $c_{j i}$ and here we have a difference with the holonomic case. In order to prove that the difference is essential we give the following example. Let $a_{1}=a_{2}=0, a_{3}=a \neq 0, C_{i j}=0$ with the exception of $c_{21}=c \neq 0$, so that we have the system

$$
V=a x_{3}+\frac{1}{2} \sum b_{i j} x_{i} x_{j}
$$

and the relation

$$
c x_{1} \dot{x}_{2}+a \dot{x}_{3}=0
$$

which is non-holonomic. The equation (8) is now

$$
p^{4}+\left(b_{11}+b_{22}\right) p^{2}+b_{11} b_{22}-b_{12}\left(b_{12}-c\right)=0
$$

and its discriminant

$$
d=\left(b_{11}-b_{22}\right)^{2}+4 b_{12}^{2}-4 c b_{12}
$$

is obviously not always positive. We know however that for a holonomic system, stable or unstable, the values of p^{2} are always real.

If the system is holonomic the relation (6) is integrable, hence $c_{i j}=c_{i j}$ and (8) is symmetrical.

We have to consider the case that (6) is not integrable as it stands but can be made so by as integrating factor. If we multiply the left member by $\left(1+q_{1} x_{1}+q_{2} x_{2}+q_{3} x_{3}+\ldots\right)$ and take into account only linear terms, we get

$$
c_{i j}^{\prime}=c_{i j}+a_{i} q_{j}
$$

and it is easily seen that D^{\prime} is obtained from D by multiplying the last column by q_{1} and adding it to the j-th column. Hence we have: for holonomic systems D is symmetrical or can be made so by elementary transformations; for non-holonomic systems D is essentially unsymmetrical.

For the general case of n coordinates x_{i} and m kinematical relations, where $x_{i}=0$ is a position of equilibrium, we have

$$
\begin{aligned}
& T=\frac{1}{2} \sum a_{i j} \dot{x}_{i} \dot{x}_{j}, V=\sum a_{i} x_{i}+\sum b_{i j} x_{i} x_{j} \quad\left(a_{i j}=a_{j i}, b_{i j}=b_{j i}\right) \\
& \sum_{i j}\left(a_{i k}+c_{i j k} x_{j}\right) \dot{x}_{i}=0 \quad(k=1,2, \ldots m) .
\end{aligned}
$$

The equation for the frequencies has m roots $p=0$ and the other $2(n-m)$ roots are those of

For holonomic systems D is symmetrical or can be made so by elementary transformations. This form of the determinant, consisting of an ordinary symmetrical p^{2}-determinant of the n-th order, to which are added m rows and m columns of constants is given by Routh ${ }^{2}$), who, however, takes the relations in integrated form so that the m roots $p=0$ do not occur.

For non-holonomic systems D is essentially non-symmetrical.

[^1]
[^0]: 1) E. T. Whittaker, A treatise on the Analytical Dynamics of particles and rigid bodies, fourth revised edition (1936); first american printing, New York (1944). pg. 221-226.
[^1]: ${ }^{2}$) RouTh, The advanced part of a treatise on the dynamics of a system of rigid bodies, Chapter II.

