
Mathematics. - A new characterisation of spheres of even dimension 1). 
By HSIEN-CHUNG WANG. (Communicated by Prof. L. E. J. 
BROUWER.) 

(Communicated at the meeting of May 28, 1949.) 

It is the aim of th is paper to give a new characterisation of spheres of 
even dimension. We shall show that a simply-connected manifold is an 
even sphere if and only if its EULER characteristic is equal to two and it 
admits transitively a compact transformation group R. In the course of 
the praoL all the possible groups Rare eventually determined. We Eind 
that R is either the orthogonal group or the CARTAN's exceptional group 
G2• and that G2 presents only when the manifold is six-dimensional. In 
an interesting paper [5]. MONTGOMERY and SAMELSON have shown that 
the only ' compact transitive transformation group of a sphere S2 n of 2n 
dimension is the orthogonal group when 2n ::> 114. By an entirely different 
method. we fill the gap they left. Furthermore. as an incident result of our 
discussions. we obtain the first four homotopy groups of the exceptional 
group G2 • 

1. The chief weapon used in this paper is a finite group associated 
with a connected compact LIE group. This finite group has been fully 
discussed by various authors. In this section, we shall give a brief sketch 
of STIEFEL'S results [7. §§ 2.3] which will be used later. 

Let R be a connected compact LIE group of dimension rand rank I. All 
the maximal toral subgroups of R have the same dimension I. Choose one 
of them. say T. Each normaliser a of Tinduces an automorphism cpa: 
t ~ ata-1 (t eT) of T. All such automorphisms form a finite group which. 
up to an isomorphism, depends only on Rand not on the particular choice 
of T. We shall denote it by <P(R). 

Let U (e) be a small neighbourhood of the identity e of R such that it 
is covered by the canonical coordinates ~ l ' ~2' ... , ~ r of the Eirst kind. These 
coordinates define an r-dimensional tangent euc1idean space Er of R. Each 
inner automorphism 

x-+ bxb-1 (xER) 

of R indues a linear transformation Sb of the tangent space Er which we 
call the adjoint linear transformation. Now let us consider the maximal 
toral subgroup T. lts tangent space El is a linear subspace of Er and is 
l-dimensional. EVidently, the adjoint linear transformation Sa of each 
normaliser a of T leaves EI invariant, and hence induces a linear trans-

1) The present paper is the revised form of the second part of the author's Ph, D. 
thesis accepted by Manchester University, 1948, 
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formation q;~ of El. All these cp~ form a finite linear group (/J'(R) isomorphic 
with (/J(R). 

In the linear space El , there are m pencils of parallel hyperplanes, callecl 
singular hyperplanes, where 

r=2m +1. . (1. 1) 

Through the origin there pass exactly m singular hyperplanes [3, p. 67]. 
Each transformation cp' of CP' (R) carries singular hyperplanes to singular 
hyperplanes. Furthermore, we have [7, p. 363] . 

(1. 2) Let P be a point in El . If Pis left unaltered by a transformation 
cp' E CP'(R) other than the identity transformation , th en there exists a 
singular hyperplane passing through bath Pand the origin. 

It is well-known that compact simple LIE groups fall into four main 
classes Ak, Bk, Ck, Dk (k = I , 2, ... ) and five exceptional cases G z, F4 ' 
EG, E7' E s wh ere the lower index denotes the rank. In fact , each of the 
above represents a class of locally isomorphic connected groups among 
which one is simply-connected and one without centre. In what follows, 
we shall occasionally use the term "an Ak (Bk, Ck, ... , E s)" which simply 
means any group of the class Ak (Bk. Ck, ... , E s). The fini te groups (/J 

associated with these simple groups have been completely determined. 
For any connected compact LIE group R , let us clenote by o(R) the 

order of the fini te group (/J(R) . Then [9] 

o (toral group) = 1, 0 (A k) = (k + 1) f, 0 (Dk) = k f . 2k-1, ~ 

o(Bk)=o(Ck)=kf·2k, o(G2)=12, o (F1) = 32. 27, 

o(E6)=6f·3·26
, o(E7)=9f·2 3, o(Es)=10f·3·26

• 

(1. 3) 

2. A topological space W is called homogeneous if it admits transitively 
a topological group R of transformations. Let q be a point of W . All the 
transformations of R which leave q invariant form a closed subgroup L 
of R callecl the isotropic subgroup. Thc space W can be regarded as the 
space R I L of Ie ft cosets. R is said to be effective (almast effectilJe) on W 
if only the identity (only a finite number of elements ) of R preserves every 
point of W. Suppose that R is not effective on W. Then the elements of R 
which leave unaltered each point of W form an invariant subgroup I of R. 
The factor group Ri l then acts effectively ancl transitively on W . Thus 
without loss of generality of the homogeneous space, we can assume that 
it aclmits an effective transformation group. 

(2. I) Let W be a homogeneous manifold of a connected compact 
group. If W has non-vanishing EULER characteristic, then it admits, 
transitively and almast effectively, a connected. simply-connected compact 
semi-simple LIE group R. 

Proo f. By hypothesis, Wadmits, effectively and transitlvely, a 
connected compact group R'. Since W is locally eucliclean ancl R' is 
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compact. it follows that R' must be aLlE group [10. § 7]. Moreover. the 
EULER characteristic of W does not vanish so that R' is simi-simple and 
has no centre [8. (2. 1 ). (2. 2)] 2). Therefore the universal covering group 
R of R' is simply-connected. compact and semi-simple and has only a finite 
number of centres [6. p. 271]. This grcup R acts transitively on W in the 
natural manner. It is easy to see that an element b of R leaves unaltered 
every point of W if and only if b is a centre of R. Hence R acts almost 
effectively on W. This group R possesses all the required properties. 
Proposition (2. 1) is therefore proved. 

Theorem J. Let W be a simply-connected manifold with EULER 
characteristic equal to one. If Wadmits transitively a connected compact 
transformation group. then W is a single point. 

Pro 0 f. By (2. 1) there exists a connected. simply-connected compact 
semi-simple LIE group R acting on W transitively and al most effectively. 
Therefore. W can be regarded as a coset space R/L where L is a closed 
subgroup of R. Prom the simply-connectedness of both Rand W. it follows 
that L is connected [1. § 31]. 

Since the EULER characteristic X(W) = x(R/L) = 1 =1= o. Rand L 
have the same rank I [4]. Hence a maximal toral subgroup T of L is. at 
the same time. a maximal toral subgroup of R. Let El be the tangent space 
of T. We have two fini te Iinear groups tP'(L). tP'(R) of transformations 
of the space El. Prom the definition of the group tP' and the fact L c R. 
it follows at on ce 

tP' (L) :::> tP' (R). . . (2.2) 

Concerning the EULER characteristic x(R/L) and the orders o(L). o(R) 
of the finite group tP'(L). tP'(R). we have the formula [8. (1.1)] 

x (RIL) = 0 (R)/o (L). 

Our assumption X(W) = x(R/L) = 1 then implies that o(R) = o(L). 
and then (2. 2) tells us that 

tP' (R) = tP' (L). . . (2.3) 

Now we have two connected compact LIE groups Land R. Either of 
them has its own singular hyperplanes in the same euclidean space El. 
Prom the fact that L c R we can see immediately that a singular element 
of L is also a singular element of R. Thus singular hyperplanes of L are 
also singular hyperplanes of R. Let us denote. respectively. by 

and 

!I) A group is said to have no centre jf it possesses no other centre than the identity. 
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the singular hyperplanes of Land R whieh pass through the origin. Then 
from (1. 1). it follows that 

r' = 2m + 1. r = 2 (m + h) + 1 . (2. 4) 
where r = dim. L. r = dim. R. 

We are going to show h = O. Suppose th at h -=j:- O. Then th ere exists a 
singular hyperplane 01 of R whieh is not a singular hyperplane of Land 
which passes through the origin. Choose a point P on Ol such that it 

does not lie on any of the hyperplanes :71'1' :71'2 ... . . :Tm. Since R is semi­
simple. </>'(R) contains the reflection cp' about the singular hyperplane 01 
[7. p. 364]. On account of (2.3). cp' also belongs to cI>'(L). This cp' 
evidently differs from the identity transformation. and moreover it leaves 
the point Pinvariant. Proposition (l. 2) th en assures the existence of a 
singular hyperplane of L passing through both Pand the origin. However. 
by the choiee of P. none of the n's passes through P. This leads to a 
contradiction. Hence h = 0 and (2. 4) implies r = r'. In other words. 
Rand L have the same dimension. As R is connected. Land R coincide. 
Thus W = RILconsists of only one point. This proves Theorem I. 

3. Our main theorem can be stated as follows: 

Theorem 11. Let W be a simply-connected manilold with EULER 

characteristic equal to two. 11 Wadmits. eflectiVl,ely and transitively. a 
compact connected group R. then W is a sphere ol even dimension. and R 
is either the orthogonal group or the exceptional simple L1E group G2 ol 
CARTAN's class G and rank 2. G z presents only when Wis six-dimensional. 

In order to prove this theorem. we shall first establish a series of lemmas. 

Lemma 1. Let W be a simply-connected manilold with EULER charac­
teristic equal to a prime number p. Then the connected compact group R 
which can possibly act on W transitively and eflectively must be a simple 
L1E group. 

Pro of. Let L denote the isotropie subgroup of R. Then W can be 
regarded as the coset space RIL. Since z( W) = p -=j:- o. R has no centre 
[8. (2. 1)]. If R is not simpIe. th en R can be expressed as the direct pro­
duct R' X R" of two connected compact semi-simple L1E groups none of 
which consists of only one element [8. (2. 2) ]. Then W is homeomorphie 
to the topological product 

( R' I L' ) X (R" I L" ) 

of two coset spaces where L'=R'nL. L"=R"nL [8. (2.3)]. Prom 
the well-known KÜNNETH's formula. we have 

p = X(W) = x(R'IL') . x(R"IL"). 

However. p is a prime number so that one of the factors in the right hand 
side of the above equality must be unity. We can assume that x(R'IL') = l. 
Sin ce W is simply-connected. R' I L' must be simply-connected as weIl. 



8i2 

Moreover • R' I L' admits transitively the compact LIE group R'. F rom 
Theorem I. R' I L' is a single point. Hence R' = L'. 

Now we return to our original homogeneous space W = RIL. Since Ir 
is an invariant subgroup of Rand R' = L' C L. it follows that each element 
of R' leaves unaltered every point of W. R' has more than one elements. 
This contradicts our assumption that R is effective on W. Hence R is 
simpie. 

Lemma 2. Let Rl and R 2 be two locally isomorphic connected compact 
LIE groups. Then $(Rd ::::: $(R2 ). 

Proo f. IE Rl and R2 are semi-simple. this lemma is well-known. In 
the general case. we know that there exists a connected compact LIE group 
R such that [6. Theorem 87] 

R 2 = RIN2 

where NI and N 2 are discrete subgroups of R belonging to the centre. 
Hence we have two natural homomorphic onto-mappings 

ft: R-+ RI' f2: R-+ R 2 

with kernels NI and N 2 respectively. Let T be a maximal total subgroup 
of R. NI and N 2 being contained in the centre of R. are contained in T. 
From HOPF'S result [3. 1. 6]. it follows that 

$ (R)::::: $ (RI)' $ (R) ::::: $ (R2). 

and hence $(RI ):::::w(R2 ). 

Lemma 3. Let L be a connected compact LIE group locally isomorphic 
to the direct product 

L 1 X L2 X ... X Ls 

of connected compact LIE groups L j (j = 1. 2 .... . s). Then 

o(L) = o(Ld . 0(L2 ) ... o(Ls). 

Proo f. This is a direct consequence of Lemma 2 and [8. (1 i . 1)]. 

i. In this section and the next. we shall study some properties of the 
CARTAN'S exceptional groups. 

Lemma 4. The CARTAN's exceptional group F 4 • Es. E7' Es cannot act 
transitively on a simply-connected manifold with EULER characteristic 
equal to two. 

Pro of. Let us first consider the case Es. Suppose W to be a simply­
connected manifold with EULER characteristic equal to two. IE there exists 

an Es acting on W transitively. then the universal covering group Es of Es 
acts on W in the natural manner. This group Es is simply-connected and 

is also of the class Es. Let L be the isotropic of subgroup Es. We can 
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regard W as the coset space Es/L. From the simply-connectedness of both 

Wand Es. it follows that L is connected [1. § 31 ]. Therefore [8. (1 . 1 ) ] 

2 = X (W) = X (Es/L) = 0 (Es)/o (L). 

The table (1.3) tells us that o(Es) = 10! · 3 . 26 . Hence we have 

o (L) = 10/· 3.25• (4. 1) 

The isotropic subgraup L. being closed in Eg. form a compact LIE group. 
Hence it is locally isomorphic with a direct product of the form 

. . (4.2) 

where L j is ei th er a toral group or a compact simple LIE group. Let us 
denote by Ij the rank of L j. Then 

1\ + 12 + ... + Is = rank of L. 

Since X (Es/ L) =j= O. L has the same rank 8 as the group Es. and hence 

1\ + 12 + ... + Is = 8.. . . . . . . (4. 3) 

Furthermore. we have from Lemma 3 that o(L) = o(L\) . 0(L2 ) ... o(Ls) . 
Equality (4. 1) then implies 

o (L\)· 0 (L2) ... 0 (Ls) = 10/3.25•• • • • . (4.4) 

EVidently L j cannot be an E s. and from (4 . 3) it follows that Ij <: 8. 
Moreover. one of the o(Lj) must be divisible by 7. For definiteness. let it 
be 0 (Ld. Table (1. 3) then tells us th at L 1 is one of the following groups 

As. A7' A6' Bs. B7' Cs. C7• Ds. D7' E7' 

Hence 0 (Ld is not divisible by 25. One of the factors 0 (L 2 ) • .. . . 0 (Ls ) 
must be divisible by 5. However. I f <: 8 -11 <: 2 (j = 2. 3 ... .. s) . It 
follows from (1 . 3) th at this is impossible. 

Fram the above discussions. we know th at an E p, cannot act transitively 
on W. Thus the lemma is proved for the case E s. The ot her cases can be 
treated similarly. Q. E . D . 

Lemma 5. Let W be a simply-eonneeted spaee with EULER eharacteristie 
equal to two. lf it admits transitively the exeeptional group G2• then the 
iso tropie subgroup must be an A 2• 

Pro of. Let L denote the isotropic subgroup. By similar reasoning as 
above. we know that L is of rank 2 and 0 (L) = 6. (1 . 3) and Lemma 3 
teil us that L is an A 2 • 

5. In the preceding section. we know that there is possibly a simply­
connected homogeneous space of G 2 with EULER characteristic equal to 
two. Now we shall show that this space is the sp here of six dimension. 

Lemma 6. Up to an automorphism of G 2• there is one and only one 
liubgroup L of G2 sueh that L is an A 2 • 
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Proo f. Noting the fact that G 2 is simply-connec.ted [7. p. 378]. we 
can prove this lemma by reasoning analogous to. though far simpier than. 
that the au thor used in [8. Part 11]. The details are omitted. 

Lemma 7. The six-dimensional sphere S6 is a homogeneous space of 
the group G2• and is the only simply-connected homogeneous space of 
G2 which has EULER characteristic equal to two. 

Pro of. The uniqueness follows directly from Lemma 6 and Lemma 7. 
We need only prove the first part of our lemma. It is well-known that G2 

can be embedded in the group r 6 of all proper orthogonal matrices with 7 
rows and columns. Therefore. we can assume G2 cr 6' 

Let S6 be the unit sphere in the seven-dimensional euclidean space. r 6 
acts transitively and eHectively on S6. G2• being a subgroup of r 6. acts 
on S6 in the natural manner. We shall show that G2 is transitive on S6. 
For this purpose. let us consider the orbits of G2 [10. p. 194]. Let m be 
the maximum of the dimension of all the orbits. There is a point x of S6 
such that the orbit G2 (x) is m-dimensional. Sin ce each orbit is connected 
and G2 acts effectively on S6. we have 

0< m ~ 6 . (5. 1) 

The group G2 acts transitively on G2 (x) so that G2 (x) can be regarded 
as a coset space G2/L where L is a closed subgroup of G2• Since G2 is a 
simple LIE group without centre [7. p. 378]. it has no proper invariant 
subgroup. Furthermore. 

dim. G2 - dim. L = dim. G2 (x) = m > O. 
Thus L "=1= G2 and thus G2 acts effectively on G2 (x) [1. § 18]. It follows 
then [10. p. 202] 

14 =dim. G2 ~ m (m + 1)/2 .. . (5.2) 

Combining (5.1) and (5.2). we know that m is either equal to 5 or equal 
to 6. 

Suppose' m = 5. Then [5. p. 465] all orbits of G 2 are 5-dimensional 
except for two orbits of lower dimension. Let these two exceptional orbits 
be G2(Yl) and G2(Y2) (Yl.Y2ES6). Then G2(yt} must be of zero 
dimension. for otherwise by using similar reasoning as above we can show 
that its dimension is either 5 or 6. Hence G2 (YI) = yi. In other words. 
yl (i = 1. 2) is a fixed point of G 2 • All the matrices of r 6 leaving Yl 
unaltered form an orthogonal group r 5 of order 6. Hence 

G 2 ::> rs. . . (5. 3) 

However. r 5 cannot have any proper subgroup of dimension greater than 
ten [5. p. 463]. Hence (5.3) is absurd. The integer m cannot be equal 
to 5. and therefore m = 6. It follows then that G2 (x) = S6. In other 
words. S6 is really a homogeneous space of G 2 • This completes the proof. 

6. In a recent paper [8]. the author has determined all the spa ces which 
have non-vanishing EULER characteristic and admit transitively a classical 
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group O.e .• simple group of the four ma in classes). According as the group 
is an Ak. Bk. Ct. or Dt. the space is called an eIementary XA-' XB-' Xe- or 
Xn-space respectively. and we denote it by WA. WBo We or Wn. To each 
WA (WB. We. Wn) is associated a set BA (BB. Be. en) of integers. caUed 
category [8. § 9]. given as follows: 

(6. IA) 

(6. 1 B) 

(6. 1 C) 

(6.1D) 

These categories e A• eB. e c• en satisfy. respectiveIy. the foIIowing con­
ditions 

e ~ n - I. a" ~ 2. e + .or a" = 1. . . . . • . • • (6. 2A) 

e ~ n. a" ~ 2. di- ~ 2. b ~ O. e-n + I a" + I d~ = I. (6.2B) 

e ~ n. B" ~ 2. c/s ~ 1. e - n + I a" + .or 9 = I. . (6. 2C) 

e ~ n. a" ~ 2. d,> ~ 2. e - n + I a" + I d,> = l. . . (6. 2D) 

where I denotes the rank of the group which the space admits. It has been 
shown th at [8. § 13. CoroIIary 6] 

(6.3) Two simply-connected elementary x-spaces with the same cate­
gory are homeomorphic. 

Let WA. WBo We and W n be simply-connected elementary x-spaces 
of category e A• eB. ee and en respectively. Concerning their EULER 

characteristic x. we have the formulae 

(W ) _ (I + 1)/ 
X A - al / a2 1 ••• an! 

2(l+m'-b-d,-d,- . . . -dm' ) I! 
X (W B) = al! ... an! dIl • .• dm' I bI 

2(-C,-C' -' '' -Cm ) 11 
X ( Wc) = ----:--~~----:-­

al I . .. a n I Cl! ... Cm I 

2(l+m-d,-d,- ... -dm-I) l! 
X (W n) = --;-----;--:-;--~;­

al! ... an! dl I ... dm I 

• . (6.4) 

From (6.2) and (6.4). it is easy to single out those spaces whose 
EULER characteristic is equal to two. In facto we have 

Lemma 8. Let W be a simply-connected space which has EULER 

characteristic equal to two and admits transitively and effectively a classical­
group R. Then W is homeomorphic with a sphere of even dimension, and 
R is the orthogonal group. 

55 
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Proo f. Since R is a classical group and X( W) ~ O. W is an 
el~mentarYXA-' XB-' Xc- or XD-space. Bearing in mind the simply-con­
nectedness of W. we can easily see from (6. 2) and (6. 4) that R must 
be one of the following groups 

Al' Cl' C2 • BI (l = 1. 2 •... ). 

However. it is well-known that Al = Cl = Bl' C2 = B2 so that R is an 
BI and iv is an elementary XB-space. · By hypothesis~ R acts on W 
effectively. Hence R has no centre r 8. (2. I)] and hen ce R is the group 
of all proper orthogonal matrices with 21 + 1 rows and columns. Moreover. 
(6.4) tells us that the category 8 B of the sl'ace W = BI/L is specified 
as follows 

e = b = n = O. m' = I. dl :""- I. . (6.5) 

On the other hand. the 21-dimensional sp here S21 is an elementary XB­

space BI/Di. From the very definition of category. it follows th at the 
category of S21 is also given by (6. 5). On account of (6. 3). Wand S21 

are homeomorphic. The lemma is thus proved . 

. 7. Pro 0 f 0 f Th e 0 rem I I. Let W he a simply-connected 
manifold admitting effectively and transitively a connected compact group 
R. and having EULER characteristic equal to two. From Lemma I. we know 
that R is a connected compact simple LIE group. Lemma 4 tells us that R 
cannot he of the classes F4 • E6' E7' Es. Hence R is either the exceptional 
group G 2 or a classical group. 

IE R is the group G 2• it follows from Lemma 7 that W is the six­
dimensional sphere. In the other alternative. Lemma 8 tells us that W is a 
sp here of even dimension and R the orthogonal group. Theorem II is th ere­
fore proved. 

On account of Lemmas 5 and 7. we know that S6 is homeomorphic with 
the coset space G2/ A 2• From this . fact and the well-known homotopy 
sequence. it follows immediately 

Let ltn (G2 ) denote the nth homotopy group of the exceptional group G2 • 

Then lts (G2 )· is free cyclic and 

ltl (G2) = lt2 (G~) = lt4 (G2) = O. 

Furthermore. hy using similar method as in the proof of Theorem II we 
can prove the following 

Theorem 111 3). Let W be a simply-connected manifold with EULER 
characteristic equal to a prime number p> 2. If it admits transitively a 
compact group of transformations. Then W is either a complex projective 
space of 2 (p-l) dimension. or a quaternion projective space of 4 (p-I ) 

3) Prom a recent personal correspondence. the author leamt that some of these result 
are known to A. BOREL. 
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dimension or a 16~dimensional closed orientable manilold with POINCARE 

polynomial 

1 + t S + t 16• 

Academia Sinica. 
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