
Mathematics. - Existence of Stieltjes integrals. 11. By R. F. DENISTON 
(Ames. lowa). (Communicated by Prof. W. VAN DER WOUDE.) 

(Communicated at the meeting of September 24. 1949.) 

The Left~ and Right~Cauchy-Stieltjes Integral in the Norm Sense 

We shall employ the definition of pseudo~additivity of an interval 
function and the theorem given by GETCHELL [3] which gives necessary 
and sufficient conditions for the existence of an integral in the norm sense. 

(-) (-) 
For a specified interval function F (I) we say that F (I) is pseudo~ 

additive at a point z if for x < z < y 

(-) (-) (-) 
lim Lub IF«x. y»-F«x. z»-F«z. y»1 =0. 

x-+z.y-+z 

An interval function will be said to be pseudo~additive on an interval 
< a. b> if it is pseudo~additive at each point of < a. b >. 

(-) 

Theorem of Getchell. For a specified interval function. F (I). for the 
existence of the integral N(-)f~fdg the following conditions are necessary 
and sufficient: 

(-) 

oH f~ (dg exist; and F (I) be pseudo~additive on < a. b >. 
(-) 

Theorem 2. The condition of pseudo~additivity for F (I) is equivalent 
ta the foUowing: 

Condition (q): In each point of (a, b) in which the function g is dis~ 
continuous on the right the function f is continuous on the left. 

Proof. A calculationgives 
(-) (-) (-) 

IF«x. y»-F«x. z»-F«z. y»1 = 
= If(x) [g(y)-g(x)] -f(x) [g(z)-g(x)] -f(z) [g(y)-g(z)] 1 

= Ig(y)-g(z)I·I((x)-((z)l· 

The condition of pseudo~additivity is hence equivalent to: 

Condition (p): 

lim Lub Ig(y)-g(z)I·lf(z)-f(x)1 =0. 
x-+z.x<z 
y-+z.y>z 

We now show that condition (p) implies condition (q). by showing that 
if (q) is not satisfied (p) is not. Let z be a point at which 1 g(z + 0)
_. g(zl > O. and at which f is not left~continuous. Then there is a sequence 
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of points {yn}, yn ~ z, yn>Z, n=1. 2, ... such that IU(yn )-U(z) 1>'6>0, 
and a sequence of points {Xn}, Xn ~ Z, Xn < z, n = 1,2, ... such that 
1 [(z) - [(Xn) I> m. Hence 

lim Lub Iu(y)- U(z) I· 1 [(z)- [(x) I> 0, and condition (p) is 
X-+Z,X<Z 
Y-+Z,y>Z 

not realized. 
We show that condition (q) implies condition (p). For a point of 

(a, b> at which 9 is continuous on the right 

lim (g(y)- U(z» = 0; 
Y-+Z,Y>Z 

hence condition (p) is satisfied a priori. For a point of (a, b> at which 9 
is discontinuous on the right condition (q) requires 

lim ([(x)- [(z» = 0, 
x-+Z,x<Z 

which gives immediately condition (p). 

Theorem 3. In the case of [ bounded, U of bounded variation in 
< a, b> for the existence of NH f~ {dg the following conditions are 
necessary and sufficient: 

(a'). Same as (a) of Theorem 1. 
(b'). The set of points in (a, b> which are left~sided discontinuities 

of the function [ is a null set with respect to the left~side continuity 
function, UI, of g. 

(This theorem has been proved by SCHAERF [8].) 

Proof. In accordance with the theorem of Getchell it is sufficient to 
show that condition (b') is equivalent to the totality of condition (b) of 
theorem 1 and condition (q) of theorem 2. We consider separately severaI 
sets of points which together exhaust (a, b >. 

For points of (a, b > in which ( is continuous on the Ie ft conditions (b) 
and (b') make no assertion, and condition (q) is trivially satisfied. 

Let the set L 1 consist of points of (a, b > in which f is discontinuous on 
the left and 9 is discontinuous on the right. If both (b) and (q) hold for 
L1' by (q) ( is left~continuous whenever U is right~discontinuous; and 
hence L 1 is null. This implies (b'). On the other hand if (b') holds L 1 is 
a null set with respect to gl. This requires that L 1 have no points in which 
U is right~discontinuous. Then this also requires L1 is nulJ. which gives 
both (b) and (q) true for the set L 1• 

Let the set L2 consist of points of (a, b > in which ( is discontinuous 
on the left and 9 is continuous on the right. IE z is a point of L2 

Hence the gc~measure and gl~measure of the point is the same. Then (b) 
is the same as (b') for L 2 • Condition (q) does not concern L 2 • 
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The sets considered exhaust the points of (a. b >. and thus the proof 
is complete. 

The Stieltjes Integral in the Pollard-Moore Sense 

Theorem 4. In the case of { bounded. 9 of bounded variation in 
< a. b > for the existence of the integral 0 f~ {dg the following conditions 
are necessary and sufficient: 

(a"). On each side of each point of (a. b) and the right side of a and 
left side of b if 9 is discontinuous the function { is continuous. 

( b") . T he points of (a, b) in which { is discontinuous is a null set 
with respect to the continuity function of g. 

Proof. The conditions are necessary. 
Firstly. it is necessary that bath aH f~ {dg and o(+)f~ {dg exist. IE we 

let Land R be respectively the set of lelt and right-sided discontinuities 
of { and N be the set of discontinuities of (. it is required by (b) of 
Theorem I that L is a null set with respect to ge in order that oH f~ (dg 
exist. A corresponding condition for the existence of 0(+) f~ {dg gives that 
R is a null set with respect to ge. Hence N is a null set with respect to ge. 
and this is condition (b"). 

From (a) of theorem land the corresponding condition for the existence 
of o(+)f~{dg it follows immediately that at each "side" mentioned in (a") 
f has a sidewise limit. IE { is not sidewise continuous suppose that at a 
point. z. of (e.g.) left discontinuity of 9 (and hence of hL) that f(z-O) 
exists and is different from f (z). Let D€ be a subdivision for € in the sense 
that whenever D'. D" ::::> D€ 

I D' S [f. htJ-D" S [(. htJl < €. 

Such a D€ is guaranteed to exist by the existence of a f~ fdhl. Now let D' 
have all the points of D€. the point z. and as its first point to the lelt of z 
a point x for which 1 f(x)- {(z-O) 1 <! 1 ((z)- f(z-O) I. and 1 hl (x)
-- hI(z-O) I<! I hI(z)- hI(z-O) I. Let the sum D'So[f. hL] contain the 

(-) 

same terms as DS [{. hL] with the exception of the term ((x) . [hI(z)-
- hL(x)] which may be replaced by ((z). [hL(z)- hI{x)]. A calculation 
gives 

(-) 

I D' S [{. htJ-D' So [{. htJl = 1{(z)-{(x)I·1 hl(z)-ht(x)1 

= I {(z)-{(z-O)-(f(x)-{(z-O))I· 

I hl(Z) - ht(z-O)-(hl(X)-hl(Z -0)) I 
~ t I {(z)-{(z-O) 1·lhl(Z)-ht{z-O)I· 

This difference is greater than € for a suitable choke of €. This result 
contradicts the definition of D€ for such an E. Similar results are obtained 
if we suppose a point z of right discontinuity of 9 such that 

{(z) =F {(z + 0). 
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The conditions are sufficient. 

As in the proof of Theorem 1 we make use of the equation 

(1 f: [dh, + (1 f: [dh r + (1 f: [dgc = (1 f: [dg. 

and show that each integral on the left exists. We again assume without 
loss of generality that h, and hr are non-decreasing. 

(A). The case of (1f~fdh,. 

Oefining h~m) as in the proof of Theorem 1 we choose an m so that 
00 (-

2M I I::::. h,(Xi) < Eii. 
i=m+l 

We can find points {Yi} (i = 1.2 . .. .• m) such that yi is between XI and 
the nearest point of the set {Xi} Iying to the left of Xi and such that by 
the left-continuity of f at Xi 

I [(ei)-[(X;) I < -m----:(--:-_)E-

i I I::::. h~m) (Xi) 
i=1 

whenever yi ~ ~i ~ Xi. Let DE consist of the {Xi} and {Yi} together with 
the points a and b. Only the intervals {< yi. Xi >} contribute to 
DES[f. h~m)]. and by the choice of yi we have for yi ~ ~i ~ XI 

(m) m (-) (mI 
IDES[{.h,]- I [(xi)/:;:'h, (Xi) I <e:/i. .., (1) 

i=1 

Also by the choice of the yi. for any two refinements D'. D" of De: we have 

I D' S [(. h~m) - De: S [[. h~m)] I < e:/i • 

I Dil S [f. h~m) - De: S [f. h~m)] I < e:/i. 

By the choice of m we have 

and also 

I D' S [(. h,] - D' S [f. h~m)] 1< e:/i. 

I Dil S [[. h,] - D" S [[. h(,m)] I < Eli. 

I 
m (-) co (-) I 

i:1 ((Xi) /:;:, h,(Xi)- i-:PXi) I::::. h, (Xi) < e:/". 

From (2). (3). (4). and (5) we have 

I D' S [f. h,] - D" S [f. htJ I < e: 

(2) 

(3) 

(i) 
(5 

(6) 

which establishes that De: is a mode of subdivision for e: in accordancc 
with the Pollard-Moore limit theory. From (1). (2). (4) . and (6) we have 
the additionaI result 

co (-) 

(1 f: {dhl = .I [(Xi) I::::. h (Xi) 
1=1 

where Xi runs over the points of left discontinuity of h, (or of g). 

73 
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(B). The case of 0f~ [dh,. 

Defining h~m) as in the proof of theorem 1 we choose m so that 
. aD (+) 

2·M I !::J. hr (XI) < €/i. 
l=m+1 

In th is case we find points {yt}, i = I, 2, ... , m, such that yi is between Xi . 

and the nearest point of the set {xl} Iying to the rlght of XI and such that 
by the right~continuity of [ at XI 

€ I ((el) - ((Xi) 1< -m----:-(+-,--,-)--

4 I 6 h~m) (xt) 
i=1 . 

whenever XI:;;; el:;;; yl. Letting D€ consist of the {XI} and {Y/} together
with the points a and b the proof foIlows almost exactly like (a) above .• 
We have also the additional result: 

aD (+) 

01: (dh r = .I ((Xi) 6 hr(Xi) 
1=1 

where XI runs over the points of right discontinuity of h, (or of g). 

(C). The case of 0 f~ [dg, . 

The conditions are sufficient by a theorem of Bliss (see below) for thee 
existence of the integral in the norm sense or N f~ [dg, . This guarantees. 
existence in the o~sense. 

Remark on the Ordinary Stieltjes Integral. 

For the integral Nf~[dg based on F«t', t"» = [(e) [g(t")-g(t')J 
(t' $ ~ :;;;;t") GETCHELL gives as the condition of pseudo~additivity the 
foUo~ing: 

[(x) and g(x) have no common point of discontinuity. 
This condition and theorem 4 are seen to be in agreement (in the sen se· 

of Ge,tcheIl'.s dleorem) with the foIlowing condition given by Buss [1] 
for the ordinary integral: 

A necéssäry and sufficient condition that the norm or Riemann-Stieltjes. 
integral N f~ [dg, g of bounded variation, exist is that the total variation 
of g on the -set of the discontinuities of f be zero. 

The Modified Integral of Dushnik in the Pollard-Moore Sense 

Theorem S. In the case of f founded, g of bounded variation in 
< a, b> for the existence of the integral 0(*) f~ [dg (the Dushnik integral 
in the Pollard-Moore sense) the following conditions are necessary and 
sufficient: 

(a*). On each side of each point of (a, b) and the right side of a and 
left side of b if g is discontinuous the function f has a sidewise limit. 

(b*) . Same as (b"). (i.e. the points of (a, b) in which f is discontinuous 
is a nuIl set with respeCt to the continuity function of g.) 
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Proof. The conditions are necessary. 

(a*) was given by HILDEBRANDT [i] to be necessary and follows from 
the necessity of sidewise pseudo-additivity of P(-) as given by GETCHELL. 

Condition (b*) is necessary. 

We suppose without loss of generality that ge is non-decreasing in 
< a. b >. In order to establish a contradiction we suppose that the set N 
ot discontinuities of [ in (a. b) has positive outer ge-measure. but that the 
integral a{*)f~[dg exists. Then for arbitrary 1] > 0 there is a mode D" 
having the property that for all D'. D" satisfying D'. D" ::> D" it is true 
that 

We denote by Np the set of points. x. for whieh th ere is in every neigh-
co 

borhood a point y su eh that I [(x) - [(y) I> p. Since N = I N I /n and 
n=1 

ClO 

sinee 0 < g~ {N} ~ I g~ I N l1n I there is a number p> 0 for which 
n=1 

g~ (NI /p ) = mp > O. 
Let DT} above be given by 

r'1- 1 

a = to < ti < ... < t r '1 = band consider the set I <ti-a, ti + a>. 
i=\ 

By the uniform continuity of ge on < a. b> we are assured of a () such 

that if x and y satisfy I x-y I < 2() we have J gc(x)- gc(y)J < 2€ . Using 
r" 

this () we have that the outer gc-measure of N~, by which we denote 
r,,-I 

N p - I < ti-Ö. ti + Ö > . is greater than mp-€f2. Hence by the meaning 
i=1 . 

of outer measure we can cover the set N~ by a finite number nl of non
overlapping intervals I~I) == < Xi. yi >. i = 1.2 ..... n], satisfying 

n, (I) n,. (I) • 
I gc(Ii ) > I gc(Ii . Np) > mp-€, 

1=1 i=1 

r'1- 1 

and having no points in cam man with the set I < ti-Ö.ti + () >. 
i=1 

Let Öl be the Ö of uniform continuity for €/2nl and let us take points 
xi at a distance Öl to the right of Xi and also points yi at a di stance Öl to 
the left of yi . IE any interval had length less than 2Öl or if <xi, yi> 
contains no points of Np we omit it. Let {l~2) }. i = 1.2 . .. .. n2. be the new 
(renumbered) set of intervals < xi. yi >. We have 

The expression on the right is greater than mp/2 = m > 0 if € has been 
chosen less than mp/i. We now have the following possibilities: 
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(i). To the right of XI there is in <XI.yI> a first point ti of Np. or 
(ii). In XI or to the right of XI in <XI.yI > there is a first point of 

those having the property of being a limit point on the right of points 
of Np. 

If (i) holds take ti as zi.1f (ii) holds there is in (xI.yi) a point ti of Np. 
Take this ti as Zi. 

By the nature of the points of Np. there is near Zi in each interval 
(Xi. y~) either a point zi or a point zï satisfying 

(iii). {(zi) - {(Z/) > p. or 
(iv). {(Z/) - ((zi') > p. 

Let the modes of subdivision D' and D" be formed as follows: Both D' 
and D" have all points of DE and the points {Xi} and {Yi} and differ only 
in the point taken for $i in forming the sums 

F(·) = I (($i) [g(YI)-g(xl)]' 

IE (iii) holds take Zt as $1 for D' and Zi as $1 for D". IE (iv) holds take 
ZI as $1 for D' and zj (:IS $i for D". Then a calculation gives: 

(.) (.) 

D' S [f. g] - D" S [f. g] ~ p . m. 

which is greater than rJ if rJ has been chosen to be < p . m. Since both D' 
and D" are refinements of D1). this result contradicts the definition of D1}. 

The conditions are sufficient. 

As in the proof of Theorem 1 we make use of the equation 

0(·) f: (dh r + 0(·) f: (dht + 0(·) f: (dgc = 0(·) g (dg 

and show that each integral on the left exists. We again assume without 
loss of generality that hl and hr are non-decreasing. 

(A). The case of a(*)f~fdht. 

Defining h~m) as in the proof of theorem 1 we choose an m so that 
00 (-) 

2 M I D" hl (Xi) < E/'*. 
l=m+1 

We can find points {Yi}. i = 1. 2 ..... m. such that yi is between Xi and 
the nearest point of the set {Xi} lying to the Ie ft of Xi and such that by 
the existence of f (Xi - 0) 

I{(~I)-{(Xi-O)I < -m-
E
-

'* I !:::. h~m) (XI) 
1=1 

whenever yi ~ $i < XI. Let DE consist of the {Xi} and {Yi} together with 
the points a and b. Only the intervals {< yi. XI >} contribute to 

(.) 

DES [f. h~m)] and by the choice of yi we have for yl:;;; $1::;;; XI 

I DE ~ [(. h~m)] - Ï {(Xi - 0) b.' h~m) (Xi) I < EI". • • . (1) 
1:1 
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Also by the choice of the Yi, for any two refinements D', D" of DE we have 
(-) (.) 

I D' S [(, h)m)J - DE S [f. h)m)] I < Eli, (2) 
(-) (-) 

I D" S [(, h)m)] - DE S [(, h~m)] I < Eli. (3) 

By the choice of m we have 
(.) (-) 

I D' S [{. htl- D' S [(. h)m)] I < Eli. 

and also 

(4) 

(5) 

m (-) ao (-I 

I I {(xi-Ol Ó hl(Xi)- I {(Xi-O) Ó hl (Xi) I < E/4. • • (6) 
i=1 i=1 

From (2), (3). (4). and (5) we have 
(-) (-) 

ID' S [{. htJ-D" S [{, htJ 1< E 

which establishes that DE is a mode of subdivision for E in accordance 
with the Pollard-Moore limit theory. From (1) . (2). (4) , and (6) we 
have the additional result 

where Xi runs over the points of left discontinuity of hl (or of g). 

(8) . The case of a(*)f~ [dhr. 

Defining h~m) as in the proof of theorem 1 we choose m 50 that 
co H) 

2 M I Ó h~m) (Xi) < E/4. 
i=m+1 

We Eind points {Yi}, i = 1. 2, .... m. such that yi is between Xi and the 
nearest point of the set {Xi} lying to the right of Xi and such that by the 
existence of [(Xi + 0) 

E I {(Ei)- {(Xi + 0) 1< m H) 

i I Ó h~m) (Xi) 
i=1 

whenever Xi < ~i :;;; yi . Letting DE consist of the {Xi} and {Yi} together 
with the points a and b the proof follows almost exactly like (A) above. 
We have also the additional result : 

ao (+) 

01-) f: {dh r = .I {(Xi + 0) Ó h r (Xi) 
1=1 

where Xi runs over the points of right discontinuity of h r (or of g). 

(C). The case of a(*) f: [dge• 

The conditions are sufficient by a theorem of BLiss (see p. 1124) for the 
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existence of the ordinary integral in the norm sense or N f: [dgc• This of 

course is sufficient for the existence of a(*) j~ [dgc• 

The Modified Integral of Dushnik in the Norm Sense 

Theorem 6. In the case of [ bounded, g of bounded variation in 
< a. b> for the existence of the integral N(*)j: [dg the following conditions 
are T/ecessary. and slJfficient: 

(a**). In each point of the interval (a, b) and the right side of a and 
left side of b either [ or gis. continuous except that both may have 
removable discontinuity at the same point. 

(b**). Same as (b") and (b*). 

Proof. The following was given by GETCHELL as the condition of 
pseudo~additivity: 

Condition (r). [ and g have no points of common discontinuity in (a. b) 
and the right side of a and left side of b except that both may have 
removable discontinuity at the same point. 

Since (bU
) is the same as (b*) of theorem 5. in order to fulfill the 

conditions of Getchell's theorem we must show that together (a*) and (r) 
are equivalent to (a**). 

We consider separately the set N 1 of points of (a. b) and the right side 
of a and left si de of b in which either [ or g is continuous and the set N 2 

consisting of points for which both functions are discontinuous. For N 1 the 
three conditions (a*). (a**). and (r) hold trivially. 

For a point of N 2 suppose that (a*) and '(r) both hold. Then (a**) 
holds since it is the same as condition (r). On the other hand if (a**) 
holds then (r) holds. being the same. Also the sidewise limits required by 
(a*) are guaranteed. Hence (a*) holds for the set. This completes the 
proof. 
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