Mathematics. - Existence of Stieltjes integrals. II. By R. F. Deniston (Ames, Iowa). (Communicated by Prof. W. van der Woude.)
(Communicated at the meeting of September 24, 1949.)

The Left- and Right-Cauchy-Stieltjes Integral in the Norm Sense

We shall employ the definition of pseudo-additivity of an interval function and the theorem given by Getchell [3] which gives necessary and sufficient conditions for the existence of an integral in the norm sense.

For a specified interval function $\stackrel{(\tilde{F}}{ }(I)$ we say that $\stackrel{(\tilde{F})}{(I)}$ is pseudoadditive at a point z if for $x<z<y$

$$
\lim _{x \rightarrow z, y \rightarrow z} \operatorname{Lub} \mid \stackrel{(\tilde{F})}{(<x, y>)-\stackrel{(\sim)}{F}(<x, z>)-\stackrel{(\tilde{F}}{F}(<z, y>) \mid=0 . ~ . ~}
$$

An interval function will be said to be pseudo-additive on an interval $\langle a, b\rangle$ if it is pseudo-additive at each point of $\langle a, b\rangle$.

Theorem of Getchell. For a specified interval function, $\stackrel{(\sim)}{F}(I)$, for the existence of the integral $N^{(\sim)} \int_{a}^{b} f d g$ the following conditions are necessary and sufficient:
$\sigma^{(\sim)} \int_{a}^{b} f d g$ exist; and $\stackrel{(\sim)}{F}(I)$ be pseudo-additive on $\langle a, b\rangle$.
Theorem 2. The condition of pseudo-additivity for $\stackrel{(-)}{F}(I)$ is equivalent to the following:

Condition (q) : In each point of (a, b) in which the function g is discontinuous on the right the function f is continuous on the left.

Proof. A calculation gives

$$
\begin{aligned}
& |\stackrel{(-)}{F}(<x, y>)-\stackrel{(-)}{F}(<x, z>)-\stackrel{(-)}{F}(<z, y>)|= \\
& =|f(x)[g(y)-g(x)]-f(x)[g(z)-g(x)]-f(z)[g(y)-g(z)]| \\
& =|g(y)-g(z)| \cdot|f(x)-f(z)| .
\end{aligned}
$$

The condition of pseudo-additivity is hence equivalent to:
Condition (p):

$$
\lim _{\substack{x \rightarrow z, x<z \\ y \rightarrow z, y>z}} \operatorname{Lub}|g(y)-g(z)| \cdot|f(z)-f(x)|=0 .
$$

We now show that condition (p) implies condition (q), by showing that if (q) is not satisfied (p) is not. Let z be a point at which $\mid g(z+0)$ -$-g(z \mid>0$, and at which f is not left-continuous. Then there is a sequence
of points $\left\{y_{n}\right\}, y_{n} \rightarrow z, y_{n}>z, n=1,2, \ldots$ such that $\left|g\left(y_{n}\right)-g(z)\right|>\Delta>0$, and a sequence of points $\left\{x_{n}\right\}, x_{n} \rightarrow z, x_{n}<z, n=1,2, \ldots$ such that $\left|f(z)-f\left(x_{n}\right)\right|>m$. Hence
$\lim \operatorname{Lub}|g(y)-g(z)| \cdot|f(z)-f(x)|>0$, and condition (p) is $x \rightarrow z, x<z$
$y \rightarrow z, y>z$
not realized.
We show that condition (q) implies condition (p). For a point of ($a, b>$ at which g is continuous on the right

$$
\lim _{y \rightarrow z, y>z}(g(y)-g(z))=0 ;
$$

hence condition (p) is satisfied a priori. For a point of ($a, b>$ at which g is discontinuous on the right condition (q) requires

$$
\lim _{x \rightarrow z, x<z}(f(x)-f(z))=0
$$

which gives immediately condition (p).
Theorem 3. In the case of f bounded, g of bounded variation in $<a, b>$ for the existence of $N^{(-)} \int_{a}^{b} f d g$ the following conditions are necessary and sufficient:
(a^{\prime}). Same as (a) of Theorem 1.
$\left(b^{\prime}\right)$. The set of points in $(a, b>$ which are left-sided discontinuities of the function f is a null set with respect to the left-side continuity function, g_{l}, of g.
(This theorem has been proved by Schaerf [8].)
Proof. In accordance with the theorem of Getchell it is sufficient to show that condition (b^{\prime}) is equivalent to the totality of condition (b) of theorem 1 and condition (q) of theorem 2 . We consider separately several sets of points which together exhaust ($a, b>$.

For points of ($a, b>$ in which f is continuous on the left conditions (b) and (b^{\prime}) make no assertion, and condition (q) is trivially satisfied.

Let the set L_{1} consist of points of ($a, b>$ in which f is discontinuous on the left and g is discontinuous on the right. If both (b) and (q) hold for L_{1}, by (q) f is left-continuous whenever g is right-discontinuous; and hence L_{1} is null. This implies (b^{\prime}). On the other hand if (b^{\prime}) holds L_{1} is a null set with respect to g_{l}. This requires that L_{1} have no points in which g is right-discontinuous. Then this also requires L_{1} is null, which gives both (b) and (q) true for the set L_{1}.

Let the set L_{2} consist of points of ($a, b>$ in which f is discontinuous on the left and g is continuous on the right. If z is a point of L_{2}

$$
\Delta g_{c}(z)=\Delta g_{l}(z)
$$

Hence the g_{c}-measure and g_{l}-measure of the point is the same. Then (b) is the same as (b^{\prime}) for L_{2}. Condition (q) does not concern L_{2}.

The sets considered exhaust the points of $(a, b>$, and thus the proof is complete.

The Stieltjes Integral in the Pollard-Moore Sense

Theorem 4. In the case of f bounded, g of bounded variation in $<a, b>$ for the existence of the integral $\sigma \int_{a}^{b} f d g$ the following conditions are necessary and sufficient:
($a^{\prime \prime}$). On each side of each point of (a, b) and the right side of a and left side of b if g is discontinuous the function f is continuous.
$\left(b^{\prime \prime}\right)$. The points of (a, b) in which f is discontinuous is a null set with respect to the continuity function of g.

Proof. The conditions are necessary.
Firstly, it is necessary that both $\sigma^{(-)} \int_{a}^{b} f d g$ and $\sigma^{(+)} \int_{a}^{b} f d g$ exist. If we let L and R be respectively the set of left and right-sided discontinuities of f and N be the set of discontinuities of f, it is required by (b) of Theorem 1 that L is a null set with respect to g_{c} in order that $\sigma^{(-)} j_{a}^{b} f d g$ exist. A corresponding condition for the existence of $\sigma^{(+)} \int_{a}^{b} f d g$ gives that R is a null set with respect to g_{c}. Hence N is a null set with respect to g_{c}, and this is condition ($b^{\prime \prime}$).

From (a) of theorem 1 and the corresponding condition for the existence of $\sigma^{(+)} \int_{a}^{b} f d g$ it follows immediately that at each "side" mentioned in ($a^{\prime \prime}$) f has a sidewise limit. If f is not sidewise continuous suppose that at a point, z, of (e.g.) left discontinuity of g (and hence of h_{l}) that $f(z-0)$ exists and is different from $f(z)$. Let D_{ϵ} be a subdivision for ϵ in the sense that whenever $D^{\prime}, D^{\prime \prime} \supseteq D_{\epsilon}$

$$
\left|D^{\prime} S\left[f, h_{l}\right]-D^{\prime \prime} S\left[f, h_{l}\right]\right|<\epsilon
$$

Such a D_{ϵ} is guaranteed to exist by the existence of $\sigma \int_{a}^{b} f d h_{l}$. Now let D^{\prime} have all the points of D_{ϵ}, the point z, and as its first point to the left of z a point x for which $|f(x)-f(z-0)|<\frac{1}{2}|f(z)-f(z-0)|$, and $\mid h_{l}(x)$ -$\left.--h_{l}(z-0)\left|<\frac{1}{2}\right| h_{l}(z)-h_{l}(z-0) \right\rvert\,$. Let the sum $D^{\prime} S_{0}\left[f, h_{l}\right]$ contain the same terms as $D \stackrel{(-1)}{S}\left[f, h_{l}\right]$ with the exception of the term $f(x) \cdot\left[h_{l}(z)-\right.$ $\left.-h_{l}(x)\right]$ which may be replaced by $f(z) \cdot\left[h_{l}(z)-h_{l}(x)\right]$. A calculation gives

$$
\begin{aligned}
\left|D^{\prime} \stackrel{(-)}{S}^{\prime}\left[f, h_{l}\right]-D^{\prime} S_{0}\left[f, h_{l}\right]\right| & =|f(z)-f(x)| \cdot\left|h_{l}(z)-h_{l}(x)\right| \\
& =|f(z)-f(z-0)-(f(x)-f(z-0))| \cdot \\
& \left|h_{l}(z)-h_{l}(z-0)-\left(h_{l}(x)-h_{l}(z-0)\right)\right| \\
& \geqq \frac{1}{4}|f(z)-f(z-0)| \cdot\left|h_{l}(z)-h_{l}(z-0)\right| \cdot
\end{aligned}
$$

This difference is greater than ϵ for a suitable choice of ϵ. This result contradicts the definition of $D_{\boldsymbol{\epsilon}}$ for such an ϵ. Similar results are obtained if we suppose a point z of right discontinuity of g such that

$$
f(z) \neq f(z+0)
$$

The conditions are sufficient.
As in the proof of Theorem 1 we make use of the equation

$$
\sigma \int_{a}^{b} f d h_{l}+\sigma \int_{a}^{b} f d h_{r}+\sigma \int_{a}^{b} f d g_{c}=\sigma \int_{a}^{b} f d g
$$

and show that each integral on the left exists. We again assume without loss of generality that h_{l} and h_{r} are non-decreasing.
(A). The case of $\sigma \int_{a}^{b} f d h_{l}$.

Defining $h_{l}^{(m)}$ as in the proof of Theorem 1 we choose an m so that

$$
2 M \sum_{i=m+1}^{\infty} \stackrel{(-}{\triangle} h_{l}\left(x_{i}\right)<\epsilon / 4
$$

We can find points $\left\{y_{i}\right\}(i=1,2, \ldots, m)$ such that y_{i} is between x_{i} and the nearest point of the set $\left\{x_{i}\right\}$ lying to the left of x_{i} and such that by the left-continuity of f at x_{i}

$$
\left|f\left(\xi_{i}\right)-f\left(x_{i}\right)\right|<\frac{\epsilon}{4 \sum_{i=1}^{m} \widetilde{\Delta r}^{(-)} h_{l}^{(m)}\left(x_{i}\right)}
$$

whenever $y_{i} \leqq \xi_{i} \leqq x_{i}$. Let D_{ϵ} consist of the $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ together with the points a and b. Only the intervals $\left.\left\{<y_{i}, x_{i}\right\rangle\right\}$ contribute to $D_{\epsilon} S\left[f, h_{l}^{(m)}\right]$, and by the choice of y_{i} we have for $y_{i} \leqq \xi_{i} \leqq x_{i}$

$$
\begin{equation*}
\left|D_{\epsilon} S\left[f, h_{l}^{(m)}\right]-\sum_{i=1}^{m} f\left(x_{i}\right){ }^{(-)} h_{l}^{(m)}\left(x_{i}\right)\right|<\epsilon / 4 . \tag{1}
\end{equation*}
$$

Also by the choice of the y_{i}, for any two refinements $D^{\prime}, D^{\prime \prime}$ of D_{ϵ} we have

$$
\begin{align*}
& \mid D^{\prime} S\left[f, h_{l}^{(m)}-D_{\epsilon} S\left[f, h_{l}^{(m)}\right] \mid<\epsilon / 4,\right. \tag{2}\\
& \mid D^{\prime \prime} S\left[f, h_{l}^{(m)}-D_{\epsilon} S\left[f, h_{l}^{(m)}\right] \mid<\epsilon / 4 .\right. \tag{3}
\end{align*}
$$

By the choice of m we have

$$
\begin{align*}
& \left|D^{\prime} S\left[f, h_{l}\right]-D^{\prime} S\left[f, h_{l}^{(m)}\right]\right|<\epsilon / 4, . \tag{4}\\
& \left|D^{\prime \prime} S\left[f, h_{l}\right]-D^{\prime \prime} S\left[f, h_{l}^{(m)}\right]\right|<\epsilon / 4,
\end{align*}
$$

and also

$$
\begin{equation*}
\left|\sum_{i=1}^{m} f\left(x_{i}\right) \stackrel{(-)}{\triangle} h_{l}\left(x_{i}\right)-\sum_{i=1}^{\infty} f\left(x_{i}\right) \triangle^{(-)} h_{l}\left(x_{i}\right)\right|<\epsilon / 4 . \tag{6}
\end{equation*}
$$

From (2), (3), (4), and (5) we have

$$
\left|D^{\prime} S\left[f, h_{l}\right]-D^{\prime \prime} S\left[f, h_{1}\right]\right|<\epsilon
$$

which establishes that $D_{\boldsymbol{\epsilon}}$ is a mode of subdivision for $\boldsymbol{\epsilon}$ in accordance with the Pollard-Moore limit theory. From (1), (2), (4), and (6) we have the additional result

$$
\sigma \int_{a}^{b} f d h_{l}=\sum_{i=1}^{\infty} f\left(x_{i}\right) \stackrel{(-)}{\triangle} h\left(x_{i}\right)
$$

where x_{i} runs over the points of left discontinuity of h_{l} (or of g).
(B). The case of $\sigma \int_{a}^{b} f d h_{r}$.

Defining $h_{r}^{(m)}$ as in the proof of theorem 1 we choose m so that

$$
2 M \sum_{i=m+1}^{\infty} \stackrel{(+)}{ }_{\triangle} h_{r}\left(x_{i}\right)<\epsilon / 4
$$

In this case we find points $\left\{y_{i}\right\}, i=1,2, \ldots, m$, such that y_{i} is between x_{i} and the nearest point of the set $\left\{x_{i}\right\}$ lying to the right of x_{i} and such that by the right-continuity of f at x_{i}

$$
\left|f\left(\xi_{i}\right)-f\left(x_{i}\right)\right|<\frac{\epsilon}{4 \sum_{i=1}^{m} \stackrel{(+)}{\triangle} h_{r}^{(m)}\left(x_{i}\right)}
$$

whenever $x_{i} \leqq \xi_{i} \leqq y_{i}$. Letting D_{ϵ} consist of the $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ together with the points a and b the proof follows almost exactly like (a) above. We have also the additional result:

$$
\sigma \int_{a}^{b} f d h_{r}=\sum_{i=1}^{\infty} f\left(x_{i}\right) \triangle^{(+)} h_{r}\left(x_{i}\right)
$$

where x_{i} runs over the points of right discontinuity of h_{r} (or of g).
(C). The case of $\sigma \int_{a}^{b} f d g_{c}$.

The conditions are sufficient by a theorem of Bliss (see below) for the existence of the integral in the norm sense or $N \int_{a}^{b} f d g_{c}$. This guarantees existence in the σ-sense.

Remark on the Ordinary Stieltjes Integral.

For the integral $N \int_{a}^{b} f d g$ based on $F\left(<t^{\prime}, t^{\prime \prime}>\right)=f(\xi)\left[g\left(t^{\prime \prime}\right)-g\left(t^{\prime}\right)\right]$ ($t^{\prime} \leqq \xi \leqq t^{\prime \prime}$) Getchell gives as the condition of pseudo-additivity the following:
$f(x)$ and $g(x)$ have no common point of discontinuity.
This condition and theorem 4 are seen to be in agreement (in the sense of Getchell's theorem) with the following condition given by Bliss [1] for the ordinary integral:

A necessary and sufficient condition that the norm or Riemann-Stieltjes integral $N \int_{a}^{b} f d g, g$ of bounded variation, exist is that the total variation of g on the set of the discontinuities of f be zero.

The Modified Integral of Dushnik in the Pollard-Moore Sense

Theorem 5. In the case of f founded, g of bounded variation in $<a, b\rangle$ for the existence of the integral $\sigma^{(*)} \int_{a}^{b} f d g$ (the Dushnik integral in the Pollard-Moore sense) the following conditions are necessary and sufficient:
(a^{*}). On each side of each point of (a, b) and the right side of a and left side of b if g is discontinuous the function f has a sidewise limit.
$\left(b^{*}\right)$. Same as $\left(b^{\prime \prime}\right)$. (i.e. the points of (a, b) in which f is discontinuous is a null set with respect to the continuity function of g.)

Proof. The conditions are necessary.
(a*) was given by Hildebrandt [4] to be necessary and follows from the necessity of sidewise pseudo-additivity of $F^{(*)}$ as given by Getchell.

Condition (b^{*}) is necessary.
We suppose without loss of generality that g_{c} is non-decreasing in $<a, b\rangle$. In order to establish a contradiction we suppose that the set N of discontinuities of f in (a, b) has positive outer g_{c}-measure, but that the integral $\sigma^{(*)} \int_{a}^{b} f d g$ exists. Then for arbitrary $\eta>0$ there is a mode D_{η} having the property that for all $D^{\prime}, D^{\prime \prime}$ satisfying $D^{\prime}, D^{\prime \prime} \supseteq D_{\eta}$ it is true that

$$
\left|D^{\prime} \stackrel{(*)}{S}[f, g]-D^{\prime \prime} S[f, g]\right|<\eta .
$$

We denote by N_{p} the set of points, x, for which there is in every neighborhood a point y such that $|f(x)-f(y)|>p$. Since $N=\sum_{n=1}^{\infty} N_{1 / n}$ and since $0<g_{c}^{*}\{N\} \leqq \sum_{n=1}^{\infty} g_{c}^{*}\left\{N_{1 / n}\right\}$ there is a number $p>0$ for which $g_{c}^{*}\left(N_{1 / p}\right)=m_{p}>0$.

Let D_{η} above be given by

$$
a=t_{0}<t_{1}<\ldots<t_{r_{\eta}}=b \text { and consider the set } \sum_{i=1}^{r_{\eta}-1}<t_{i}-\partial, t_{i}+\partial>
$$

By the uniform continuity of g_{c} on $\langle a, b\rangle$ we are assured of a d such that if x and y satisfy $|x-y|<2 \partial$ we have $\left|g_{c}(x)-g_{c}(y)\right|<\frac{\epsilon}{2 r_{\eta}}$. Using this ∂ we have that the outer g_{c}-measure of N_{p}^{\prime}, by which we denote $N_{p}-\sum_{i=1}^{r_{\eta}-1}<t_{i}-\partial, t_{i}+\partial>$, is greater than $m_{p}-\epsilon / 2$. Hence by the meaning of outer measure we can cover the set N_{p}^{\prime} by a finite number n_{1} of nonoverlapping intervals $I_{i}^{(1)} \equiv\left\langle x_{i}, y_{i}\right\rangle, i=1,2, \ldots, n_{1}$, satisfying

$$
\sum_{i=1}^{n_{1}} g_{c}\left(I_{i}^{(1)}\right)>\sum_{i=1}^{n_{1}} g_{c}^{*}\left(I_{i}^{(i)} \cdot N_{p}^{\prime}\right)>m_{p}-\epsilon,
$$

and having no points in common with the set $\sum_{i=1}^{r_{\eta}-1}<t_{i}-\partial, t_{i}+\partial>$.
Let ∂_{1} be the ∂ of uniform continuity for $\epsilon / 2 n_{1}$ and let us take points x_{i}^{\prime} at a distance ∂_{1} to the right of x_{i} and also points y_{i}^{\prime} at a distance ∂_{1} to the left of y_{i}. If any interval had length less than $2 \partial_{1}$ or if $\left\langle x_{i}^{\prime}, y_{i}^{\prime}\right\rangle$ contains no points of N_{p} we omit it. Let $\left\{I_{i}^{(2)}\right\}, i=1,2, \ldots, n_{2}$, be the new (renumbered) set of intervals $\left\langle x_{i}^{\prime}, y_{i}^{\prime}\right\rangle$. We have

$$
\sum_{i=1}^{n_{2}} g_{c}\left(I_{i}^{(2)}\right)>\sum_{i=1}^{n_{2}} g_{c}^{*}\left(I_{i}^{(2)} \cdot N_{p}^{\prime}\right)>m_{p}-2 \epsilon .
$$

The expression on the right is greater than $m_{p} / 2=m>0$ if ϵ has been chosen less than $m_{p} / 4$. We now have the following possibilities:
(i). To the right of x_{i}^{\prime} there is in $\left\langle x_{i}^{\prime}, y_{i}^{\prime}\right\rangle$ a first point t_{i} of N_{p}, or
(ii). In x_{i}^{\prime} or to the right of x_{i}^{\prime} in $\left\langle x_{i}^{\prime}, y_{i}^{\prime}\right\rangle$ there is a first point of those having the property of being a limit point on the right of points of N_{p}.

If (i) holds take t_{i} as z_{i}. If (ii) holds there is in ($x_{i}^{\prime}, y_{i}^{\prime}$) a point t_{i} of N_{p}. Take this t_{i} as z_{i}.

By the nature of the points of N_{p}, there is near z_{i} in each interval ($x_{i}^{\prime}, y_{i}^{\prime}$) either a point z_{i}^{\prime} or a point $z_{i}^{\prime \prime}$ satisfying
(iii). $f\left(z_{i}^{\prime}\right)-f\left(z_{i}\right)>p$, or
(iv). $f\left(z_{i}\right)-f\left(z_{i}^{\prime \prime}\right)>p$.

Let the modes of subdivision D^{\prime} and $D^{\prime \prime}$ be formed as follows: Both D^{\prime} and $D^{\prime \prime}$ have all points of D_{ϵ} and the points $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ and differ only in the point taken for ξ_{i} in forming the sums

$$
F^{(*)}=\Sigma f\left(\xi_{i}\right)\left[g\left(y_{i}\right)-g\left(x_{i}\right)\right] .
$$

If (iii) holds take z_{i}^{\prime} as ξ_{i} for D^{\prime} and z_{i} as ξ_{i} for $D^{\prime \prime}$. If (iv) holds take z_{i} as ξ_{i} for D^{\prime} and $z_{i}^{\prime \prime}$ as ξ_{i} for $D^{\prime \prime}$. Then a calculation gives:

$$
D^{\prime} S[f, g]-D^{\prime \prime}\left({ }^{(*)} S[f, g] \geqq p \cdot m\right.
$$

which is greater than η if η has been chosen to be $<p \cdot m$. Since both D^{\prime} and $D^{\prime \prime}$ are refinements of D_{η}, this result contradicts the definition of D_{η}.

The conditions are sufficient.
As in the proof of Theorem 1 we make use of the equation

$$
\sigma^{(*)} \int_{a}^{b} f d h_{r}+\sigma^{(*)} \int_{a}^{b} f d h_{l}+\sigma^{(*)} \int_{a}^{b} f d g_{c}=\sigma^{(*)} \int_{a}^{b} f d g
$$

and show that each integral on the left exists. We again assume without loss of generality that h_{l} and h_{r} are non-decreasing.
(A). The case of $\sigma^{(*)} \int_{a}^{b} f d h_{l}$.

Defining $h_{l}^{(m)}$ as in the proof of theorem 1 we choose an m so that

$$
2 M \sum_{i=m+1}^{\infty} \stackrel{(-)}{\triangle} h_{l}\left(x_{i}\right)<\epsilon / 4
$$

We can find points $\left\{y_{i}\right\}, i=1,2, \ldots, m$, such that y_{i} is between x_{i} and the nearest point of the set $\left\{x_{i}\right\}$ lying to the left of x_{i} and such that by the existence of $f\left(x_{i}-0\right)$

$$
\left|f\left(\xi_{i}\right)-f\left(x_{i}-0\right)\right|<\frac{\epsilon}{4 \sum_{i=1}^{m} \Delta h_{l}^{(m)}\left(x_{i}\right)}
$$

whenever $y_{i} \leqq \xi_{i}<x_{i}$. Let D_{ϵ} consist of the $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ together with the points a and b. Only the intervals $\left.\left\{<y_{i}, x_{i}\right\rangle\right\}$ contribute to $D_{\epsilon} \stackrel{(*)}{S}\left[f, h_{l}^{(m)}\right]$ and by the choice of y_{i} we have for $y_{i} \leqq \xi_{i} \leqq x_{i}$

$$
\begin{equation*}
\left|D_{\epsilon} \stackrel{(*)}{S}\left[f, h_{l}^{(m)}\right]-\sum_{i=1}^{m} f\left(x_{i}-0\right) \stackrel{(-)}{\triangle} h_{l}^{(m)}\left(x_{i}\right)\right|<\epsilon / 4 \tag{1}
\end{equation*}
$$

Also by the choice of the y_{i}, for any two refinements $D^{\prime}, D^{\prime \prime}$ of D_{ϵ} we have

$$
\left.\left.\begin{array}{l}
\left|D^{\prime} \stackrel{(*)}{S}\left[f, h_{l}^{(m)}\right]-D_{\epsilon} \stackrel{(*)}{S}\left[f, h_{l}^{(m)}\right]\right|<\epsilon / 4, \cdots \cdots \\
\left|D^{n} \stackrel{(*)}{S}\left[f, h_{l}^{(m)}\right]-D_{\epsilon} \stackrel{(*)}{S}\left[f, h_{l}^{(m)}\right]\right|<\epsilon / 4 . \tag{3}
\end{array}\right) \cdot . \quad . \quad . \quad \text { (3) }\right)
$$

By the choice of m we have

$$
\begin{align*}
& \left|D^{\prime} \stackrel{(*)}{S}\left[f, h_{l}\right]-D^{\prime} \stackrel{(*)}{S}\left[f, h_{l}^{(m)}\right]\right|<\epsilon / 4 \tag{4}\\
& \left|D^{\prime} \stackrel{(*)}{S}\left[f, h_{l}\right]-D^{n} \stackrel{(*)}{S}\left[f, h_{l}^{(m)}\right]\right|<\epsilon / 4 \tag{5}
\end{align*}
$$

and also

$$
\begin{equation*}
\left|\sum_{i=1}^{m} f\left(x_{i}-0\right) \stackrel{(-1)}{\triangle} h_{l}\left(x_{i}\right)-\sum_{i=1}^{\infty} f\left(x_{i}-0\right) \stackrel{(-1)}{\triangle} h_{l}\left(x_{i}\right)\right|<\epsilon / 4 \tag{6}
\end{equation*}
$$

From (2), (3), (4), and (5) we have

$$
\left|D^{\prime} \stackrel{(*)}{S}\left[f, h_{l}\right]-D^{\prime}{ }^{\left(*_{j}\right.}\left[f, h_{l}\right]\right|<\epsilon
$$

which establishes that D_{ϵ} is a mode of subdivision for ϵ in accordance with the Pollard-Moore limit theory. From (1), (2), (4), and (6) we have the additional result

$$
\sigma^{(*)} \int_{a}^{b} f d h_{l}=\sum_{i=1}^{\infty} f\left(x_{i}-0\right) \Delta^{(-)} h_{l}\left(x_{i}\right)
$$

where x_{i} runs over the points of left discontinuity of h_{l} (or of g).
(B). The case of $\sigma^{(*)} \int_{a}^{b} f d h_{r}$.

Defining $h_{r}^{(m)}$ as in the proof of theorem 1 we choose m so that

$$
2 M \sum_{i=m+1}^{\infty} \stackrel{(+)}{\Delta} h_{r}^{(m)}\left(x_{i}\right)<\epsilon / 4
$$

We find points $\left\{y_{i}\right\}, i=1,2, \ldots, m$, such that y_{i} is between x_{i} and the nearest point of the set $\left\{x_{i}\right\}$ lying to the right of x_{i} and such that by the existence of $f\left(x_{i}+0\right)$

$$
\left|f\left(\xi_{i}\right)-f\left(x_{i}+0\right)\right|<\frac{\epsilon}{4 \sum_{i=1}^{m} \stackrel{(+)}{\Delta} h_{r}^{(m)}\left(x_{i}\right)}
$$

whenever $x_{i}<\xi_{i} \leqq y_{i}$. Letting D_{ϵ} consist of the $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ together with the points a and b the proof follows almost exactly like (A) above. We have also the additional result:

$$
\sigma^{(*)} \int_{a}^{b} f d h_{r}=\sum_{i=1}^{\infty} f\left(x_{i}+0\right) \stackrel{(+)}{\Delta} h_{r}\left(x_{i}\right)
$$

where x_{i} runs over the points of right discontinuity of h_{r} (or of g).
(C). The case of $\sigma^{(*)} \int_{a}^{b} f d g_{c}$.

The conditions are sufficient by a theorem of Bliss (see p. 1124) for the
existence of the ordinary integral in the norm sense or $N \int_{a}^{b} f d g_{c}$. This of course is sufficient for the existence of $\sigma^{(*)} \int_{a}^{b} f d g_{c}$.

The Modified Integral of Dushnik in the Norm Sense

Theorem 6. In the case of f bounded, g of bounded variation in $<a, b>$ for the existence of the integral $N^{(*)} \int_{a}^{b} f d g$ the following conditions are necessary, and sufficient:
($a^{* *}$). In each point of the interval (a, b) and the right side of a and left side of b either f or g is continuous except that both may have removable discontinuity at the same point.
($b^{* *}$). Same as ($b^{\prime \prime}$) and (b^{*}).
Proof. The following was given by Getchell as the condition of pseudo-additivity:

Condition (r). f and g have no points of common discontinuity in (a, b) and the right side of a and left side of b except that both may have removable discontinuity at the same point.

Since ($b^{* *}$) is the same as (b^{*}) of theorem 5, in order to fulfill the conditions of Getchell's theorem we must show that together (a^{*}) and (r) are equivalent to ($a^{* *}$).

We consider separately the set N_{1} of points of (a, b) and the right side of a and left side of b in which either f or g is continuous and the set N_{2} consisting of points for which both functions are discontinuous. For N_{1} the three conditions (a^{*}), ($a^{* *}$), and (r) hold trivially.

For a point of N_{2} suppose that (a^{*}) and (r) both hold. Then ($a^{* *}$) holds since it is the same as condition (r). On the other hand if ($a^{* *}$) holds then (r) holds, being the same. Also the sidewise limits required by (a^{*}) are guaranteed. Hence (a^{*}) holds for the set. This completes the proof.

BIBLIOGRAPHY.

1. Bliss, G. A., Existence of Stieltjes integral, Proceedings of the National Academy of Sciences, 3, 633-637 (1917).
2. Dushnik, Ben, On the Stieltjes integral, University of Michigan dissertation, 1931.
3. Getchell, B. C., On the equivalence of two methods of defining Stieltjes integrals, Bull. Amer. Math. Soc., 4, 413-8 (1935).
4. Hildebrandt, T. H., Definitions of Stieltjes integrals of the Riemann type, Amer. Math. Monthly, 45, 265-278 (1938).
5. McShane, James Edward, Integration, Princeton University Press, 1944.
6. Moore, E. H. and H. L. Smith, A general theory of limits, American Journal of Mathematics, 44, 102-121 (1922).
7. Price, G. B., Cauchy-Stieltjes and Riemann-Stieltjes integrals, Bull. Amer. Math. Soc., 49, 625-630 (1943).
8. Schaerf, Henry, Ueber Links und rechtsseitige Stieltjes-Integrale, Portugaliae Mathematica, 4, 73-118 (1943-44).
