Mathematics. — Existence of Stieltjes integrals. II. By R. F. DENISTON
(Ames, Iowa). (Communicated by Prof. W. VAN DER WOUDE.)

(Communicated at the meeting of September 24, 1949.)

The Left- and Right-Cauchy-Stieltjes Integral in the Norm Sense

We shall employ the definition of pseudo-additivity of an interval
function and the theorem given by GETCHELL [3] which gives necessary
and sufficient conditions for the existence of an integral in the norm sense.

(~) (~)
For a specified interval function F (I) we say that F (I) is pseudo-
additive at a point z if for x <z <y

(~) (~) (~)
lim Lub |F(<x, y>)—F (<x, z2>)—F (<z,y>)|=0.
X2, y>2
An interval function will be said to be pseudo-additive on an interval

< a, b> if it is pseudo-additive at each point of <a, b>.

(~)
Theorem of Getchell. For a specified interval function, F (I), for the
existence of the integral N‘”’/"; fdg the following conditions are necessary
and sufficient:

(~)
o'~ [b fdg exist; and F (I) be pseudo-additive on <a, b>.

Theorem 2. The condition of pseudo-additivity for (F) (I) is equivalent
to the following:

Condition (q): In each point of (a, b) in which the function g is dis-
continuous on the right the function f is continuous on the left.

Proof. A calculation gives

I(I:“)(<x. y>)— (I:“)(<x. z>)—(l—‘! <Lz y>)|=
=|f(x) [g(y)—g (x)] —f(x) [g(2) — g (x)] — f(2) [9 (y) — g (2)]|
=|gy)—g |- |flx)—£(2)].

The condition of pseudo-additivity is hence equivalent to:
Condition (p):
lim Lub|g(y)—g(2)|-|fl2)—flx)|=

x—> 2z, x<z
y>2z,y>z
We now show that condition (p) implies condition (q), by showing that
if (q) is not satisfied (p) is not. Let z be a point at which |g(z + 0)—
P
-- g(z| >0, and at which f is not left-continuous. Then there is a sequence
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of points {yn}, yn = 2z, ya>z, n=1,2, ... such that | g(y.)—g(z)|>A>0,
and a sequence of points {xa}, xn >z, xa <<z, n=1,2,... such that
| f(z) — f(xa)| > m. Hence

lim Lub |g(y)—g(z)|-|f(z)—f(x)| >0, and condition (p) is

x—> z,x<2z
y—+z,y>z

not realized.
We show that condition (q) implies condition (p). For a point of
(a, 5> at which g is continuous on the right
lim  (g(y)—g(z)) =0
y=>rz,y>z
hence condition (p) is satisfied a priori. For a point of (a, b > at which g
is discontinuous on the right condition (g) requires

lim  (f(x)—f(z)) =0,

x> z,x<z

which gives immediately condition (p).

Theorem 3. In the case of f bounded, g of bounded variation in
<a, b> for the existence of N'-) [tfdg the f[ollowing conditions are
necessary and sufficient:

(a’). Same as (a) of Theorem 1.

(b’). The set of points in (a, b> which are left-sided discontinuities
of the function f is a null set with respect to the left-side continuity
function, g1, of g.

(This theorem has been proved by SCHAERF [8].)

Proof. In accordance with the theorem of Getchell it is sufficient to
show that condition (b’) is equivalent to the totality of condition (b) of
theorem 1 and condition (q) of theorem 2. We consider separately several
sets of points which together exhaust (a, b >.

For points of (a, 5> in which f is continuous on the left conditions (b)
and (b’) make no assertion, and condition (q) is trivially satisfied.

Let the set L, consist of points of (a, > in which f is discontinuous on
the left and g is discontinuous on the right. If both (b) and (g) hold for
L, by (q) f is left-continuous whenever g is right-discontinuous; and
hence L, is null. This implies (5’). On the other hand if (b’) holds L, is
a null set with respect to gi. This requires that L; have no points in which
g is right-discontinuous. Then this also requires L; is null, which gives
both (b) and (g) true for the set L,.

Let the set L, consist of points of (a, 5> in which f is discontinuous
on the left and g is continuous on the right. If z is a point of L,

Age(z)=Agi(2).

Hence the g.-measure and g:-measure of the point is the same. Then (b)
is the same as (") for L,. Condition (g) does not concern L,.
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The sets considered exhaust the points of (a, 6>, and thus the proof
is complete.

The Stieltjes Integral in the Pollard—Moore Sense

Theorem 4. In the case of f bounded, g of bounded variation in
< a,b> for the existence of the integral o[’ fdg the following conditions
are necessary and sufficient:

(a”). On each side of each point of (a, b) and the right side of a and
left side of b if g is discontinuous the function f is continuous.

(6”). The points of (a, b) in which f is discontinuous is a null set
with respect to the continuity function of g.

Proof. The conditions are necessary.

Firstly, it is necessary that both o(-)fg fdg and o(+)fg fdg exist. If we
let L and R be respectively the set of left and right-sided discontinuities
of f and N be the set of discontinuities of f, it is required by (b) of
Theorem 1 that L is a null set with respect to g. in order that ¢ fdg
exist. A corresponding condition for the existence of o{+) [l fdg gives that
R is a null set with respect to g.. Hence N is a null set with respect to g.,
and this is condition (b”).

From (a) of theorem 1 and the corresponding condition for the existence
of o+ [ fdg it follows immediately that at each “side” mentioned in (a”)
f has a sidewise limit. If f is not sidewise continuous suppose that at a
point, z, of (e.g.) left discontinuity of g (and hence of h:) that f(z—0)
exists and is different from f(z). Let D¢ be a subdivision for € in the sense
that whenever D/, D” D De¢

|D’ S[f. hi]—D” S[f. hi]| < €.

Such a Dg is guaranteed to exist by the existence of ¢ (2 fdhi. Now let D’
have all the points of Dg, the point z, and as its first point to the left of =
a point x for which | f(x)— f(z—0)| <3| f(z)— f(z—0)|, and | hi(x)—
-~hi(z—0)| < 4| hi(2)— hi(z—0)|. Let the sum D'Sy[f, hi] contain the

same terms as D S [f, ht] with the exception of the term f(x) - [hi(z)—

—— hi(x)] which may be replaced by f(z)- [hi(z)— hi(x)]. A calculation

gives

(=)
| D" STf. hi]— D’ S, [f. hil| = | £(z) — £() |- | hu(2) — hu ()

=|f(2)—f(z—0) —(f(x) — f(z—0))|-
| ht(2) — hi(z—0)— (hi(x)— hi(z—0))|
=1 |f(2)—f(z—0)|-| hi(z2) — hi(z—0)|.

This difference is greater than € for a suitable choice of €. This result
contradicts the definition of D¢ for such an €. Similar results are obtained
if we suppose a point z of right discontinuity of g such that

f(2) # f(z+0).
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The conditions are sufficient.

As in the proof of Theorem 1 we make use of the equation
o[ fdhi+ o [? fdhr + o [? fdg. = [? fdg,

and show that each integral on the left exists. We again assume without
loss of generality that h; and Ar are non-decreasing.

(A). The case of Ufgfdhl.

Defining h{™ as in the proof of Theorem 1 we choose an m so that

o (=
2M 3 A hi(x) < €]4.
i=m+1

We can find points {y:} (i =1, 2, ..., m) such that y; is between x; and
the nearest point of the set {xi} lying to the left of x; and such that by
the left-continuity of f at x:

[FE) =) <5 —
42 A ™ (x)

€

whenever y; < & < x;. Let Dg consist of the {x;} and {y:} together with
the points a and b. Only the intervals { << yi, x1 >} contribute to
DeS[f, h{™], and by the choice of yi we have for yi < & < xi
m (=)
| De S[f. h™] = 2 flx) A A ()| <e4. . . . . (1)

Also by the choice of the yi, for any two refinements D’, D” of D¢ we have
|D’ S[f.h{"—De SIf,A™]|<€/4, . . . . . (2
|ID"S[f.h"—De SI[f A" <€l . . . . . (3

By the choice of m we have
|D’S[fh]—D'SIERM <€/t . . . . . . (4)
|D"S[f.h]—D"S[f. A" | <€/ . . . . . . (5

and also
I_rzj‘l F(xi) Z) hi(xi)— I:jlf(x,’) (A) hi(x)| < €/4. . . . (6)

From (2), (3), (4), and (5) we have

|D"S[f. h]—D"S[f h]|<e

which establishes that D¢ is a mode of subdivision for € in accordance
with the Pollard—-Moore limit theory. From (1), (2), (4), and (6) we have
the additional result

o2 fahi= 3 fle) A (x)

where xi runs over the points of left discontinuity of h: (or of g).
73
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(B). The case of of? fdh:.

Defining h'™ as in the proof of theorem 1 we choose m so that
. (4)
2M 3 Ah(x) < e/4
i=m+1

In this case we find points {y:}, i =1, 2, ..., m, such that y: is between x:
and the nearest point of the set {x;} lying to the right of x; and such that
by the right-continuity of f at x:

|FE) — Flxi) | < —rr——
42 AR (x)

whenever x; < & < yi. Letting D¢ consist of the {x:} and {y:} together
with the points a and b the proof follows almost exactly like (a) above.
We have also the additional result:

o[l fdh,= g'l fx:) (A)hr(xi)

where x; runs over the points of right discontinuity of hr (or of g).

(C). The case of afgfdgc.
The conditions are sufficient by a theorem of Bliss (see below) for the

existence of the integral in the norm sense or N /z fdg.. This guarantees
existence in the o-sense.

Remark on the Ordinary Stieltjes Integral.

For the integral N/z fdg based on F(<?¥,t">) = f(&)[g(t”")—g(¥)]
(# <&<t") GETCHELL gives as the condition of pseudo-additivity the
following: _

f(x) and g(x) have no common point of discontinuity.

This condition and theorem 4 are seen to be in agreement (in the sense
of Getchell’s theorem) with the following condition given by BLiss [1]
for the ordinary integral:

A necessary and sufficient condition that the norm or Riemann-Stieltjes
integral N [® fdg, g of bounded variation, exist is that the total variation
of g on the set of the discontinuities of f be zero.

The Modified Integral of Dushnik in the Pollard—Moore Sense

Theorem 5. In the case of f founded, g of bounded variation in
<a,b> for the existence of the integral o*)[% fdg (the Dushnik integral
in the Pollard—-Moore sense) the following conditions are necessary and
sufficient:

(a*). On each side of each point of (a, b) and the right side of a and
left side of b if g is discontinuous the function f has a sidewise limit.

(b*). Same as (b”). (i.e. the points of (a, b) in which f is discontinuous
is a null set with respect to the continuity function of g.)
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Proof. The conditions are necessary.

(a*) was given by HILDEBRANDT [4] to be necessary and follows from
the necessity of sidewise pseudo-additivity of F as given by GETCHELL.

Condition (b*) is necessary.

We suppose without loss of generality that g. is non-decreasing in
<a,b>. In order to establish a contradiction we suppose that the set N
of discontinuities of f in (a, b) has positive outer g.-measure, but that the
integral o(*) (2fdg exists. Then for arbitrary >0 there is a mode D,
having the property that for all D', D” satisfying D’, D” D Dy it is true
that

*) (*)
|D’S [f. g1 —D"S [f. gl| <n.
We denote by N the set of points, x, for which there is in every neigh-
borhood a point y such that | f(x) — f(y)| > p. Since N = 3 Nyjp and
n=1

since 0<g; {N} < g‘g: { Nyn} there is a number p>0 for which
n=1

g: (N]/p) —mp > 0.
Let D, above be given by
rp-1

a=t<t<...<t,= b and consider the set 51 <t;i—0,t; + 0>.

By the uniform continuity of gc on <<a, b> we are assured of a 9 such
that if x and y satisfy | x—y | <20 we have | gc(x)—g.(y)| < i Using
n

this @ we have that the outer g.-measure of N), by which we denote
ry—1

n
Np— 2 <ti—0, ti + 0>, is greater than mp—e/2. Hence by the meaning

=1
of outer measure we can cover the set N by a finite number n; of non-
o 1) — o ae o L
overlapping intervals I{) = <xi, yi>,i =1, 2, ..., n,, satisfying

n (1) 5 (i) '
12 geli) > 2 ge(Ii’ - Np) > mp—e,
=1 i=1

rp=1
and having no points in common with the set ”2 <ti—o,ti +3>.

=1

Let 0, be the 0 of uniform continuity for €/2n; and let us take points

x; at a distance 0; to the right of x; and also points y; at a distance 0, to
the left of yi. If any interval had length less than 20; or if <xi,y:>
contains no points of Np we omit it. Let {1"?) }.i=1,2,..., n, be the new
(renumbered) set of intervals <xj, y; >. We have

n, n,
2 ge(I?)> 2 gl (17 - Nj) > mp—2e.
= 1=

The expression on the right is greater than my/2 = m >0 if € has been
chosen less than mp/4. We now have the following possibilities:
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(i). To the right of xj there is in <xj,y;>> a first point t; of Np, or

(ii). In x;or to the right of xjin <xj,y;>> there is a first point of
those having the property of being a limit point on the right of points
of Np.

If (i) holds take ¢ as z:. If (ii) holds there is in (xj, y;) a point t; of Np.
Take this t; as zi.

By the nature of the points of N, there is near z: in each interval
(x7,yy) either a point z; or a point z; satisfying

(i)). f(zi)—f(z)) > p, or

(iv). f(z)—F£(zi) > p.
Let the modes of subdivision D’ and D” be formed as follows: Both D’
and D” have all points of D¢ and the points {x;} and {y:} and differ only
in the point taken for &; in forming the sums

F®O =X f(&) [g(y:) — g (x1)].

If (iii) holds take z; as & for D’ and zi as & for D”. If (iv) holds take
zi as &i for D’ and z; as & for D”. Then a calculation gives:

® @
D’S[f.g1—-D"S[f.glzp-m,

which is greater than 7 if 5 has been chosen to be <p - m. Since both D’
and D” are refinements of Ds, this result contradicts the definition of Dy.

The conditions are sufficient.
As in the proof of Theorem 1 we make use of the equation

o) [5 fdh, + o [ fdh, 4 o [? fdge = o [? fdg

and show that each integral on the left exists. We again assume without
loss of generality that h: and hr are non-decreasing.

(A). The case of ot fb fdh..

Defining h{™ as in the proof of theorem 1 we choose an m so that

2M 3 Ahz(x,)<€/

i=m+

We can find points {y:}, i =1, 2, ..., m, such that y; is between x; and
the nearest point of the set {xi} lying to the left of x; and such that by
the existence of f(xi —0)

| F(E) — Flxi—0)| < -

_T__(_
4 X A h,’")(xg)
i=1

whenever y; < & < xi. Let D¢ consist of the {xi;} and {y:} together with
the points a and b. Only the intervals { << yi, x; >} contribute to

*)
De S [f, h{™] and by the choice of y: we have for yi <& < x:

| De S[f, K™ — f (i—O) AR (x)| < e/d. . . . (1)
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Also by the choice of the yi, for any two refinements D’, D” of D¢ we have
*) ®)
|D’ S[£, A" —De S[FER™ | <€4 . . . . -. (2
@ m o -
|ID"S[f.hi"]—De S[f. hi"]|<e€4. . . . . . (3

By the choice of m we have
(*) *)
|D’S[f£h]—D' S[FRM<e€4 . . . . . @)
*) (%)
|ID"S[f.h]—D"S[f.H"]|<€/4 . . . . . (5

and also

|_’2"‘f(x.'—O)(A—)hz(x,-)—i%f(x,-—O)(L_X)hl(x,-)l<€/4. . . (6)

From (2), (3), (4), and (5) we have
D’ SIE h]—D’ SIE hi)| < €

which establishes that D¢ is a mode of subdivision for € in accordance
with the Pollard-Moore limit theory. From (1), (2), (4), and (6) we
have the additional result

® (=)
o® [2 fdh; ='2 f(xi—0) A hy(x;)
=1
where xi runs over the points of left discontinuity of h: (or of g).

(B). The case of o(*)/z fdh:.

Defining K™ as in the proof of theorem 1 we choose m so that

w (+)
2M 3 AR (x) < €/4.

i=m+1

We find points {y:}, i =1, 2, ..., m, such that y; is between x; and the
nearest point of the set {xi} lying to the right of xi and such that by the
existence of f(x: + 0)

|fE)—flxi+0)| <

€
m (+)
4 3 AR™(x)
i=1

whenever x; <{i < yi. Letting Dg consist of the {xi} and {yi} together
with the points a and b the proof follows almost exactly like (A) above.
We have also the additional result:

@® (+)
o(*)/: fdh, = _21 flxi +0) A hr(x))
1=
where x; runs over the points of right discontinuity of A, (or of g).

(C). The case of o™ [? fdg..
The conditions are sufficient by a theorem of BLISS (see p. 1124) for the
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existence of the ordinary integral in the norm sense or N /¢ fdg.. This of
course is sufficient for the existence of o(*) 4 fdge.

The Modified Integral of Dushnik in the Norm Sense

Theorem 6. In the case of [ bounded, g of bounded variation in
< a, b>> for the existence of the integral N*)[? fdg the following conditions
are necessary, and sufficient:

(a**). In each point of the interval (a, b) and the right side of a and
left side of b either f or g is continuous except that both may have
removable discontinuity at the same point.

(b**). Same as (b”) and (b*).

Proof. The following was given by GETCHELL as the condition of
pseudo-additivity:

Condition (r). f and g have no points of common dnscontmuxty in (a, b)
and the right side of a and left side of b except that both may have
removable discontinuity at the same point.

_ Since (b**) is the same as (b*) of theorem 5, in order to fulfill the
conditions of Getchell's theorem we must show that together (a*) and (r)
are equivalent to (a**).

We consider separately the set N, of points of (a, b) and the right side
of a and left side of b in which either f or g is continuous and the set N,
consisting of points for which both functions are discontinuous. For N; the
three conditions (a*), (a**), and (r) hold trivially.

For a point of N, suppose that (a*) and ‘(r) both hold. Then (a**)
holds since it is the same as condition (r). On the other hand if (a**)
holds then (r) holds, being the same. Also the sidewise limits required by
(a*) are guaranteed. Hence (a*) holds for the set. This completes the
proof.
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