





1160

for a suitable chosen value of & in the interval (0, T') and this expression
converges to zero for T — . The same argument holds for the imaginary

T
part of —117 [ e2*ihf) dt, so the theorem is proved.
0

Theorem 5. If f(t) is a differentiable function, defined for t 20, and
if f'(t) is monotonically non-increasing for t=0 with t f’(t) - o for
t —> o, then f(t) is Cl-uniformly distributed (mod 1).

Proof.

T
% [ erihsth g — L f 2zxihe B (u) du,

1)

o

where t = F(u) is the inverse function of u = f(¢).
Using the second mean-value theorem, the last expression equals

1 e )
TF (D ]40)‘:03 2nhudu, with 0<&(<T,

and so tends to zero for T — 0, and simarly for the imaginary part. Hence
f(t) is Cl-uniformly distributed (mod 1).

§ 3. . Applications of the Clll-test.

In the paper already mentioned [1], we introduced a function which is
CL, but not C/. and CM.uniformly distributed (mod 1).

In the present paragraph we shall prove that the C/-distributed functions
of Theorems 4 and 5 are also C//-distributed.

Theorem 6. Under the assumptions of Theorem 4 f(t) is C!"l-uniformly
distributed (mod 1).

Proof. Let 3 B« be an arbitrary system of non-overlapping intervals
k=1

Bx on J. Then, with arbltranly chosen T 20, the integer N exists, such

that N<f(T) <N +1 hence F(N) ST <F(N + 1), where t = F(u)

denotes the inverse function of u = f(¢t). Let B« be the interval (ax, f«),

and S7(B«) the set of points of 0 <t < T with ar < f(¢) <Br (mod 1).
Then

FIST@IISF = (F(n+p0—F (nt )=

IIMz

N (2
T z (Bx—ax) F’ (n + &, ).

for a suitable chosen value of & , in

n+arlun+t i (n=1,2,...,N).
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Since f’(t) is monotonically non-decreasing, the last expression is

N
(Bx—ax) ’foF' (n)

- ﬂk_ak ’ ’
= T ="y U F @ du+ (O

(N)
for T sufficiently large (independent of k).
Hence the series kéz 1 %.,H Sr (Br)|| is uniformly convergent in T, and by
§ 6 of [1] f(t) is CM_uniformly distributed (mod 1).

Theorem 7. Under the assumptions of Theorem 5 f(t) is C"-uniformly
distributed (mod 1).

Proof. In this case the expression (2) is

(ﬁk—ak) Z F (n)

- (Be—ar) F(N+1)
- F(N)

F(N)

+

ak)31+Fg\(';,r) )g

F(N+1)
F(N)

From our assumptions it is easily seen that -1 for T —» oo,

Hence
7187 (B <3 (B —an

for T> T, (T, independent of k), which shows that the series

Il@r(%k I

is uniformly convergent in T for T > T,, and so f(t) is C*-uniformly
distributed (mod 1).

§ 4. Generalisation of the C!-uniform distribution.
In the present paragraph we shall give an extension of the definition of
Cl-uniform distribution. Whenever a function f(¢) is C/l.distributed, then,

for any > B, f(t) satisfies the relation:
k=1

1

o T &k

When however a function f(t) isC’!- and not C/-uniformly distributed,

hm 2']|@r By) H—ZlH%kH R < )

it is possible to indicate special sets 3 B« for which f(t) satisfies (3).
k=1
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In this case we call f(f) Cla-distributed with respect to 3 B.
k=1

Definition.  f(t) is C'a-distributed (mod 1) with respect to a set 3 @,
k=1
if [(t) is Cl-uniformly distributed (mod 1), and if f(t) satisfies:
] = P
lim = 2 ||S7(By)||= 2 i
Tow T k=l” T (@Bl k=l”%k”
It is obvious that for C/a-distribution the following test holds:

Cla-test. Necessary and sufficient for the Cla-distribution (mod 1) of

f(t) with respect to a set 2' B« is that f(t) and 2 %k satisfy the relations:
=1

lim T f eihfti dt =0 (h integer, 7+ 0)

T o
and

lim z —||@T(szsk)||_z Jim o ||c51(mk)||.

T
Now we may prove the following
Theorem 8. Each Cl-uniformly distributed function f(t) (mod 1) is

Cladistributed with respect to any 3 B« with one limitpoint *).
k=1

Proof. For any positive quantity ¢ there exists a positive integer n,
such that

3 B,cQ

k=n+1

where £ is a subinterval of I with length ¢&. From

= Sr By c 2 Gr (B
k=1 k=1
follows:

2 16r@B = 2 116+ B
k=1 k=1

hence

. g 1 R |

limsup 2 7 [ @a)|=lim 2 7 [[Sr @I+

1 - 1
+ lim sup 2 TS @BAI= 2 Bl + lim 1 |87 @<

T>®® k=n+1

< Z Bl +e.

*) That is, there exists a point xo on J such that every interval, containing xo in
its interior, also contains all but a finite number of the intervals 8.
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On the other hand
x 1 noq a
im inf 2 — = lim 3 = = & [|Bg||=
ll]!_lll:fk=l T |S1 (B) || 7!_1_!:1” =T 1S (B || k:l” kll
=2 [|Byf|— 2 ||Bel|= 2 ||Be]|—e.
k=1 k=n+1 k=1
So we have:
o 1 @
lim 2 |G @)= 2 || Bk,
Jim 2 g 1S7 (B || k=1“ k||
and the theorem is proved.

Remark. 1t is evident that the same argument holds if we consider a

- 2]
set 2 Bk with a finite number of limitpoints.
k=1
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