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1. Introduction.

EmLenBERG and STEENROD have axiomatised the concepts of homo-
logy and cohomology theories (see [1]!) and a forthcoming book of
them). Under the restrioted sense of EILENBERG-STEENROD, a cohomology
theory defined on a class of pairs (X, X,) and continuous maps is a
function H™(X, X,) defined for every pair (X, X,) in the class and
every integer m = 0 with values in the class of abelian groups such that:

(i) If f: (X, X,) > (¥, Y,) is a continuous map in the class, there
is an induced homomorphism
f¥: H™(Y, Y, - H™ (X, X,).
(i) For each pair (X, X,) in the class and m = 0, there is a
coboundary homomorphism
6: H™ (Xy) - H" (X, X,).
These concepts satisfy the following axioms.
Axiom 1. If f is the identity map on (X, X,), then f* is the identity
automorphism on H™ (X, X,).
Axiom II. If f: (X, Xo) > (Y, Y,) and g: (Y, Y,) — (Z, Z,), then
@)* = f*g*.
Axiom III. Iff: (X, Xo) = (Y, Y,), then f*6 = 6fy*, where f,= f|X,.
The foregoing axioms are sometimes called the algebraic axioms.
Axiom IV. (Homotopy Axiom) If X s a compact Hausdorff space

and X, is a closed subset of X and if the continuous maps f, ¢:
(X, Xo) = (Y, Y,) are homotopic relative to {X,, Y,}, then f*= g*.

Axiom V. (Exactness Axiom) Given (X, X,) and the identity maps
i (Xo @) > (X,9), j: (X, )~ (X, X)),

*) This work was done under Contract N7—ONR —434, Task Order No. IIT,
Navy Department, Office of Naval Research, U.S.A.
1) Numbers in brackets refer to the bibliography at the end of the paper.
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the groups and homomorphisms

i* i*

‘. o F} e i
HO (X, X ) HY (X)—> ...o> H™ (X) > H™ (X,) —> H"*1 (X, Xg) > H™1(X) ...
form an exact sequence, [3, p. 687], called the cohomology sequence of the
pair (X, X,).

Axiom VI. (Excision Axiom) If U s an open set whose closure
18 contained in the interior of X,, then the identity map

w: (X—=U, X,—U) < (X, X,)
induces, for each m, an isomorphism onto :
u*: A (X, X)) - H"(X—-U, X,— U).

Axiom VII. (Dimension Axiom) If X is a space consisting of a
single point x,, then H™(X)= 0 for every m +# 0.

In our note I, [2], a generalisation of the classical cohomology theory
is given by introducing coboundary operators of higher order. It is
natural to ask if there are analogous axioms which hold good for all
of the (p, g)-cohomology groups. The purpose of the present note is to
carry out such an investigation.

The algebraic axioms are proved in § 4. The exactness axiom is proved
in §6 and the excision axiom in § 7. For the dimension axiom, the
m-dimensional (p, ¢)-cohomology groups of a single point are computed.
This shows that, in general, the dimension axiom does not hold. It
remains open whether or not the homotopy axiom is satisfied.

2. The coboundary homomorphisms.

Throughout the present note, we assume G to be a discrete abelian
group such that the order of every element of G divides 6(p, q) for a
given pair of positive integers p and ¢, [2, §§ 4 and 5].

Let (X, X,) be a given pair. We shall define for each integer m a
homomorphism

ov: He o (X, G) - H P (X mod X, (),

called the coboundary homomorphism on the group HI ., (X, @) as
what follows.

Let ¢: Xy — X be the identity map. It follows from a statement of
SPANIER, [4, p. 411], that the induced cochain transformation, [2, § 7],

#: Om (X, Q) > O™ (X,, 6)

is onto. Therefore, for each element ee H , (X,, G) there is a
cochain ¢™e C™X, G) such that (*c¢™ is a cocycle of order p and

represents the element e.

(2.1) orcme Zm* 1 (X mod X, G).
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Proof. Since 6?6*c™=0 by our assumption on the group G,
0 cm e Zm79 (X, G). Bince ¥ ¢™ is a cocycle of order p, we have
F P em= 67 * ™= 0.
Hence, 6°c™ e C™*? (X mod X,, @). This completes the proof.

(2.2) 67 c™ represents an element 6°e of the group H7? (X mod X, G),
which depends only on e.

Proof. Suppose that d™e C™ (X, G) be another cochain such that
¥ dm is a cocycle of order p and * d™ represents the element e. Then
it follows that ¢*c¢™— #dm™ is a coboundary of order g, i.e. there
exists a cochain a™" %€ ("¢ (X,, G) such that

Fem —Fdm=97am,
Since the homomorphism
0" X,60) > 0™ (X,, @)
is onto, there is a cochain ™ —2e C"— (X, @) such that a™ 9= # pm—,
Hence we obtain
HF (e —dm— 810 = 0,
i.e. the cochain ¢ —d™— §7b™7 belongs to the subgroup C™ (X mod X,,G).
Taking its p-th coboundary, we obtain
& cm"— §* d™e Bm*?? (X mod X, ).
This completes the proof.
Now, the following theorem is obvious.

(2.3) The correspondence e — &° e is a homomorphism
0": Hy ) (X, G) - H{E, (X mod X, G).

3. Induced homomorphisms of the groups.

By a map f of a pair?) (X, X,) into a pair (Y, Y,), we mean a
(continuous) map f: X — Y such that f(X,)c ¥, Let f be a given
map of (X, X,) into (¥, Y,) and denote by f,= f|X, the partial map
on X, into Y,. Let

4 Xo—> X, L Yo Y
be the identities. Then we have the following diagram of cochain
transformations

]‘#
omy,6) —1— L omx,6)

| & y

f#
C™ (Yq, G) —2—— C™ (X, G)

%) See [2, §8].
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Since fi; = t, fy, the following relation is an direct consequence of
(7.4) of our Note I:

(3.1) i 1= fF

The following properties can be easily verified:
(3.2) fF(C™ (Y mod Y,, @) c C™ (X mod X,, G),
(3. 3) f*(Z™» (Y mod Y,, @) c Z™* (X mod X,, @),
(3. 4) f* (B™1 (Y mod Y,, @) c B™ (X mod X,, @).

As a consequence of (3.3) and (3.4), f*+ induces a homomorphism
f*: H2, (Y mod Y, @) - H? ,, (X mod X, @),

called the homomorphism induced by the map f. If X, and Y, are
vacuous, then this homomorphism reduces to the following homormophism
f*: Hp ,(Y,G)— Hp (X, G)

(2,9
of the absolute groups. Hence the partial map f,= f|X, induces a
homomorphism
fo (nq) Yo, G)_>H(pf1) (Xoa G)

of the groups of the subspaces.

4. The algebraic axioms.

The following two axioms are immediate consequences of (7.3) and
(7.4) of our Note I, [2].

Axiom I. If f: (X — (X, X,) ts the identity map, then the
induced homomorphism f* is the identity automorphism of the group
H? (X mod X, G)

Axiom II. If {: — (Y, Y,) and g: (Y, Yo) > (Z, Z;), then
(gh* = f*g*.

We are going to prove the following axiom:

Axiom III. Iff: (X, X¢) > (Y, Y,) and f,= f|X,, then f*6* = 6%,.

Proof. Let ec H" ,(Y,, G) be an arbitrary element. Choose a
cocycle of order p a™ € Z™” (Y, G) which represents e. |Let

e Xp—> X, ty; Yo—> Y
be the identities. Since ¢ is onto, we may choose a cochain ¢ € C™ (Y, G)
such that «ffc™ = a™. Then the element

f*oreec Hi—? (X mod X,, G)

(a.0)
is represented by the cocycle f# §?¢™ of order ¢. On the other hand, the
element fye is represented by the cocycle fiFa™ of order p. Since

by (3.1), the element 67 f(, e is represented by o° f# c™. Since f# 62 = 67 f#,
our proof is complete.
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5. Mayer cochain complexes.

A sequence of groups and homomorphisms is termed a homomorphism
sequence if it can be indexed from the integers so that, if G, and A,
denote respectively the group and homomorphism with index r, then

h,; G,—~ G, (r=...,—1,0,1,...).
A Mayer cochain complex K is a homomorphism sequence K = {G,, h,}
such that 4, A, =0 for all r=..., —1,0, 1..., [3, p. 684].

For an arbitrary integer m, we construct a homomorphism sequence
K(m,p,q;X,0)={G, h,}
by taking
G, = Cm+ir+izp+in2le (X @),
5 {6”, if r is even,
r= 09, if r is odd,
where the symbol [z] denotes the greatest integer not exceeding .
Since 670?= 0 = 426?, we have
(5.1) K(m, p, q; X, G) is a Mayer cochain complex.

To every group G, of the Mayer cochain complex K(m, p, ¢; X, &),
we associate with the subgroup

Fr — Om+Ur+1/2p+Ir/2)e (X mod Xo’ G)

of @,, where X, is a given subspace of X. It follows from (8.1) of our
Note I, [2], that

k T (F 'r) C F T+1
for each integer r. Thus we obtain another Mayer cochain complex
K (m,p,¢; X mod Xy, G) = {F,, h,}.
The following statement is an immediate consequence of the definition
of a subcomplex, [3, p. 685].
(5.2) K(m, p, ¢; X mod X, G) is a subcomplex of the Mayer cochain
complex K(m, p, q; X, G).
Let us use the following abridged notations:
Kr=K (m,p,q; X, q),
K™ =K (m, p, ¢; X mod X, ®).
Let H'(K) denote the r-dimensional cohomology group of the Mayer
cochain complex K, [3, p. 685]. Then clearly we have

Hyhrer+r (X, @), (if r is even),

H (K™ (p.a
( )= Hz;;)(rﬂ)vlzﬂr—l)q/z (X, G), (if ris odd);
He (K {H{;‘,j)”’/‘“"’/z (X mod X, @), (if r is even),
(B = gmsor+vomso—naz (X mod X,, @), (if » is odd).



6. The exactness axiom.

Let (X, X,) be a given pair. Denote by 9 the empty set and consider
the identity maps

1:; (Xm @)_>(X! ¢): 7'7 (X, @)"’ (X’ XO)'
The maps ¢ and j induce homomorphisms:
o Hi ) (X,G) — Hf ) (X, G),
7*: Hi , (X mod X, G) > H ,, (X, G).
Further, we have defined in § 2 the coboundary homomorphisms
0r; Hi o (Xo, @) > Hiz? (X mod X, G).
Thus, for an arbitrary integer m, we obtain a homomorphism sequence:
;e 89 i* 1
Hp0 (X, G) - H? , (X mod X, @) - H , (X, G) —
Hp (X, G) —> H(q;}’ (X mod X, G) % H(’,'”,) (X,G)—
called the (m, p, q)-cohomology sequence of the pair (X, X,) over G.

Exactness axiom. The (m, p, q)-cohomology sequence of a pair
(X, X,) over G is exact, i.e. the kernel of each homomorphism is identical
with the image of the preceding.

Proof. Let «: X,— X be the identity map, then the induced
cochain homomorphism

¢ 0 (X, Q) -~ C™ (X, @)

and its kernel is the subgroup €™ (X mod X, G). Hence, it follows from
Noether theorem that C™(X,, @) is isomorphic with the factor group

™ (X,G)/C™ (X mod X, G).
Therefore, the Mayer cochain complex
K'g‘: K(m’ P, q; Xo: G)

might be considered as the quotient complex K™/K™, [3, p. 685]. Then,
our axiom follows from a general theorem of KELLEY-PITCHER, [3, p. 688].

7. The excision axiom.

Excision axiom. If U is an open set of X whose closure is contained
in the interior of X,, then the identity map

u: (X-U, X,—U)—> (X, X,)
induces onto isomorphisms
u*: H (X mod X, G) - HE ,, (X— U mod X,— U, G)

for every integer m.
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Proof. According to SPANIER, [4, p. 418], the induced cochain
transformation

p#: C™ (X mod X, @) - C™ (X— U mod X,— U, G)

is an onto isomorphism. Since 6°u* = u¥* ¢ and u* 8= 6%u*, our axiom
follows immediately. Q.E.D.

8. The groups for a single point.

In the present section, we shall be concerned with the topological
space X which consists of only a single point x,. We are going to
compute the m-dimensional (p, g)-cohomology group HpE , (X, G) in
terms of the coefficient group G and the integers m, p, g.

Since X consists of a single point z,, X™*! consists of the point
et = (%, . . ., %,) only. Hence

om(X,6) =" (X,60) ~ G-

The onto isomorphism is given by associating to each m-function @
of &™(X, G) the element g = @(x2*!) of G.
For an arbitrary m-function ¢ € @™(X, @), it is easy to see that

0" P (ag ™) =6 (p, m+ 1) P (2 *7).

Let kG denote the subgroup of G which consists of all elements of the
form kg, g € G; and let Gk denote the subgroup of G consisting of all
elements g € G such that kg= 0.

The following easily verified identity

O(p, m+1) 6(g, m—g+ 1)=0(p, ¢) 0(p+ ¢, m—qg—1)
shows that 6(q, m — ¢+ 1) G is a subgroup of G 6 (p, m -+ 1). Then, an
elementary consideration will give the following isomorphisms onto:
gO, (m < 0),
(6o m+16@m—g+DE  (m=0.
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